Open AccessArticle
Quantitative Ultrasound Texture Analysis of Breast Tumors: A Comparison of a Cart-Based and a Wireless Ultrasound Scanner
by
David Alberico, Lakshmanan Sannachi, Maria Lourdes Anzola Pena, Joyce Yip, Laurentius O. Osapoetra, Schontal Halstead, Daniel DiCenzo, Sonal Gandhi, Frances Wright, Michael Oelze and Gregory J. Czarnota
Viewed by 237
Abstract
Previous work has demonstrated quantitative ultrasound (QUS) analysis techniques for extracting features and texture features from ultrasound radiofrequency data which can be used to distinguish between benign and malignant breast masses. It is desirable that there be good agreement between estimates of such
[...] Read more.
Previous work has demonstrated quantitative ultrasound (QUS) analysis techniques for extracting features and texture features from ultrasound radiofrequency data which can be used to distinguish between benign and malignant breast masses. It is desirable that there be good agreement between estimates of such features acquired using different ultrasound devices. Handheld ultrasound imaging systems are of particular interest as they are compact, relatively inexpensive, and highly portable. This study investigated the agreement between QUS parameters and texture features estimated from clinical ultrasound images of breast tumors acquired using two different ultrasound scanners: a traditional cart-based system and a wireless handheld ultrasound system. The 28 patients who participated were divided into two groups (benign and malignant). The reference phantom technique was used to produce functional estimates of the normalized power spectra and backscatter coefficient for each image. Root mean square differences of feature estimates were calculated for each cohort to quantify the level of feature variation attributable to tissue heterogeneity and differences in system imaging parameters. Cross-system statistical testing using the Mann–Whitney U test was performed on benign and malignant patient cohorts to assess the level of feature estimate agreement between systems, and the Bland–Altman method was employed to assess feature sets for systematic bias introduced by differences in imaging method. The range of
p-values was 1.03 × 10
−4 to 0.827 for the benign cohort and 3.03 × 10
−10 to 0.958 for the malignant cohort. For both cohorts, all five of the primary QUS features (MBF, SS, SI, ASD, AAC) were found to be in agreement at the 5% confidence level. A total of 13 of the 20 QUS texture features (65%) were determined to exhibit statistically significant differences in the sample medians of estimates between systems at the 5% confidence level, with the remaining 7 texture features being in agreement. The results showed a comparable magnitude of feature variation between tissue heterogeneity and system effects, as well as a moderate level of statistical agreement between feature sets.
Full article
►▼
Show Figures