Previous Issue

Table of Contents

Magnetochemistry, Volume 5, Issue 3 (September 2019)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
View options order results:
result details:
Displaying articles 1-8
Export citation of selected articles as:
Open AccessArticle
Redox-Active Dysprosium Single-Molecule Magnet: Spectro-Electrochemistry and Theoretical Investigations
Magnetochemistry 2019, 5(3), 46; https://doi.org/10.3390/magnetochemistry5030046
Received: 14 May 2019 / Revised: 17 June 2019 / Accepted: 31 July 2019 / Published: 2 August 2019
Viewed by 236 | PDF Full-text (2914 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The mononuclear single-molecule magnet (SMM) [Dy(tta)3(L)]⋅C6H14 (1) (where tta = 2-thenoyltrifluoroacetonate and L = 4,5-bis(propylthio)-tetrathiafulvalene-2-(2-pyridyl)benzimidazole-methyl-2-pyridine) was studied by spectro-electrochemistry. The resulting electronic spectra of the three oxidation states 1, 1+∙, [...] Read more.
The mononuclear single-molecule magnet (SMM) [Dy(tta)3(L)]⋅C6H14 (1) (where tta = 2-thenoyltrifluoroacetonate and L = 4,5-bis(propylthio)-tetrathiafulvalene-2-(2-pyridyl)benzimidazole-methyl-2-pyridine) was studied by spectro-electrochemistry. The resulting electronic spectra of the three oxidation states 1, 1+∙, and 12+ were rationalized by time-dependent density functional theory (TD-DFT) calculations starting from the DFT optimized structures. The modulation of the magnetic anisotropy of the DyIII center upon oxidation was also inspected at the Complete Active Space Self-Consistent Field (CASSCF) level of calculation. Full article
Figures

Graphical abstract

Open AccessReview
Preparation and Application of Iron Oxide Nanoclusters
Magnetochemistry 2019, 5(3), 45; https://doi.org/10.3390/magnetochemistry5030045
Received: 10 May 2019 / Revised: 22 July 2019 / Accepted: 25 July 2019 / Published: 1 August 2019
Viewed by 299 | PDF Full-text (5315 KB) | HTML Full-text | XML Full-text
Abstract
Magnetic iron oxide nanoclusters, which refers to a group of individual nanoparticles, have recently attracted much attention because of their distinctive behaviors compared to individual nanoparticles. In this review, we discuss preparation methods for creating iron oxide nanoclusters, focusing on synthetic procedures, formation [...] Read more.
Magnetic iron oxide nanoclusters, which refers to a group of individual nanoparticles, have recently attracted much attention because of their distinctive behaviors compared to individual nanoparticles. In this review, we discuss preparation methods for creating iron oxide nanoclusters, focusing on synthetic procedures, formation mechanisms, and the quality of the products. Then, we discuss the emerging applications for iron oxide nanoclusters in various fields, covering traditional and novel applications in magnetic separation, bioimaging, drug delivery, and magnetically responsive photonic crystals. Full article
(This article belongs to the Special Issue Magnetic Nanoparticles)
Figures

Figure 1

Open AccessArticle
A New Family of High Tc Molecule-Based Magnetic Networks: V[x-ClnPTCE]2·yCH2Cl2 (PTCE = Phenyltricyanoethylene)
Magnetochemistry 2019, 5(3), 44; https://doi.org/10.3390/magnetochemistry5030044
Received: 25 June 2019 / Revised: 19 July 2019 / Accepted: 19 July 2019 / Published: 1 August 2019
Viewed by 303 | PDF Full-text (3263 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Using the structural and electronic tunability of molecules to control magnetism is a central challenge of inorganic chemistry. Herein, a ten-member family of the high-ordering temperature (Tc) molecule-based magnetic coordination networks of the form V[x-ClnPTCE]2 [...] Read more.
Using the structural and electronic tunability of molecules to control magnetism is a central challenge of inorganic chemistry. Herein, a ten-member family of the high-ordering temperature (Tc) molecule-based magnetic coordination networks of the form V[x-ClnPTCE]2·yCH2Cl2 (PTCE = phenyltricyanoethylene, y < 0.5) were synthesized and characterized, where x is (are) the position(s) and n is the number of chlorine substitutions on the phenyl ring. These chlorophenyltricyanoethelenes are tunable analogs of the more commonly investigated tetracyanoethylene (TCNE). Varying the number and position of chlorine substitution around the phenyl ring engendered a family of network solids with significantly different magnetic ordering temperatures ranging from 146 to 285 K. The Tcs of these ferrimagnets were rationalized with the aid of cyclic voltammetry and Density Functional Theory (DFT) calculations. Full article
Figures

