Next Issue
Volume 8, September
Previous Issue
Volume 8, March
 
 

Chemosensors, Volume 8, Issue 2 (June 2020) – 24 articles

Cover Story (view full-size image): The research community is continuously developing innovative, selective, and efficient technologies to remove pollutants from water. This review provides an up-to-date overview of silver-nanoparticles-based materials suitable as optical sensors for water pollutants. The authors focus on the synthesis of silver nanoparticles, paying attention to the stabilizers and most-used ligands, and to the characterizations, properties, and applications as colorimetric sensors for water pollutants. The attention paid to inorganic water pollutants is focused on several heavy metal ions, due to their dangerous effects on human health. In addition, several systems based on silver nanoparticles employed as colorimetric sensors for pesticides in water are discussed. The aim is to provide to readers with a guide for this hot topic. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
12 pages, 4103 KiB  
Review
Switchable Graphene-Based Bioelectronics Interfaces
by Meenakshi, Sudheesh K. Shukla, Jagriti Narang, Vinod Kumar, Penny P. Govender, Avi Niv, Chaudhery Mustansar Hussain, Rui Wang, Bindu Mangla and Rajendran Suresh Babu
Chemosensors 2020, 8(2), 45; https://doi.org/10.3390/chemosensors8020045 - 26 Jun 2020
Cited by 16 | Viewed by 3236
Abstract
Integration of materials acts as a bridge between the electronic and biological worlds, which has revolutionized the development of bioelectronic devices. This review highlights the rapidly emerging field of switchable interface and its bioelectronics applications. This review article highlights the role and importance [...] Read more.
Integration of materials acts as a bridge between the electronic and biological worlds, which has revolutionized the development of bioelectronic devices. This review highlights the rapidly emerging field of switchable interface and its bioelectronics applications. This review article highlights the role and importance of two-dimensional (2D) materials, especially graphene, in the field of bioelectronics. Because of the excellent electrical, optical, and mechanical properties graphene have promising application in the field of bioelectronics. The easy integration, biocompatibility, mechanical flexibility, and conformity add impact in its use for the fabrication of bioelectronic devices. In addition, the switchable behavior of this material adds an impact on the study of natural biochemical processes. In general, the behavior of the interfacial materials can be tuned with modest changes in the bioelectronics interface systems. It is also believed that switchable behavior of materials responds to a major change at the nanoscale level by regulating the behavior of the stimuli-responsive interface architecture. Full article
(This article belongs to the Special Issue Functionalized Nanomaterials for Sensing Application)
Show Figures

Figure 1

10 pages, 2143 KiB  
Article
Fabrication of a Nitrogen and Boron-Doped Reduced Graphene Oxide Membrane-Less Amperometric Sensor for Measurement of Dissolved Oxygen in a Microbial Fermentation
by Selvaraj Chinnathambi, Sumit Kumar and Gert-Jan Willem Euverink
Chemosensors 2020, 8(2), 44; https://doi.org/10.3390/chemosensors8020044 - 22 Jun 2020
Cited by 5 | Viewed by 2886
Abstract
Dissolved oxygen (DO) is an important parameter to monitor in processes applicable in, for example, water technology and fermentation. In this study, we report the manufacturing of a membrane-less amperometric sensor that is based on the electrocatalytic reduction of oxygen. The sensor was [...] Read more.
Dissolved oxygen (DO) is an important parameter to monitor in processes applicable in, for example, water technology and fermentation. In this study, we report the manufacturing of a membrane-less amperometric sensor that is based on the electrocatalytic reduction of oxygen. The sensor was tested in pH-neutral KNO3 solutions and in a microbial fermentation to monitor the consumption of dissolved oxygen. The nitrogen and boron-doped reduced graphene oxide (N,B-HRGO) is used as an electrocatalyst for oxygen reduction. One step co-doping of nitrogen and boron on graphene oxide is performed using the hydrothermal method. The sensor responded linearly to the DO concentration. A sensitivity of 0.2 µA/mg·L−1 O2 is obtained for the DO concentration of 1.5 to 10 mg·L−1 O2. The membrane-less N,B-HRGO based DO sensor is successfully tested in an Amycolotopsis methanolica fermentation by monitoring the dissolved oxygen in real-time. The sensor detected the consumption of oxygen during the growth of A. methanolica, which shows the compatibility of N,B-HRGO as electrode material for amperometric measurement of dissolved oxygen in aerobic fermentation. This membrane-less amperometric sensor can be used to fabricate microdevices for microbioreactor applications. Full article
(This article belongs to the Section Applied Chemical Sensors)
Show Figures

