Effect of Quenching and Normalizing on the Microstructure and Magnetocaloric Effect of a Cu–11Al–9Zn Alloy with 6.5 wt % Ni–2.5 wt % Fe
Abstract
:1. Introduction
2. Experimental Procedure
3. Results and Discussion
4. Conclusions
- The high content of Zn in the investigated alloy promotes the retention of the high-temperature β phase. Apparently, the Al content in the studied alloy is not enough to displace the martensite start temperature above room temperature, precluding the transformation of the martensitic phase (FOPT).
- The use of Ni and Fe in a Cu–11Al–9Zn alloy promotes ferromagnetic–paramagnetic behavior (SOPT), and to a certain extent, MCE in the investigated alloy.
- Samples subjected to normalizing present higher magnetic entropy than those with quenching. This behavior relates with the coexistence of the β1 and β phases, which result in greater system disorder.
- The investigated alloy could be used in the MR area only under the application of magnetic fields higher than 3 Tesla and low temperatures, i.e 125 K for samples with normalizing and 170 K for samples with quenching.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tishin, A.M.; Spichkin, Y.I. The Magnetocaloric Effect and Its Applications; CRS Press: Boca Raton, FL, USA; Taylor and Francis Group: Didcot, UK, 2003; ISBN 978-1-4200-3337-3. [Google Scholar]
- Kitanovski, A.; Tusek, J.; Tomc, U.; Plaznik, U.; Ozbolt, M.; Poredos, A. Magnetocaloric Energy Conversion: From Theory to Applications; Springer International Publishing: Basel, Switzerland, 2015; ISBN 978-3-319-08741-2. [Google Scholar]
- Olivera, N.A.; Ranke, P.J. Theoretical aspects of the magnetocaloric effect. Phys. Rep. 2010, 489, 89–159. [Google Scholar] [CrossRef]
- Mozharivskyj, Y. Magnetocaloric Effect and Magnetocaloric Materials. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 978-0-12-409547-2. [Google Scholar]
- Oliveira, N.A. Magnetocaloric effect in transition metals based compounds: A theoretical approach: A theoretical approach. Eur. Phys. J. B Condens. Matter Complex Syst. 2004, 40, 259–264. [Google Scholar] [CrossRef]
- Franco, V.; Blázquez, J.S.; Opus, J.J.; Law, J.Y.; Moreno, L.M.; Conde, A. Magnetocaloric effect: From materials research to refrigeration devices. Prog. Mater. Sci. 2018, 93, 112–232. [Google Scholar] [CrossRef]
- Romero, J.; Ferreiro, R.; De Miguel, A.; Romero, M. Magnetocaloric effect: A review of the thermodynamic cycles in magnetic refrigeration. Renew. Sustain. Energy Rev. 2013, 17, 74–82. [Google Scholar] [CrossRef]
- Kuhn, L.T.; Pryds, N.; Bahl, C.R.H.; Smith, A. Magnetic refrigeration at room temperature—From magnetocaloric materials to a prototype. J. Phys. Conf. Ser. 2011, 303, 012082. [Google Scholar] [CrossRef]
- Kanluang, T.; Hanlumyuang, Y.; Techapiesancharoenkij, R. Design and development of magnetic refrigeration prototype for the performance analysis of magnetocaloric materials. J. Phys. Conf. Ser. 2018, 1144, 012065. [Google Scholar] [CrossRef]
- Stefanita, C.G. Magnetism Basics and Applications; Springer: Berlin/Heidelberg, Germany, 2012; ISBN 978-3-642-22976-3. [Google Scholar]
- Dincer, I.; Yuzuak, E.; Elerman, Y. The effect of the substitution of Cu for Ni on magnetoresistance and magnetocaloric properties of Ni50Mn34In16. J. Alloys Compd. 2011, 509, 794–799. [Google Scholar] [CrossRef]
- Graf, T.; Felser, C.; Parkin, S.S.P. Simple rules for the understanding of Heusler compounds. Prog. Solid State Chem. 2011, 39, 1–50. [Google Scholar] [CrossRef]
- Yuan, Y.; Wu, Y.; Tong, X.; Zhang, H.; Wang, H.; Liu, X.J.; Ma, L.; Suo, H.L.; Lu, Z.P. Rare earth high-entropy alloys with giant magnetocaloric effect. Acta Mater. 2017, 125, 481–489. [Google Scholar] [CrossRef]
