Influence of Carboxylated Styrene–Butadiene Rubber on Gas Migration Resistance and Fluid Loss in Cement Slurries
Abstract
1. Introduction
Study Objective
2. Experimental Investigation
2.1. Materials and Sample Preparation
2.2. Electrical Resistivity
2.3. Electrical Impedance
2.4. Fluid Loss Testing
2.5. API Static Fluid Loss Model
2.6. Compressive Strength
3. Results and Discussion
3.1. Electrical Impedance of Polymer-Treated Cement
3.2. Electrical Resistivity of Polymer-Treated Cement
3.3. Fluid Loss Monitoring
3.4. Critical Fluid Loss
3.5. Fluid Loss and Resistivity Correlation
3.6. Compressive Behavior of Polymer-Treated Cement
3.7. Micro-Structural Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Elmgerbi, A.; Askar, I.A.; Fine, A.; Thonhauser, G.; Ashena, R. Cellulose nanocrystals (CNCs) as a potential additive for improving API class G cement performance: An experimental study. Nat. Gas Ind. B 2023, 10, 233–244. [Google Scholar] [CrossRef]
- Ibukun, M.; Elyan, E.; Amish, M.; Njuguna, J.; Oluyemi, G.F. A Review of Well Life Cycle Integrity Challenges in the Oil and Gas Industry and Its Implications for Sustained Casing Pressure (SCP). Energies 2024, 17, 5562. [Google Scholar] [CrossRef]
- Bihua, X.; Bin, Y.; Yongqing, W. Anti-corrosion cement for sour gas (H2S-CO2) storage and production of HTHP deep wells. Appl. Geochem. 2018, 96, 155–163. [Google Scholar] [CrossRef]
- Bai, R.; Zhang, J.; Yan, C.; Liu, S.; Wang, X.; Yang, Z. Calcium hydroxide content and hydration degree of cement in cementitious composites containing calcium silicate slag. Chemosphere 2021, 280, 130918. [Google Scholar] [CrossRef]
- Bao, H.; Xu, G.; Wang, Q.; Peng, Y.; Liu, J. Study on the deterioration mechanism of cement-based materials in acid water containing aggressive carbon dioxide. Constr. Build. Mater. 2020, 243, 118233. [Google Scholar] [CrossRef]
- Trudel, E.; Bizhani, M.; Zare, M.; Frigaard, I. Plug and abandonment practices and trends: A British Columbia perspective. J. Pet. Sci. Eng. 2019, 183, 106417. [Google Scholar] [CrossRef]
- Soeder, D.J.; Sharma, S.; Pekney, N.; Hopkinson, L.; Dilmore, R.; Kutchko, B.; Stewart, B.; Carter, K.; Hakala, A.; Capo, R. An approach for assessing engineering risk from shale gas wells in the United States. Int. J. Coal Geol. 2014, 126, 4–19. [Google Scholar] [CrossRef]
- Samdani, G.A.; Rao, S.S.; Gupta, V.P. Gas Migration in PMCD Operations: Influence of Mud Type and Properties. In Proceedings of the IADC/SPE International Drilling Conference and Exhibition, OnePetro, Galveston, TX, USA, 8–10 March 2022. [Google Scholar]
- Kamali, M.; Khalifeh, M.; Saasen, A.; Godøy, R.; Delabroy, L. Alternative setting materials for primary cementing and zonal isolation—Laboratory evaluation of rheological and mechanical properties. J. Pet. Sci. Eng. 2021, 201, 108455. [Google Scholar] [CrossRef]
- Wang, C.; Chen, X.; Wang, R. Do chlorides qualify as accelerators for the cement of deepwater oil wells at low temperature? Constr. Build. Mater. 2017, 133, 482–494. [Google Scholar] [CrossRef]
- Bayanak, M.; Zarinabadi, S.; Shahbazi, K.; Azimi, A. Effects of Nano Silica on oil well cement slurry charactreistics and control of gas channeling. S. Afr. J. Chem. Eng. 2020, 34, 11–25. [Google Scholar] [CrossRef]
