ARAN: Age-Restricted Anonymized Dataset of Children Images and Body Measurements
Abstract
:1. Introduction
1.1. Related Work
1.1.1. Human Body Image Datasets
1.1.2. Predicting Body Measurements
1.2. Outline of the Paper
2. The ARAN Dataset
2.1. Data Collection Procedure
Sample Population
2.2. Dataset Contents
2.3. Challenges in Data Collection
3. Predicting Body Measurements
3.1. Pre-Processing
3.2. Network Training
3.3. Evaluation Procedure
Linear Baseline
3.4. Results
4. Discussion
4.1. ARAN Dataset
4.2. Body Measurements
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yousaf, N.; Hussein, S.; Sultani, W. Estimation of BMI from facial images using semantic segmentation based region-aware pooling. Comput. Biol. Med. 2021, 133, 104392. [Google Scholar]
- Bhat, S.S.; Ananth, A.; Dsouza, P.; Sharanyalaxmi, K.; Shreeraksha; Tejasvini. Human Body Measurement Extraction from 2D Images. In Lecture Notes in Electrical Engineering; Springer: Berlin/Heidelberg, Germany, 2021; Volume 752. [Google Scholar]
- Choutas, V.; Müller, L.; Huang, C.H.P.; Tang, S.; Tzionas, D.; Black, M.J. Accurate 3D Body Shape Regression using Metric and Semantic Attributes. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022. [Google Scholar]
- Mocini, E.; Cammarota, C.; Frigerio, F.; Muzzioli, L.; Piciocchi, C.; Lacalaprice, D.; Buccolini, F.; Donini, L.M.; Pinto, A. Digital anthropometry: A systematic review on precision, reliability and accuracy of most popular existing technologies. Nutrients 2023, 15, 302. [Google Scholar] [CrossRef] [PubMed]
- Gunel, S.; Rhodin, H.; Fua, P. What face and body shapes can tell us about height. In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, Seoul, Republic of Korea, 27–28 October 2019. [Google Scholar]
- UNICEF; WHO; World Bank. Joint Child Malnutrition Estimates (JME) 2023. The UNICEF, WHO, and the World Bank Inter-Agency Team Update the Joint Child Malnutrition Estimates (JME) Every Other Year. Available online: https://www.who.int/data/gho/data/themes/topics/joint-child-malnutrition-estimates-unicef-who-wb (accessed on 20 March 2025).
- Liu, Q.; Li, C.; Yang, L.; Gong, Z.; Zhao, M.; Bovet, P.; Xi, B. Weight status change during four years and left ventricular hypertrophy in Chinese children. Front. Pediatr. 2024, 12, 1371286. [Google Scholar] [CrossRef] [PubMed]
- Basahel, A.M.; Bahbouh, N.M.; Abi Sen, A.A.; Yamin, M.; Basahel, M.A. A Smart Way to Monitor Children Growth with the Help of ML. In Proceedings of the 2024 11th International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 28 February–1 March 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 146–151. [Google Scholar]
- Trivedi, A.; Jain, M.; Gupta, N.K.; Hinsche, M.; Singh, P.; Matiaschek, M.; Behrens, T.; Militeri, M.; Birge, C.; Kaushik, S.; et al. Height estimation of children under five years using depth images. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Virtual, 1–5 November 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 3886–3889. [Google Scholar]
- MohammedKhan, H.; Balvert, M.; Guven, C.; Postma, E. Predicting Human Body Dimensions from Single Images: A first step in automatic malnutrition detection. In Proceedings of the CAIP 2021: Proceedings of the 1st International Conference on AI for People: Towards Sustainable AI, CAIP 2021, Bologna, Italy, 20–24 November 2021; European Alliance for Innovation: Bratislava, Slovakia, 2021; p. 48. [Google Scholar]
- Howard, A.; Sandler, M.; Chu, G.; Chen, L.C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching for mobilenetv3. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27–28 October 2019; pp. 1314–1324. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 10012–10022. [Google Scholar]