Figure 1

18 pages, 3230 KiB  
Article
Chemical and Temperature Sensors Based on Functionalized Reduced Graphene Oxide
by Esteban Araya-Hermosilla, Matteo Minichino, Virgilio Mattoli and Andrea Pucci
Chemosensors 2020, 8(2), 43; https://doi.org/10.3390/chemosensors8020043 - 21 Jun 2020
Cited by 6 | Viewed by 3979
Abstract
In this work, we investigated the functionalization of reduced graphene oxide (rGO) with 2-(dodecen-1-yl) succinic anhydride (TPSA) to increase the rGO effective interactions with organic solvents both in liquid and vapor phases. Thermogravimetric analysis, STEM, XPS, FTIR-ATR, and Raman spectroscopy confirmed the effective [...] Read more.
In this work, we investigated the functionalization of reduced graphene oxide (rGO) with 2-(dodecen-1-yl) succinic anhydride (TPSA) to increase the rGO effective interactions with organic solvents both in liquid and vapor phases. Thermogravimetric analysis, STEM, XPS, FTIR-ATR, and Raman spectroscopy confirmed the effective functionalization of rGO with about the 30 wt% of grafted TPSA without affecting the structural characteristics of graphene but successfully enhancing its dispersibility in the selected solvent except for the apolar hexane. Solid TPSA-rGO dispersions displayed a reproducible semiconducting (activated) electrical transport with decreased resistance when heated from 20 °C to 60 °C and with a negative temperature coefficient of 10−3 K−1, i.e., comparable in absolute value with temperature coefficient in metals. It is worth noting that the same solid dispersions showed electrical resistance variation upon exposure to vapors with a detection limit in the order of 10 ppm and sensitivity α of about 10−4 ppm−1. Full article
(This article belongs to the Section Materials for Chemical Sensing)
Show Figures

Graphical abstract

17 pages, 1684 KiB  
Article
The Influence of Structure Parameters on Nanoantennas’ Optical Response
by Ricardo A. Marques Lameirinhas, João Paulo N. Torres and António Baptista
Chemosensors 2020, 8(2), 42; https://doi.org/10.3390/chemosensors8020042 - 19 Jun 2020
Cited by 10 | Viewed by 2531
Abstract
Currently, huge opportunities for the inclusion of new optical devices in our lives have been appearing. There are evident and irrefutable examples for nanoantenna applications. They can be used to improve already developed devices or even be used as the device. In both [...] Read more.
Currently, huge opportunities for the inclusion of new optical devices in our lives have been appearing. There are evident and irrefutable examples for nanoantenna applications. They can be used to improve already developed devices or even be used as the device. In both cases, they can be applied in diverse areas, such as medicine, environment, energy, defense, and communications. A square arrayed metallic nanoantenna composed of circular holes is studied by performing simulations using COMSOL Multiphysics. This article aims to study the influence of the nanoantenna’s metal, silver, gold, copper and aluminum, but also the optical response dependence on the nanoantenna’s periodicity, its thickness, the hole diameter, and the number of holes. It is evidenced that the optical response can be tuned using the structure parameters and by choosing an appropriate material. This tuning will allow developers to fulfil the specifications, since it is proven that the response peak can be deliberately shifted, amplified, or attenuated. Full article
Show Figures

Figure 1

17 pages, 1597 KiB  
Article
Voltammetric Sensors Based on Nanomaterials for Detection of Caffeic Acid in Food Supplements
by Alexandra Virginia Bounegru and Constantin Apetrei
Chemosensors 2020, 8(2), 41; https://doi.org/10.3390/chemosensors8020041 - 18 Jun 2020
Cited by 27 | Viewed by 4276
Abstract
Caffeic acid may be accurately detected in food supplements by using cyclic voltammetry and carbon screen-printed sensors modified with various nanomaterials. Sensor characterization by cyclic voltammetry in reference solutions has shown that carbon nanotubes or carbon nanofibers significantly improve the sensor response in [...] Read more.
Caffeic acid may be accurately detected in food supplements by using cyclic voltammetry and carbon screen-printed sensors modified with various nanomaterials. Sensor characterization by cyclic voltammetry in reference solutions has shown that carbon nanotubes or carbon nanofibers significantly improve the sensor response in terms of sensitivity and reversibility. Screen-printed sensors were then used in order to study the electrochemical behavior of caffeic acid in aqueous solution at pH 3.6. A redox process was observed in all cases, which corresponds to a reversible redox process involving the transfer of two electrons and two protons. The role of nanomaterials in the increment of sensor performance characteristics was evidenced. Calibration curves were developed for each sensor, and the detection (LOD) and quantification (LOQ) limits were calculated. Low LOD and LOQ values were obtained, in the 10−7 to 10−9 M range, which demonstrates that the method is feasible for quantification of caffeic acid in real samples. Caffeic acid was quantitatively determined in three food supplements using the most sensitive sensor, namely the carbon nanofiber sensor. The Folin–Ciocalteu spectrophotometric assay was used to validate the results obtained with the sensor. The results obtained by using the voltammetric method were consistent with those obtained by using the spectrophotometric method, with no statistically significant differences between the results obtained at 95% confidence level. Full article
(This article belongs to the Special Issue Voltammperometric Sensors)
Show Figures