Graphical abstract

Open AccessArticle
Novel Structures and Magnetic Properties of Two [Mn2] Complexes with 2,4-di-2-pyridyl-2,4-pentanediol as the Ligand
Magnetochemistry 2019, 5(3), 43; https://doi.org/10.3390/magnetochemistry5030043
Received: 15 June 2019 / Revised: 8 July 2019 / Accepted: 10 July 2019 / Published: 13 July 2019
Viewed by 334 | PDF Full-text (2818 KB) | HTML Full-text | XML Full-text
Abstract
Two ligands, 2,4-di-2-pyridyl-2,4-pentanediol (rD and mD), were employed to synthesize two Mn2 complexes, [Mn2(rD)2Br2] (1) and [Mn2(mD)2(H2O)2]Br2 (2). Compound 1 crystallized in a [...] Read more.
Two ligands, 2,4-di-2-pyridyl-2,4-pentanediol (rD and mD), were employed to synthesize two Mn2 complexes, [Mn2(rD)2Br2] (1) and [Mn2(mD)2(H2O)2]Br2 (2). Compound 1 crystallized in a tetragonal space group, P41212, with a novel hamburger shaped structure. A detailed study indicated that compound 1 did not contain a metal–metal bond, but antiferromagnetic coupling was observed between the Mn(III) ions. Compound 2 crystallized in a monoclinic space group, C2/c, with one Mn(II) and the other with Mn(IV). The two manganese ions were bridged by two alkoxide ligands, resulting in ferromagnetic coupling. Magnetic property studies confirm the above assignments. Full article
Figures

Figure 1

Open AccessReview
Bio-Catalysis and Biomedical Perspectives of Magnetic Nanoparticles as Versatile Carriers
Magnetochemistry 2019, 5(3), 42; https://doi.org/10.3390/magnetochemistry5030042
Received: 9 May 2019 / Revised: 24 June 2019 / Accepted: 27 June 2019 / Published: 2 July 2019
Viewed by 390 | PDF Full-text (3932 KB) | HTML Full-text | XML Full-text
Abstract
In recent years, magnetic nanoparticles (MNPs) have gained increasing attention as versatile carriers because of their unique magnetic properties, biocatalytic functionalities, and capabilities to work at the cellular and molecular level of biological interactions. Moreover, owing to their exceptional functional properties, such as [...] Read more.
In recent years, magnetic nanoparticles (MNPs) have gained increasing attention as versatile carriers because of their unique magnetic properties, biocatalytic functionalities, and capabilities to work at the cellular and molecular level of biological interactions. Moreover, owing to their exceptional functional properties, such as large surface area, large surface-to-volume ratio, and mobility and high mass transference, MNPs have been employed in several applications in different sectors such as supporting matrices for enzymes immobilization and controlled release of drugs in biomedicine. Unlike non-magnetic carriers, MNPs can be easily separated and recovered using an external magnetic field. In addition to their biocompatible microenvironment, the application of MNPs represents a remarkable green chemistry approach. Herein, we focused on state-of-the-art two majorly studied perspectives of MNPs as versatile carriers for (1) matrices for enzymes immobilization, and (2) matrices for controlled drug delivery. Specifically, from the applied perspectives of magnetic nanoparticles, a series of different applications with suitable examples are discussed in detail. The second half is focused on different metal-based magnetic nanoparticles and their exploitation for biomedical purposes. Full article
(This article belongs to the Special Issue Magnetic Nanoparticles)
Figures