- Ricanek, K.; Tesafaye, T. MORPH: A longitudinal image database of normal adult age-progression. In Proceedings of the 7th International Conference on Automatic Face and Gesture Recognition (FGR06), Southampton, UK, 10–12 April 2006; pp. 341–345. [Google Scholar] [CrossRef]
- Jiang, M.; Guo, G. Body Weight Analysis From Human Body Images. IEEE Trans. Inf. Forensics Secur. 2019, 14, 2527–2542. [Google Scholar] [CrossRef]
- Pishchulin, L.; Wuhrer, S.; Helten, T.; Theobalt, C.; Schiele, B. Building Statistical Shape Spaces for 3D Human Modeling. Pattern Recognit. 2017, 67, 276–286. [Google Scholar] [CrossRef]
- Robinette, K.M.; Blackwell, S.; Daanen, H.; Boehmer, M.; Fleming, S. Civilian American and European Surface Anthropometry Resource (CAESAR), Final Report. Volume 1. Summary; Technical Report; Sytronics Inc.: Dayton, OH, USA, 2002. [Google Scholar]
- Andriluka, M.; Pishchulin, L.; Gehler, P.; Schiele, B. 2D Human Pose Estimation: New Benchmark and State of the Art Analysis. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014. [Google Scholar]
- Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in context. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 740–755. [Google Scholar]
- Loper, M.M.; Mahmood, N.; Black, M.J. SMPL: A Skinned Multi-Person Linear Model. ACM Trans. Graph. (TOG) 2015, 34, 248:1–248:16. [Google Scholar] [CrossRef]
- Hesse, N.; Pujades, S.; Romero, J.; Black, M.J.; Bodensteiner, C.; Arens, M.; Hofmann, U.G.; Tacke, U.; Hadders-Algra, M.; Weinberger, R.; et al. Learning an Infant Body Model from RGB-D Data for Accurate Full Body Motion Analysis. In Proceedings of the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), Granada, Spain, 16–20 September 2018. [Google Scholar] [CrossRef]
- Patel, P.; Huang, C.H.; Tesch, J.; Hoffmann, D.T.; Tripathi, S.; Black, M.J. AGORA: Avatars in geography optimized for regression analysis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 13468–13478. [Google Scholar]
- Kim, K.H.; Jones, M.L.; Ebert, S.M.; Malik, L.; Manary, M.A.; Reed, M.P.; Klinich, K.D. Development of Virtual Toddler Fit Models for Child Safety Restraint Design; Technical Report; University of Michigan, Ann Arbor, Transportation Research Institute: Ann Arbor, MI, USA, 2015. [Google Scholar]
- Lima, L.D.B.; Teixeira, S.; Bordalo, V.; Lacoste, S.; Guimond, S.; Sousa, D.L.; Pinheiro, D.N.; Moreira, R.; Teles, A.S. A scale-equivariant CNN-based method for estimating human weight and height from multi-view clinic silhouette images. Expert Syst. Appl. 2024, 256, 124879. [Google Scholar] [CrossRef]
- Shah, C.; Shah, J.; Shaikh, M.; Sandhu, H.; Natu, P. Anthropometric Measurement Technology Using 2D Images. In Proceedings of the Second International Conference on Sustainable Expert Systems; Lecture Notes in Networks and Systems. Springer: Singapore, 2022. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Park, D.H.; Deng, J.; Erhan, D.; Rodriguez, C.; Anguelov, D.; et al. Going Deeper with Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–9. [Google Scholar]
- Yan, S.; Kämäräinen, J.K. Learning anthropometry from rendered humans. arXiv 2021, arXiv:2101.02515. [Google Scholar]
- Škorvánková, D.; Riečický, A.; Madaras, M. Automatic Estimation of Anthropometric Human Body Measurements. In Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, Virtual, 6–8 February 2022. [Google Scholar] [CrossRef]
- Dibra, E.; Jain, H.; Oztireli, C.; Ziegler, R.; Gross, M. Human shape from silhouettes using generative hks descriptors and cross-modal neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4826–4836. [Google Scholar]
- Kanazawa, A.; Black, M.J.; Jacobs, D.W.; Malik, J. End-to-end recovery of human shape and pose. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7122–7131. [Google Scholar]