Figure 1

13 pages, 2558 KiB  
Article
Investigation of Rapid Gas-Sensitive Properties Degradation of ZnO–SnO2 Thin Films Grown on the Glass Substrate
by Victor V. Petrov, Ekaterina M. Bayan, Soslan A. Khubezhov, Yuri N. Varzarev and Maria G. Volkova
Chemosensors 2020, 8(2), 40; https://doi.org/10.3390/chemosensors8020040 - 18 Jun 2020
Cited by 15 | Viewed by 2649
Abstract
ZnO–SnO2 films with a thickness of up to 120 nm have been prepared on glass substrates by pyrolysis at 550 °C of three spin-coated organic precursors films. Films of four compositions were obtained on glass substrates. The prepared films were characterized by [...] Read more.
ZnO–SnO2 films with a thickness of up to 120 nm have been prepared on glass substrates by pyrolysis at 550 °C of three spin-coated organic precursors films. Films of four compositions were obtained on glass substrates. The prepared films were characterized by SEM, XRD, and XPS analysis. Electrophysical studies have shown that the activation energy of the temperature conductivity for all films is equal to 0.75 eV. While the gas-sensitive characteristics by CO treatment in low concentrations at a temperature of 200–300 °C was studied, their rapid degradation was found. Studies using the XPS method have shown that ZnO–SnO2 films contain sodium, which is diffused from the soda-lime glass substrate during the film formation. Studies of XPS spectra after CO treatment have shown that the film surface is almost 50% composed of adsorbed water molecules and OH groups. OH groups are part of the sodium, tin, and zinc hydroxides formed on the surface. In addition, zinc hydrocarbonates are formed on the surface of the films. The detected insoluble compounds lead to the degradation of gas-sensitive properties of ZnO–SnO2 films. Full article
(This article belongs to the Section Materials for Chemical Sensing)
Show Figures

Figure 1

13 pages, 3231 KiB  
Article
Influence of SnO2 Content on the Humidity Dependent Impedance of the MgFe2O4-Fe2O3-SnO2 Compound
by Maria Vesna Nikolic and Miloljub D. Lukovic
Chemosensors 2020, 8(2), 39; https://doi.org/10.3390/chemosensors8020039 - 16 Jun 2020
Cited by 4 | Viewed by 2138
Abstract
A porous MgFe2O4-Fe2O3-SnO2 bulk compound with varying SnO2 content was obtained by sintering an appropriate mixture of magnesium oxide, hematite and tin oxide nanopowders at 1000 and 1100 °C. The obtained structure was [...] Read more.
A porous MgFe2O4-Fe2O3-SnO2 bulk compound with varying SnO2 content was obtained by sintering an appropriate mixture of magnesium oxide, hematite and tin oxide nanopowders at 1000 and 1100 °C. The obtained structure was confirmed by X-ray diffraction analysis. Scanning electron microscopy was used to analyze sample morphology, showing that the addition of SnO2 resulted in an inhomogeneous microstructure with smaller grain size especially at 1000 °C. Significant grain growth of hematite grains was noted at 1100 °C. The influence of relative humidity in the range 30–90% was monitored at room temperature (25 °C) in the frequency range 42 Hz- 1 MHz. The highest reduction of impedance with humidity was noted at lower frequency. Addition of low amounts of SnO2 and sintering at 1000 °C resulted in the highest sensitivity at 105 Hz of 0.391 MΩ/%RH in the RH30–90% range, while the compound with the highest amount of SnO2 showed the largest decrease in impedance with increase in relative humidity ~26 times. All samples showed low hysteresis (below 2%). Complex impedance data was analyzed using equivalent circuits reflecting the dominant influence of the grain boundary in the lower relative humidity range (30–60%) and both grain boundary and grain components in the higher relative humidity range (60–90%). Full article
(This article belongs to the Section Materials for Chemical Sensing)
Show Figures