- Ahmed, S.; Salehi, S.; Ezeakacha, C. Review of gas migration and wellbore leakage in liner hanger dual barrier system: Challenges and implications for industry. J. Nat. Gas Sci. Eng. 2020, 78, 103284. [Google Scholar] [CrossRef]
- Tao, C.; Rosenbaum, E.; Kutchko, B.G.; Massoudi, M. A brief review of gas migration in oilwell cement slurries. Energies 2021, 14, 2369. [Google Scholar] [CrossRef]
- Jafariesfad, N.; Geiker, M.R.; Gong, Y.; Skalle, P.; Zhang, Z.; He, J. Cement sheath modification using nanomaterials for long-term zonal isolation of oil wells: Review. J. Pet. Sci. Eng. 2017, 156, 662–672. [Google Scholar] [CrossRef]
- Saleh, F.K.; Teodoriu, C. The mechanism of mixing and mixing energy for oil and gas wells cement slurries: A literature review and benchmarking of the findings. J. Nat. Gas Sci. Eng. 2017, 38, 388–401. [Google Scholar] [CrossRef]
- Pranesh, V.; Palanichamy, K.; Saidat, O.; Peter, N. Lack of dynamic leadership skills and human failure contribution analysis to manage risk in deep water horizon oil platform. Saf. Sci. 2017, 92, 85–93. [Google Scholar] [CrossRef]
- Ramalho, R.V.A.; Alves, S.M.; Freitas, J.C.d.O.; Costa, B.L.d.S.; Bezerra, U.T. Evaluation of mechanical properties of cement slurries containing SBR latex subjected to high temperatures. J. Pet. Sci. Eng. 2019, 178, 787–794. [Google Scholar] [CrossRef]
- Peng, Z.; Zeng, W.; Feng, Q.; Zheng, Y. Study on Improving the Toughness of Silicate Cement Stone by Modified Epoxy Resin. Silicon 2022, 15, 3137–3148. [Google Scholar] [CrossRef]
- Assaad, J.J. Development and use of polymer-modified cement for adhesive and repair applications. Constr. Build. Mater. 2018, 163, 139–148. [Google Scholar] [CrossRef]
- Mohamadian, N.; Ramhormozi, M.Z.; Wood, D.A.; Ashena, R. Reinforcement of oil and gas wellbore cements with a methyl methacrylate/carbon-nanotube polymer nanocomposite additive. Cem. Concr. Compos. 2020, 114, 103763. [Google Scholar] [CrossRef]
- Peng, Z.; Lv, F.; Feng, Q.; Zheng, Y. Enhancing the CO2-H2S corrosion resistance of oil well cement with a modified epoxy resin. Constr. Build. Mater. 2022, 326, 126854. [Google Scholar] [CrossRef]
- Vitorino, F.d.C.; Dweck, J.; Ferrara, L.; Filho, R.D.T. Effect of plain and carboxylated styrene-butadiene rubber on the rheological behavior of silica fume-class G Portland cement slurries. J. Mater. Res. Technol. 2020, 9, 5364–5377. [Google Scholar] [CrossRef]
- Zárybnická, L.; Machotová, J.; Mácová, P.; Machová, D.; Viani, A. Design of polymeric binders to improve the properties of magnesium phosphate cement. Constr. Build. Mater. 2021, 290, 123202. [Google Scholar] [CrossRef]
- Schröfl, C.; Erk, K.A.; Siriwatwechakul, W.; Wyrzykowski, M.; Snoeck, D. Recent progress in superabsorbent polymers for concrete. Cem. Concr. Res. 2022, 151, 106648. [Google Scholar] [CrossRef]
- Abd-El-Raoof, F.; Hegazy, A.; Rashwan, M.; Mohamed, W.; Tawfik, A. Dual-functional polymer-modified magnesium oxychloride cement pastes: Physico-mechanical, phase, and microstructure characterizations. J. Build. Eng. 2022, 57, 104898. [Google Scholar] [CrossRef]
- Choi, S.-J.; Bae, S.-H.; Lee, J.-I.; Bang, E.-J.; Ko, H.-M. Strength, carbonation resistance, and chloride-ion penetrability of cement mortars containing catechol-functionalized chitosan polymer. Materials 2021, 14, 6395. [Google Scholar] [CrossRef]