- Bogo, F.; Kanazawa, A.; Lassner, C.; Gehler, P.; Romero, J.; Black, M.J. Keep it SMPL: Automatic Estimation of 3D Human Pose and Shape from a Single Image. In Proceedings of the Computer Vision—ECCV 2016; Lecture Notes in Computer Science; Springer International Publishing: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-end object detection with transformers. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 213–229. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. (IJCV) 2015, 115, 211–252. [Google Scholar] [CrossRef]
- MohammedKhan, H.; Guven, C.; Balvert, M.; Postma, E. Image-Based Body Shape Estimation to Detect Malnutrition. In Proceedings of the SAI Intelligent Systems Conference, Amsterdam, The Netherlands, 7–8 September 2023; Springer: Berlin/Heidelberg, Germany, 2023; pp. 577–590. [Google Scholar]
Height (cm) | Weight (g) | Head Circumference (cm) | Waistline (cm) | Age (Months) | |
---|---|---|---|---|---|
count | 512 | 512 | 512 | 512 | 512 |
mean | 111.0 | 18,983 | 50.2 | 53.4 | 65.4 |
std | 12.2 | 5184 | 2.5 | 5.4 | 20.2 |
min | 73.0 | 9300 | 37.5 | 36.0 | 16.0 |
25% | 101.0 | 15,200 | 49.0 | 50.0 | 48.0 |
50% | 112.0 | 17,900 | 50.0 | 53.0 | 65.0 |
75% | 120.0 | 22,000 | 52.0 | 55.0 | 84.0 |
max | 146.0 | 48,000 | 69.0 | 84.0 | 98.0 |
Model | Total Param. | Classifier Param. |
---|---|---|
MobileNet V3 Small | 961,109 | 5251 |
MobileNet V3 Large | 3,025,253 | 5251 |
DenseNet121 | 7,010,357 | 5251 |
ResNet50 | 23,615,733 | 5251 |
Swin B | 86,799,725 | 5251 |
ViT B_16 | 85,842,357 | 5251 |
MAE (cm) | MAE (kg) | MAE (cm) | MAE (cm) | |
---|---|---|---|---|
Model | Height | Weight | Waist Circumference | Head Circumference |
baseline | 4.89 | 2.20 | 3.00 | 1.66 |
densenet121 | 2.54 | 1.51 | 2.53 | 1.52 |
mobilenet_v3_large | 3.05 | 1.69 | 2.77 | 1.56 |
mobilenet_v3_small | 3.21 | 1.78 | 2.75 | 1.61 |
resnet50 | 2.80 | 1.58 | 2.59 | 1.55 |
swin_b | 3.16 | 1.78 | 2.77 | 1.57 |
vit_b_16 | 2.83 | 1.73 | 2.78 | 1.61 |
MAE (cm) | MAE (kg) | MAE (cm) | MAE (cm) | |
---|---|---|---|---|
Stance | Height | Weight | Waist Circumference | Head Circumference |
front | 2.56 | 1.59 | 2.53 | 1.67 |
left | 2.63 | 1.78 | 2.75 | 1.63 |
back | 3.02 | 1.69 | 2.87 | 1.57 |
right | 2.86 | 1.58 | 2.63 | 1.53 |
all | 2.54 | 1.51 | 2.53 | 1.52 |
Dataset | Size | Num. Children | Type | Age Range | Annotations |
---|---|---|---|---|---|
MORPH-II | 202k | 0 | Facial | 16 to 77 years | BMI |
CAESAR | 11,808 | 0 | Full Body | 18 to 65 years | Age, Sex, BMI, 15 Body metrics |
IMDB 23K | 23K | 0 | Facial and Full Body | 18+ years | BMI, Gender, BMI |
AGORA | 17K | 257 | Full Body | Not specified | None |
ARAN | 2048 | 512 | Full Body | 16 to 98 months | Age, Sex, 4 body metrics |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
MohammedKhan, H.H.; Van Wanrooij, C.; Postma, E.O.; Güven, Ç.; Balvert, M.; Raof Saeed, H.; Ali Al Jaf, C.O. ARAN: Age-Restricted Anonymized Dataset of Children Images and Body Measurements. J. Imaging 2025, 11, 142. https://doi.org/10.3390/jimaging11050142
MohammedKhan HH, Van Wanrooij C, Postma EO, Güven Ç, Balvert M, Raof Saeed H, Ali Al Jaf CO. ARAN: Age-Restricted Anonymized Dataset of Children Images and Body Measurements. Journal of Imaging. 2025; 11(5):142. https://doi.org/10.3390/jimaging11050142
Chicago/Turabian StyleMohammedKhan, Hezha H., Cascha Van Wanrooij, Eric O. Postma, Çiçek Güven, Marleen Balvert, Heersh Raof Saeed, and Chenar Omer Ali Al Jaf. 2025. "ARAN: Age-Restricted Anonymized Dataset of Children Images and Body Measurements" Journal of Imaging 11, no. 5: 142. https://doi.org/10.3390/jimaging11050142
APA StyleMohammedKhan, H. H., Van Wanrooij, C., Postma, E. O., Güven, Ç., Balvert, M., Raof Saeed, H., & Ali Al Jaf, C. O. (2025). ARAN: Age-Restricted Anonymized Dataset of Children Images and Body Measurements. Journal of Imaging, 11(5), 142. https://doi.org/10.3390/jimaging11050142