Figure 1

13 pages, 5136 KiB  
Article
Ammonia Sensor Based on Vapor Phase Polymerized Polypyrrole
by Ahmadou Ly, Yifan Luo, Gaëtan Cavaillès, Marie-Georges Olivier, Marc Debliquy and Driss Lahem
Chemosensors 2020, 8(2), 38; https://doi.org/10.3390/chemosensors8020038 - 12 Jun 2020
Cited by 15 | Viewed by 3394
Abstract
The detection of ammonia is an important issue for a lot of applications: leak detection in industry, agriculture, cooling systems, and medical diagnosis (breath biomarker for non-invasive diagnostic of renal disease). Among the possible sensing technologies, chemosensors based on conducting polymers show interesting [...] Read more.
The detection of ammonia is an important issue for a lot of applications: leak detection in industry, agriculture, cooling systems, and medical diagnosis (breath biomarker for non-invasive diagnostic of renal disease). Among the possible sensing technologies, chemosensors based on conducting polymers show interesting characteristics. Polypyrrole (PPy) is well known for its sensitivity to ammonia. In the present work, PPy was synthesized by vapor phase polymerization (VPP) and treated with three different reductants. The ammonia sensing performance was investigated. The response of sodium sulfite Na2SO3 treated PPy was found to be much more pronounced when exposed to ammonia, it was twice as high as the grown PPy. A response of 15% at 500 ppb was obtained with an excellent selectivity towards ammonia compared to ethanol, acetone, and isopropanol. The role of chemical reduction of PPy in ammonia gas sensing was studied using different methods such as Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and ultra-violet, visible, near-infrared (UV–Vis–NIR) spectroscopy. Full article
Show Figures

Figure 1

16 pages, 3035 KiB  
Article
Sodium Alginate Cross-Linkable Planar 1D Photonic Crystals as a Promising Tool for Pb2+ Detection in Water
by Andrea Dodero, Paola Lova, Silvia Vicini, Maila Castellano and Davide Comoretto
Chemosensors 2020, 8(2), 37; https://doi.org/10.3390/chemosensors8020037 - 4 Jun 2020
Cited by 10 | Viewed by 3527
Abstract
Due to its high toxicity, Pb2+ pollution is a serious threat for human health and environments. However, in situ real-time detection of Pb2+ pollution is difficult and laboratory instruments are usually required. Then, the possibility to monitor water quality without laboratory [...] Read more.
Due to its high toxicity, Pb2+ pollution is a serious threat for human health and environments. However, in situ real-time detection of Pb2+ pollution is difficult and laboratory instruments are usually required. Then, the possibility to monitor water quality without laboratory instruments could lead to the extensive assessment of polluted water sources, especially in rural environments and developing countries where large lead concentrations are often found in surface water. Consequently, new simple colorimetric sensors are highly interesting in the field. In this work we report for the first time disposable polymer planar 1D photonic crystals made of poly (N-vinylcarbazole) as high refractive index medium and sodium alginate as low refractive index and active medium for the detection of Pb2+ in water. The detection relies on the ionic exchange occurring into the alginate matrix. This process effectively induces a physical cross-linking phenomenon, which inhibits water solubilization of the polymer. In turn, this affects the spectral response of the planar 1D photonic crystals modifying its color. Full article
Show Figures