- Baueregger, S.; Perello, M.; Plank, J. Influence of carboxylated styrene–butadiene latex copolymer on Portland cement hydration. Cem. Concr. Compos. 2015, 63, 42–50. [Google Scholar] [CrossRef]
- Barluenga, G.; Hernández-Olivares, F. SBR latex modified mortar rheology and mechanical behaviour. Cem. Concr. Res. 2004, 34, 527–535. [Google Scholar] [CrossRef]
- Ohama, Y. Principle of latex modification and some typical properties of latex-modified mortars and concretes adhesion; binders (materials); bond (paste to aggregate); carbonation; chlorides; curing; diffusion. Mater. J. 1987, 84, 511–518. [Google Scholar]
- Tran, N.P.; Nguyen, T.N.; Ngo, T.D. The role of organic polymer modifiers in cementitious systems towards durable and resilient infrastructures: A systematic review. Constr. Build. Mater. 2022, 360, 129562. [Google Scholar] [CrossRef]
- Sun, K.; Wang, S.; Zeng, L.; Peng, X. Effect of styrene-butadiene rubber latex on the rheological behavior and pore structure of cement paste. Compos. Part B Eng. 2019, 163, 282–289. [Google Scholar] [CrossRef]
- Baueregger, S.; Perello, M.; Plank, J. Impact of carboxylated styrene–butadiene copolymer on the hydration kinetics of OPC and OPC/CAC/AH: The effect of Ca2+ sequestration from pore solution. Cem. Concr. Res. 2015, 73, 184–189. [Google Scholar] [CrossRef]
- Aattache, A.; Mahi, A.; Soltani, R.; Mouli, M.; Benosman, A.S. Experimental study on thermo-mechanical properties of polymer modified mortar. Mater. Des. 2013, 52, 459–469. [Google Scholar] [CrossRef]
- Borhan, T.M.; Al Karawi, R.J. Experimental investigations on polymer modified pervious concrete. Case Stud. Constr. Mater. 2020, 12, e00335. [Google Scholar] [CrossRef]
- Bahranifard, Z.; Tabrizi, F.F.; Vosoughi, A.R. An investigation on the effect of styrene-butyl acrylate copolymer latex to improve the properties of polymer modified concrete. Constr. Build. Mater. 2019, 205, 175–185. [Google Scholar] [CrossRef]
- Vipulanandan, C.; Mohammed, A. Quantify the effect of temperature on the electrical resistivity, yield stress, and HPHT fluid loss of the bentonite-clay drilling mud modified with acrylamide polymer. J. Build. Pathol. Rehabil. 2020, 5, 20. [Google Scholar] [CrossRef]
- Vipulanandan, C.; Mohammed, A. Polymer treated cement rheological and piezoresistive behavior for oil well applications. J. Pet. Sci. Eng. 2015, 135, 50–58. [Google Scholar] [CrossRef]
- Manawadu, A.; Qiao, P.; Wen, H. Characterization of substrate-to-overlay interface bond in concrete repairs: A review. Constr. Build. Mater. 2023, 373, 130828. [Google Scholar] [CrossRef]
- Han, Y.; Cui, B.; Tian, J.; Ding, J.; Ni, F.; Lu, D. Evaluating the effects of styrene-butadiene rubber (SBR) and polyphosphoric acid (PPA) on asphalt adhesion performance. Constr. Build. Mater. 2022, 321, 126028. [Google Scholar] [CrossRef]
- Almajed, A.; Abbas, H.; Almusallam, T.; Al-Salloum, Y. Stabilization of sand using energy efficient materials under normal and extreme hot weathers. J. Clean. Prod. 2021, 285, 124914. [Google Scholar] [CrossRef]
- Xiao, M.; Ju, F.; He, Z.; Ning, P.; Wang, T.; Wang, D. Assessing the Effect of Damage and Steel Fiber Content on the Self-Sensing Ability of Coal Gangue-Cemented Composite by Electrochemical Impedance Spectroscopy (EIS). Materials 2025, 18, 2467. [Google Scholar] [CrossRef] [PubMed]