- Hazarika, S.; Suchismita, P.; Mohanta, D.; Nirmala, R. Magnetocaloric effect of Gd2O3 with 5% Eu-substitution. Appl. Surf. Sci. 2019, 491, 779–783. [Google Scholar] [CrossRef]
- Wang, X.; Xiang, J.; Wang, F.; Jiang, C.; Xu, H. Effect of 3d transition elements substitution for Ni in Ni2Mn1+xSn1−x on the phase stability and magnetic properties: A first principle investigation. J. Magn. Magn. Mater. 2014, 368, 286–294. [Google Scholar] [CrossRef]
- Dubenko, I.; Quetz, A.; Pandey, S.; Aryal, A.; Eubank, M.; Rodionov, I.; Prudnikov, V.; Granovsky, A.; Lahderanta, E.; Samanta, T.; et al. Multifunctional properties related to magnetostructural transitions in ternary and quaternary Heusler alloys. J. Magn. Magn. Mater. 2015, 383, 186–189. [Google Scholar] [CrossRef] [Green Version]
- Pandey, S.; Quetz, A.; Aryal, A.; Dubenko, I.; Blionov, M.; Rodionov, I.; Prudinkov, V.; Mazumdar, D.; Granovsky, A.; Stadler, S.; et al. Giant field-induced adiabatic temperature changes in In-based off-stoichiometric Heusler alloys. J. Appl. Phys. 2017, 121, 133901. [Google Scholar] [CrossRef]
- Pandey, S.; Quetz, A.; Ibarra, G.; Sanchez, V.; Aryal, A.; Dubenko, I.; Mazumdar, D.; Sanchez, J.; Stadler, S.; Ali, N. Effects of annealing on the magnetic properties and magnetocaloric effects of B doped Ni-Mn-In melt-spun ribbons. J. Alloys Compd. 2018, 731, 678–684. [Google Scholar] [CrossRef]
- Jiang, Z.; Wu, Y.; Wang, J.; Jiang, C. Influence of cooling rate on magneto-structural transition and magnetocalorific effect of Ni30Cu8Co12Mn37Ga13 alloy. J. Iron Steel Res. Int. 2017, 24, 711–717. [Google Scholar] [CrossRef]
- Sarkar, S.K.; Babu, P.D.; Biswas, A.; Siruguri, V.; Krishnan, M. Giant magnetocaloric effect from reverse martensitic transformation in Ni–Mn–Ga–Cu ferromagnetic shape memory alloys. J. Alloys Compd. 2016, 670, 281–288. [Google Scholar] [CrossRef]
- Lee, D.H.; Moriki, T.; Takeda, M.; Kang, S.; Bae, D.S.; Mizuguchi, M.; Takanashi, K. Relationship between the microstructure and the magnetic properties of nano-scale magnetic particles formed in a Cu-10 at% Ni-5 at% Co alloy. J. Korean Phys. Soc. 2013, 63, 555–558. [Google Scholar] [CrossRef]
- Zhang, M.; Cui, Y.; Liu, Z.; Liu, G.; Chen, J.; Wu, G.; Sui, Y.; Liu, Y.; Qian, Z.; Brück, E.; et al. A new Heusler compound Cu2FeAl: Electronic structure, magnetism and transport properties. Phys. Status Solidi 2004, 201, 1570–1577. [Google Scholar] [CrossRef]
- Yoo, P.K.; Jeen, G.S.; Park, H.Y.; Son, M.H.; Han, S.K. Martensitic and spin glass transitions of a Cu-Zn-Al-Fe shape-memory alloy single crystal. Synth. Met. 1995, 71, 2271–2272. [Google Scholar] [CrossRef]
- Yoo, P.K.; Jeen, G.S.; Park, H.Y. Spin glass behaviour of a quarternary Cu-Zn-Al-Fe shape-memory single crystal. J. Mater. Sci. Lett. 1994, 13, 23–24. [Google Scholar] [CrossRef]
- Jeen, G.S.; Yoo, P.K.; Park, H.Y.; Kim, H.K.; Park, S.T.; Lee, H.C.; Park, J.B. Spin glass behavior and martensitic transformation of Cu-Zn-Al-Mn shape memory alloys. J. Korean Phys. Soc. 1997, 31, 173–176. [Google Scholar]
- Prado, M.O.; Lovey, F.C.; Civale, L. Magnetic properties of Cu-Mn-Al alloys with shape memory effect. Acta Mater. 1998, 6, 137–147. [Google Scholar] [CrossRef]
- Lanzini, F.; Romero, R.; Rubiolo, G. Relative stability of ordered phases in bcc Cu–Al–Zn. Calphad 2011, 35, 396–402. [Google Scholar] [CrossRef]
- Gschneidner, K.A.; Pecharsky, V.K. Rare Earths and Magnetic Refrigeration. J. Rare Earths. 2006, 24, 641–647. [Google Scholar] [CrossRef]
- Standard Practice for Microetching Metals and Alloys, ASTME407-07e1. 2015. Available online: https://edisciplinas.usp.br/pluginfile.php/4313805/mod_resource/content/1/NORMA_ASTM_ATAQUE_E407-99.28400.pdf (accessed on 24 August 2019).