Figure 1

Open AccessArticle
Structure, DFT Calculations, and Magnetic Characterization of Coordination Polymers of Bridged Dicyanamido-Metal(II) Complexes
Magnetochemistry 2019, 5(3), 41; https://doi.org/10.3390/magnetochemistry5030041
Received: 23 April 2019 / Revised: 8 June 2019 / Accepted: 21 June 2019 / Published: 2 July 2019
Viewed by 348 | PDF Full-text (4511 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Three coordination polymers of metal(II)-dicyanamido (dca) complexes with 4-methoxypyridine-N-oxide (4-MOP-NO); namely, catena-[Co(µ1,5-dca)2(4-MOP-NO)2] (1), catena-[Mn(µ1,5-dca)2(4-MOP-NO)2] (2), catena-[Cd(µ1,5-dca)2(4-MOP-NO)2] [...] Read more.
Three coordination polymers of metal(II)-dicyanamido (dca) complexes with 4-methoxypyridine-N-oxide (4-MOP-NO); namely, catena-[Co(µ1,5-dca)2(4-MOP-NO)2] (1), catena-[Mn(µ1,5-dca)2(4-MOP-NO)2] (2), catena-[Cd(µ1,5-dca)2(4-MOP-NO)2] (3), and the mononuclear [Cu(κ1dca)2(4-MOP-NO)2] (4), were synthesized in this research. The complexes were analyzed by single crystal X-ray diffraction as well as spectroscopic methods (UV/vis, IR). The polymeric 1-D chains in complexes 13 were achieved by the doubly µ1,5-bridging dca ligands and the O-donor atoms of two axial 4-MOP-NO molecules in trans configuration around the distorted M(II) octahedral. On the other hand, the two “trans-axial” pyridine-N-oxide molecules in complexes 2 and 3 display opposite orientation (s-trans). The DFT (density functional theory) computational studies on the complexes 13 were consistent with the experimentally observed crystal structures. Compounds 1 and 2 display weak antiferromagnetic coupling between metal ions (J = −10.8 for 1 and −0.35 for 2). Full article
Figures

Graphical abstract

Open AccessArticle
Magnetostructural Studies on Zigzag One-Dimensional Coordination Polymers Formed by Tetraamidatodiruthenium(II,III) Paddlewheel Units Bridged by SCN Ligands
Magnetochemistry 2019, 5(3), 40; https://doi.org/10.3390/magnetochemistry5030040
Received: 27 May 2019 / Revised: 11 June 2019 / Accepted: 12 June 2019 / Published: 1 July 2019
Viewed by 377 | PDF Full-text (1025 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
We report herein on three zigzag one-dimensional coordination polymers of {[Ru2(μ-NHOCR)4](μ-SCN)}n (R = o-Me-C6H4 (2), m-Me-C6H4 (3), p-Me-C6H4 (4)) formula. [...] Read more.
We report herein on three zigzag one-dimensional coordination polymers of {[Ru2(μ-NHOCR)4](μ-SCN)}n (R = o-Me-C6H4 (2), m-Me-C6H4 (3), p-Me-C6H4 (4)) formula. These new compounds have been obtained by reaction of the corresponding [Ru2(μ-NHOR)4(THF)2](BF4) complex with (NBu4)(SCN) under different synthetic conditions. The crystal structure of [Ru2(μ-NHOCC6H4-o-Me)4(THF)2](BF4) (1), 2 and 3 are presented. A cis-(2,2) arrangement of the amidate ligands of the [Ru2(μ-NHOCR)4]+ units is observed in all cases. Interestingly, the structures of 2 and 3 show linkage isomerism in alternated tetraamidatodiruthenium units whose axial positions are occupied by the same type of donor atom of the SCN ligands. This results in zigzag chains with a Ru-S-C angle of 98.97° and Ru-N-C angle of 169.36° in the case of 2 and 97.99° and 159.26°, respectively, in the case of 3. The magnetic data obtained for 24 are indicative of a σ2π4δ2(π*δ*)3 ground state (S = 3/2) and a large zero-field splitting (ZFS) in all cases (D = 54.57, 62.72 and 43.00 cm−1 for 24, respectively). Similar small antiferromagnetic interactions between diruthenium units (zJ = −0.93, −0.79 and −1.11 cm−1 for 24, respectively) are estimated for all the polymers, suggesting an analogous zigzag arrangement of the chains for 4. Full article
Figures