- Prakash, S.; Bhalla, S.; Zonta, D.; Su, Z.; Glisic, B. Carbon nanotubes doped concrete-based sensor for strain measurements. In Proceedings of the Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, SPIE Smart Structures + Nondestructive Evaluation, Long Beach, CA, USA, 6 March–11 April 2022; Volume 12046, pp. 427–432. [Google Scholar]
- Talakokula, V.; Bhalla, S.; Gupta, A. Monitoring early hydration of reinforced concrete structures using structural parameters identified by piezo sensors via electromechanical impedance technique. Mech. Syst. Signal Process. 2018, 99, 129–141. [Google Scholar] [CrossRef]
- Mammadov, O.; Mahmoud, A.A.; Al-Yaseri, A.; Al Ramadan, M. A Comprehensive Review of Cement Degradation Analysis under Downhole Conditions: CCS/CCUS/CO2-EOR Applications. ACS Omega 2025, 10, 28515–28533. [Google Scholar] [CrossRef] [PubMed]
- Vipulanandan, C.; Panda, G.; Maddi, A.R.; Wong, G.; Aldughather, A. Characterizing Polymer treated Cement Modified with Styrene Butadiene Polymer for Quality Control, Curing and to Control and Detect Fluid Loss and Gas Leaks Using Vipulanandan Models. In Proceedings of the Offshore Technology Conference, OTC, Houston, TX, USA, 6–9 May 2019; p. D021S021R006. [Google Scholar]
- Vipulanandan, C.; Aldughather, A.; Panda, G.; Wong, G. Real-Time Gas Leak Detection and Quantification using Smart Cement. In Proceedings of the International Petroleum Technology Conference, Dhahran, Saudi Arabia, 13–15 January 2020. [Google Scholar]
- Vipulanandan, C.; Prashanth, P. Impedance spectroscopy characterization of a piezoresistive structural polymer composite bulk sensor. J. Test. Eval. 2013, 41, 898–904. [Google Scholar] [CrossRef]
- Panda, G.P.; Bahrami, A.; Nagaraju, T.V.; Isleem, H.F. Response of High Swelling Montmorillonite Clays with Aqueous Polymer. Minerals 2023, 13, 933. [Google Scholar] [CrossRef]
- Panda, G.P. Real-Time Monitoring and Characterization of Smart Cement and Soil with Polymer Modification to Control Gas Leakage and Corrosion. Ph.D. Thesis, University of Houston, Houston, TX, USA, 2020. [Google Scholar]
- Vipulanandan, C.; Maddi, A.R. Characterizing the thermal, piezoresistive, rheology and fluid loss of polymer treated foam cement slurries using artificial neural network and Vipulanandan Models. J. Pet. Sci. Eng. 2021, 207, 109161. [Google Scholar] [CrossRef]
- Lamlong, C.; Taweepreda, W. Coating of porous PVC-PEG memebrane with crosslinkable XSBR for O2/N2 and CO2/N2 separation. Polymer 2016, 96, 205–212. [Google Scholar] [CrossRef]
- Liu, Q.; Lu, Z.; Hu, X.; Chen, B.; Li, Z.; Liang, R.; Sun, G. A mechanical strong polymer-cement composite fabricated by in situ polymerization within the cement matrix. J. Build. Eng. 2021, 42, 103048. [Google Scholar] [CrossRef]
- Panda, G.; Vipulanandan, C. Detection and quantification of Gas Leak in Smart Cement. In Proceedings of the Center for Innovative Grouting Material and Technology, CIGMAT-2019 Conference & Exhibition, Houston, TX, USA, 1 March 2019; pp. 1–2. [Google Scholar]
- Baghini, M.S.; Ismail, A.; Karim, M.R.; Shokri, F.; Firoozi, A.A. Effect of styrene–butadiene copolymer latex on properties and durability of road base stabilized with Portland cement additive. Constr. Build. Mater. 2014, 68, 740–749. [Google Scholar] [CrossRef]