- Ahlers, M. Martensite and equilibrium phases in Cu-Zn and Cu-Zn-Al alloys. Prog. Mater. Sci. 1986, 30, 135–186. [Google Scholar] [CrossRef]
- Stosic, Z.; Manasijevic, D.; Valanovic, L.; Tamara, H.; Stamenkovic, U.; Premovic, M.; Minic, D.; Gorgievski, M.; Todorovic, R. Effects of composition and thermal treatment of Cu-Al-Zn alloys with low content of Al on their shape-memory properties. Mater. Res. 2017, 20, 1425–1431. [Google Scholar] [CrossRef]
- Vilarinho, C.; Soares, D.; Castro, F. Phase equilibria of the Al-Cu-Zn system for compositions close to brass alloys. J. Phase Equilibria 2003, 24, 236–239. [Google Scholar] [CrossRef] [Green Version]
- Moroni, M.O.; Saldivia, R.; Sarrazin, M.; Sepúlveda, A. Damping characteristics of a CuZnAlNi shape memory alloy. Mater. Sci. Eng. A 2002, 335, 313–319. [Google Scholar] [CrossRef]
- Suarez, L.; Rodriguez, P.; Cabrera, J.M.; Martinez, A.; Majuelos, D.; Coma, A. Hot working analysis of a CuZn40Pb2 brass on the monophasic (beta) and intercritical (alpha plus beta) regions. Mater. Sci. Eng. A 2015, 627, 42–50. [Google Scholar] [CrossRef]
- Pisarek, B.P. Model of Cu-Al-Fe-Ni bronze crystallization. Arch. Foundry Eng. 2013, 13, 72–79. [Google Scholar] [CrossRef]
- Amaral, J.S.; Amaral, V.S. On estimating the magnetocaloric effect from magnetization measurements. J. Magn. Magn. Mater. 2010, 322, 1552–1557. [Google Scholar] [CrossRef]
- Belyea, D.; Lucas, M.; Michel, E.; Horwath, J.; Casey, C. Tunable magnetocaloric effect in transition metal alloys. Sci. Rep. 2015, 5. [Google Scholar] [CrossRef] [PubMed]
- Spaldin, N.A. Magnetic Materials: Fundamentals and Applications, 2nd ed.; Cambridge University Press: New York, NY, USA, 2010; ISBN 978-052-188-669-7. [Google Scholar]
- Akhter, S.; Paul, D.P.; Hoque, S.M.; Hakim, M.A.; Hudl, M.; Mathieu, R.; Nordblad, P. Magnetic and magnetocaloric properties of Cu1−xZnxFe2O4 (x = 0.6, 0.7, 0.8) ferrites. J. Magn. Magn. Mater. 2014, 367, 75–80. [Google Scholar] [CrossRef]
Cu | Al | Zn | Ni | Fe |
---|---|---|---|---|
Balance | 11.5 | 9.0 | 6.5 | 2.5 |
Heat | Chemical Composition (wt %); Standard Deviation (σ) | ||||
---|---|---|---|---|---|
Treatment | Cu; (σ) | Al; (σ) | Ni; (σ) | Zn; (σ) | Fe; (σ) |
Quenching | 30.1; (1.13) | 22.04; (1.53) | 19.91; (0.72) | 2.55; (0.99) | 25.06; (0.73) |
Normalizing | 30.34; (2.14) | 22.37; (0.80) | 19.90; (0.20) | 2.32; (0.89) | 25.12; (0.28) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castañeda, E.J.G.; Castro, R.E.B.; Briseño, A.C.; Arguijo, B.F.; Castillo, A.A.T.; Rodríguez, A.S.; Galindo, J.T.E.; Sánchez, S.A.P. Effect of Quenching and Normalizing on the Microstructure and Magnetocaloric Effect of a Cu–11Al–9Zn Alloy with 6.5 wt % Ni–2.5 wt % Fe. Magnetochemistry 2019, 5, 48. https://doi.org/10.3390/magnetochemistry5030048
Castañeda EJG, Castro REB, Briseño AC, Arguijo BF, Castillo AAT, Rodríguez AS, Galindo JTE, Sánchez SAP. Effect of Quenching and Normalizing on the Microstructure and Magnetocaloric Effect of a Cu–11Al–9Zn Alloy with 6.5 wt % Ni–2.5 wt % Fe. Magnetochemistry. 2019; 5(3):48. https://doi.org/10.3390/magnetochemistry5030048
Chicago/Turabian StyleCastañeda, E. J. Gutiérrez, R. E. Barreras Castro, A. Contreras Briseño, B. Fernández Arguijo, A. A. Torres Castillo, A. Salinas Rodríguez, J. T. Elizalde Galindo, and S. A. Palomares Sánchez. 2019. "Effect of Quenching and Normalizing on the Microstructure and Magnetocaloric Effect of a Cu–11Al–9Zn Alloy with 6.5 wt % Ni–2.5 wt % Fe" Magnetochemistry 5, no. 3: 48. https://doi.org/10.3390/magnetochemistry5030048
APA StyleCastañeda, E. J. G., Castro, R. E. B., Briseño, A. C., Arguijo, B. F., Castillo, A. A. T., Rodríguez, A. S., Galindo, J. T. E., & Sánchez, S. A. P. (2019). Effect of Quenching and Normalizing on the Microstructure and Magnetocaloric Effect of a Cu–11Al–9Zn Alloy with 6.5 wt % Ni–2.5 wt % Fe. Magnetochemistry, 5(3), 48. https://doi.org/10.3390/magnetochemistry5030048