- Article
SRE-FMaps: A Sinkhorn-Regularized Elastic Functional Map Framework for Non-Isometric 3D Shape Matching
- Dan Zhang,
- Yue Zhang and
- Ning Wang
- + 1 author
Precise 3D shape correspondence is a fundamental prerequisite for critical applications ranging from medical anatomical modeling to visual recognition. However, non-isometric 3D shape matching remains a challenging task due to the limited sensitivity of traditional Laplace–Beltrami (LB) bases to local geometric deformations such as stretching and bending. To address these limitations, this paper proposes a Sinkhorn-Regularized Elastic Functional Map framework (SRE-FMaps) that integrates entropy-regularized optimal transport with an elastic thin-shell energy basis. First, a sparse Sinkhorn transport plan is adopted to initialize a bijective correspondence with linear computational complexity. Then, a non-orthogonal elastic basis, derived from the Hessian of thin-shell deformation energy, is introduced to enhance high-frequency feature perception. Finally, correspondence stability is quantified through a cosine-based elastic distance metric, enabling retrieval and classification. Experiments on the SHREC2015, McGill, and Face datasets demonstrate that SRE-FMaps reduces the correspondence error by a maximum of 32% and achieves an average of 92.3% classification accuracy (with a peak of 94.74% on the Face dataset). Moreover, the framework exhibits superior robustness, yielding a recall of up to 91.67% and an F1-score of 0.94, effectively handling bending, stretching, and folding deformations compared with conventional LB-based functional map pipelines. The proposed framework provides a scalable solution for non-isometric shape correspondence in medical modeling, 3D reconstruction, and visual recognition.
16 December 2025