- Baghini, M.S.; Ismail, A.; Pour Asghar, M.; Fendereski, G.; Sadeghi, M. Measuring the effects of styrene butadiene copolymer latex-Portland cement additives on properties of stabilized soil-aggregate base. Int. J. Pavement Res. Technol. 2018, 11, 458–469. [Google Scholar] [CrossRef]
- Nitnara, P.; Pongmuksuwan, P.; Kitisatorn, W. Development of polymer binder for properties enhancement of soil cement. Mater. Today Proc. 2022, 57, 975–979. [Google Scholar] [CrossRef]
- Wang, W.; Cheng, Y.; Chen, H.; Tan, G. Polymeric Composites in Road and Bridge Engineering: Characterization, Production and Application. Polymers 2023, 15, 874. [Google Scholar] [CrossRef]
- Kok, B.V.; Yilmaz, M. The effects of using lime and styrene–butadiene–styrene on moisture sensitivity resistance of hot mix asphalt. Constr. Build. Mater. 2009, 23, 1999–2006. [Google Scholar] [CrossRef]
- Esaker, M.; Hamza, O.; Elliott, D. Monitoring the bio-self-healing performance of cement mortar incubated within soil and water using electrical resistivity. Constr. Build. Mater. 2023, 393, 132109. [Google Scholar] [CrossRef]
- Yang, H.; Wang, L.; Huang, G.; Zhao, J.; Yang, C.; Bi, Z.; Guo, Y.; Liu, W.V. Effects of compressive cyclic loading on the fatigue properties of oil-well cement slurries serving in deep downhole environments. Constr. Build. Mater. 2024, 428, 136360. [Google Scholar] [CrossRef]
- Zhang, Z.; Yuan, Z.; Ye, S.; Li, Y.; Yang, L.; Pang, X.; Lv, K.; Sun, J. The influence of cyclic loading on the mechanical properties of well cement. Energies 2024, 17, 3856. [Google Scholar] [CrossRef]
- Tan, E.H.; Zahran, E.M.; Tan, S.J. A comparative experimental investigation into the chemical stabilisation of sandstone aggregates using cement and styrene-butadiene copolymer latex for road sub-base construction. Transp. Geotech. 2022, 37, 100864. [Google Scholar] [CrossRef]
- Yuan, Q.; Xie, Z.; Yao, H.; Huang, T.; Fan, M. Hydration, mechanical properties, and microstructural characteristics of cement pastes with different ionic polyacrylamides: A comparative study. J. Build. Eng. 2022, 56, 104763. [Google Scholar] [CrossRef]
- Zajac, M.; Skibsted, J.; Skocek, J.; Durdzinski, P.; Bullerjahn, F.; Ben Haha, M. Phase assemblage and microstructure of cement paste subjected to enforced, wet carbonation. Cem. Concr. Res. 2020, 130, 105990. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, Y.; Gan, Y.; Chang, Z.; Schlangen, E.; Šavija, B. Microstructure informed micromechanical modelling of hydrated cement paste: Techniques and challenges. Constr. Build. Mater. 2020, 251, 118983. [Google Scholar] [CrossRef]
- Zhao, J.; Hu, M.; Liu, W.; Feng, J.; Zhang, H.; Liu, M.; Guo, J. Toughening effects of well-dispersed carboxylated styrene-butadiene latex powders on the properties of oil well cement. Constr. Build. Mater. 2022, 340, 127768. [Google Scholar] [CrossRef]
- Yang, H.; Wang, L.; Yang, C.; Zhao, J.; Huang, G.; Guo, Y.; Liu, W.V. Mechanical performance of oil-well cement slurries cured and tested under high-temperatures and high-pressures for deep-well applications. Cem. Concr. Res. 2023, 175, 107355. [Google Scholar] [CrossRef]