Graphical abstract

Open AccessFeature PaperArticle
Diversity of Coordination Modes in a Flexible Ditopic Ligand Containing 2-Pyridyl, Carbonyl and Hydrazone Functionalities: Mononuclear and Dinuclear Cobalt(III) Complexes, and Tetranuclear Copper(II) and Nickel(II) Clusters
Magnetochemistry 2019, 5(3), 39; https://doi.org/10.3390/magnetochemistry5030039
Received: 15 May 2019 / Revised: 10 June 2019 / Accepted: 12 June 2019 / Published: 1 July 2019
Viewed by 357 | PDF Full-text (4563 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Syntheses, crystal structures and characterization are reported for four new complexes [Cu4Br2(L)4]Br2 (1), [Ni4(NO3)2(L)4(H2O)](NO3)2 (2), [Co2(L)3 [...] Read more.
Syntheses, crystal structures and characterization are reported for four new complexes [Cu4Br2(L)4]Br2 (1), [Ni4(NO3)2(L)4(H2O)](NO3)2 (2), [Co2(L)3](ClO4)3 (3) and [Co(L)2](ClO4) (4), where L is the monoanion of the ditopic ligand N′-(1-(pyridin-2-yl)ethylidene)pyridine-2-carbohydrazide (LH) built on a picolinoyl hydrazone core fragment, and possessing a bidentate and a tridentate coordination pocket. The tetranuclear cation of 1·0.8H2O·MeOH is a strictly planar, rectangular [2 × 2] grid. Two 2.21011 L ligands bridge adjacent CuII atoms on the short sides of the rectangle through their alkoxide oxygen atoms, and two 2.11111 ligands bridge adjacent CuII atoms on the long sides of the rectangle through their diazine groups; two metal ions are 5-coordinate and two are 6-coordinate. The tetranuclear cation of 2·0.2H2O·3EtOH is a square [2 × 2] grid. The two 6-coordinate NiII atoms of each side of the square are bridged by the alkoxide O atom of one 2.21011 L ligand. The dinuclear cation of 3·0.8H2O·1.3MeOH contains two low-spin octahedral CoIII ions bridged by three 2.01111 L ligands forming a pseudo triple helicate. In the mononuclear cation [Co(L)2]+ of complex 4, the low-spin octahedral CoIII center is coordinated by two tridentate chelating, meridional 1.10011 ligands. The crystal structures of the complexes are stabilized by a variety of π–π stacking and/or H-bonding interactions. Compounds 2, 3 and 4 are the first structurally characterized nickel and cobalt complexes of any form (neutral or anionic) of LH. The 2.01111 and 1.10011 coordination modes of L, observed in the structures of complexes 3 and 4, have been crystallographically established for the first time in coordination complexes containing this anionic ligand. Variable-temperature, solid-state dc magnetic susceptibility and variable-field magnetization studies at 1.8 K were carried out on complexes 1 and 2. Antiferromagnetic metal ion···metal ion exchange interactions are present in both complexes. The study reveals that the cation of 1 can be considered as a practically isolated pair of strongly antiferromagnetically coupled (through the diazine group of L) dinulear units. The susceptibility data for 2 were fit to a single-J model for an S = 1 cyclic tetramer. The values of the J parameters have been rationalized in terms of known magnetostructural correlations. Spectral data (infrared (IR), ultraviolet/visible (UV/VIS), 1H nuclear magnetic resonance (NMR) for the diamagnetic complexes) are also discussed in the light of the structural features of 14 and the coordination modes of the organic and inorganic ligands that are present in the complexes. The combined work demonstrates the ligating flexibility of L, and its usefulness in the synthesis of complexes with interesting structures and properties. Full article
Figures

Graphical abstract

Magnetochemistry EISSN 2312-7481 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top