- Madeja, B.; Gebauer, D.; Marsiske, M.R.; Ott, A.; Rückel, M.; Rosenberg, R.; Baken, A.; Stawski, T.M.; Fernandez-Martinez, A.; Van Driessche, A.E.; et al. New insights into the nucleation of portlandite and the effects of polymeric additives. Cem. Concr. Res. 2023, 173, 107258. [Google Scholar] [CrossRef]
- Gao, C.; Zeng, H.; Xu, J.; Xu, D.; Ma, Y.; She, W.; Hu, Z.; Tang, J.; Liu, J. Collaborative enhancement in “strength-toughness-elastic modulus” of calcium-silicate-hydrate (CSH) based organic-inorganic composites: Chemical bonding and cracking path optimization. Cem. Concr. Res. 2024, 187, 107709. [Google Scholar] [CrossRef]














| XSBR Content (%) | Density (g/cm3) | Initial Resistivity | Initial Resistivity Variation | Minimum Resistivity | Final Resistivity | Resistivity Index | |
|---|---|---|---|---|---|---|---|
| ρ0 (Ω.m) | ∆ ρ0 (%) | ρmin (Ω.m) | tmin (min) | ρ24 (Ω.m) | RI24 (%) | ||
| 0 | 1.96 | 1 | - | 0.84 | 95 | 3.07 | 265 |
| 1 | 1.89 | 1.01 | 1 | 0.94 | 120 | 3.24 | 245 |
| 3 | 1.69 | 1.1 | 10 | 1.01 | 160 | 3.43 | 240 |
| 5 | 1.49 | 1.23 | 23 | 1.23 | 230 | 2.51 | 137 |
| API Model | Hyperbolic Model | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| XSBR Content | M mL/min0.5 | FL0 mL | FL30 mL | RMSE | R2 | D min/mL | E mL−1 | FL0 mL | FL30 mL | FLmax mL | R2 | RMSE |
| 0% | 15.64 | 32.93 | 118.60 | 14.34 | 0.76 | 0.26 | 0.01 | 0.009 | 98.90 | 103.01 | 0.99 | 0.35 |
| 1% | 12.89 | 27.72 | 98.30 | 11.81 | 0.76 | 0.61 | 0.01 | 0.011 | 81.81 | 85.12 | 0.99 | 0.12 |
| 3% | 10.56 | 18.90 | 76.80 | 8.12 | 0.99 | 0.78 | 0.02 | 0.015 | 64.01 | 67.21 | 0.99 | 0.40 |
| 5% | 9.45 | 7.42 | 59.20 | 4.04 | 0.97 | 0.16 | 0.07 | 0.016 | 53.30 | 62.22 | 0.99 | 0.12 |
| XSBR Content (%) | Ultimate Compressive Strength (MPa) | p3 | q3 | R2 | RMSE |
|---|---|---|---|---|---|
| 24 h curing | |||||
| 0 | 10.33 | 0.55 | 0.08 | 0.99 | 0.07 |
| 1 | 11.52 | 0.75 | 0.16 | 0.99 | 0.15 |
| 3 | 12.02 | 0.95 | 0.04 | 0.99 | 0.85 |
| 5 | 14.23 | 0.81 | 0.18 | 0.99 | 0.13 |
| 28-day curing | |||||
| 0 | 22.25 | 0.90 | 0.09 | 0.99 | 0.17 |
| 1 | 27.75 | 0.93 | 0.04 | 0.99 | 1.91 |
| 3 | 31.89 | 0.94 | 0.05 | 0.99 | 1.01 |
| 5 | 33.31 | 0.91 | 0.04 | 0.99 | 1.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panda, G.P.; Nagaraju, T.V.; Bala, G.S.; Ganesh, S.L. Influence of Carboxylated Styrene–Butadiene Rubber on Gas Migration Resistance and Fluid Loss in Cement Slurries. ChemEngineering 2025, 9, 100. https://doi.org/10.3390/chemengineering9050100
Panda GP, Nagaraju TV, Bala GS, Ganesh SL. Influence of Carboxylated Styrene–Butadiene Rubber on Gas Migration Resistance and Fluid Loss in Cement Slurries. ChemEngineering. 2025; 9(5):100. https://doi.org/10.3390/chemengineering9050100
Chicago/Turabian StylePanda, Guru Prasad, Thotakura Vamsi Nagaraju, Gottumukkala Sri Bala, and Saride Lakshmi Ganesh. 2025. "Influence of Carboxylated Styrene–Butadiene Rubber on Gas Migration Resistance and Fluid Loss in Cement Slurries" ChemEngineering 9, no. 5: 100. https://doi.org/10.3390/chemengineering9050100
APA StylePanda, G. P., Nagaraju, T. V., Bala, G. S., & Ganesh, S. L. (2025). Influence of Carboxylated Styrene–Butadiene Rubber on Gas Migration Resistance and Fluid Loss in Cement Slurries. ChemEngineering, 9(5), 100. https://doi.org/10.3390/chemengineering9050100