Figure 1

13 pages, 4499 KiB  
Article
Additive Manufacturing of a Flexible Carbon Monoxide Sensor Based on a SnO2-Graphene Nanoink
by Jialin Zuo, Sean Tavakoli, Deepakkrishna Mathavakrishnan, Taichong Ma, Matthew Lim, Brandon Rotondo, Peter Pauzauskie, Felippe Pavinatto and Devin MacKenzie
Chemosensors 2020, 8(2), 36; https://doi.org/10.3390/chemosensors8020036 - 28 May 2020
Cited by 10 | Viewed by 4589
Abstract
Carbon monoxide (CO) gas is an odorless toxic combustion product that rapidly accumulates inside ordinary places, causing serious risks to human health. Hence, the quick detection of CO generation is of great interest. To meet this need, high-performance sensing units have been developed [...] Read more.
Carbon monoxide (CO) gas is an odorless toxic combustion product that rapidly accumulates inside ordinary places, causing serious risks to human health. Hence, the quick detection of CO generation is of great interest. To meet this need, high-performance sensing units have been developed and are commercially available, with the vast majority making use of semiconductor transduction media. In this paper, we demonstrate for the first time a fabrication protocol for arrays of printed flexible CO sensors based on a printable semiconductor catalyst-decorated reduced graphene oxide sensor media. These sensors operate at room temperature with a fast response and are deposited using high-throughput printing and coating methods on thin flexible substrates. With the use of a modified solvothermal aerogel process, reduced graphene oxide (rGO) sheets were decorated with tin dioxide (SnO2) nanoscale deposits. X-ray diffraction data were used to show the composition of the material, and high-resolution X-ray photoelectron spectroscopy (XPS) characterization showed the bonding status of the sensing material. Moreover, a very uniform distribution of particles was observed in scanning (SEM) and transmission electron microscopy (TEM) images. For the fabrication of the sensors, silver (Ag) interdigitated electrodes were inkjet-printed from nanoparticle inks on plastic substrates with 100 µm linewidths and then coated with the SnO2-rGO nanocomposite by inkjet or slot-die coating, followed by a thermal treatment to further reduce the rGO. The detection of 50 ppm of CO in nitrogen was demonstrated for the devices with a slot-die coated active layer. A response of 15%, response time of 4.5 s, and recovery time of 12 s were recorded for these printed sensors, which is superior to other previously reported sensors operating at room temperature. Full article
(This article belongs to the Special Issue Printed Chemical Sensors)
Show Figures

Figure 1

4 pages, 169 KiB  
Editorial
Chemical Reagents for Sensor Design and Development
by Edward P. C. Lai
Chemosensors 2020, 8(2), 35; https://doi.org/10.3390/chemosensors8020035 - 25 May 2020
Viewed by 2019
Abstract
The combination of selective chemical reagents with sensitive physical transducers can often bring about new sensor designs and novel device construction that are capable of quantitative analysis of various sample matrices to determine important ionic or molecular analytes [...] Full article
12 pages, 1742 KiB  
Article
A Sensitive Impedimetric Sensor Based on Biosourced Polyphosphine Films for the Detection of Lead Ions
by Taha Chabbah, Houyem Abderrazak, Radhia Souissi, Patrice Saint-Martin, Herve Casabianca, Saber Chatti, Regis Mercier, Ilhem Rassas, Abdelhamid Errachid, Mohamed Hammami and Nicole Jaffrezic-Renault
Chemosensors 2020, 8(2), 34; https://doi.org/10.3390/chemosensors8020034 - 11 May 2020
Cited by 9 | Viewed by 2880
Abstract
In this work, impedimetric sensors were developed for the detection of the four WFD heavy metals Pb2+, Cd2+, Hg2+ and Ni2+, by the modification of a gold electrode with four partially biosourced polyphosphine polymers. These polymers [...] Read more.
In this work, impedimetric sensors were developed for the detection of the four WFD heavy metals Pb2+, Cd2+, Hg2+ and Ni2+, by the modification of a gold electrode with four partially biosourced polyphosphine polymers. These polymers were obtained with satisfactory yields by polycondensation of the bis(4-fluorophenyl)(4-methylphenyl)phosphine sulfide and the bis(4-fluorophenyl)(4-methylphenyl)phosphine oxide using isosorbide or bisphenol A. The chemical structures and number-average molecular weights of the resulting polymers were determined by NMR spectroscopy (1H, 19F, and 31P) and by size exclusion chromatography. Glass transition temperatures varied between 184 and 202 °C depending on the composition of polymers. The bio-based poly(etherphosphine) oxide modified sensor showed better analytical performance than petrochemical based oxide for the detection of Pb2+. A detection limit of 10−10 g/L or 0.5 pM, which is 104 times lower than that of the anodic stripping voltammetric and the potentiometric sensors. A reversibility is obtained through rinsing of the impedimetric sensor with an EDTA solution. Full article
(This article belongs to the Section Electrochemical Devices and Sensors)
Show Figures

Graphical abstract

3 pages, 207 KiB  
Editorial
Optical Chemosensors and Biosensors
by Ambra Giannetti and Markéta Bocková
Chemosensors 2020, 8(2), 33; https://doi.org/10.3390/chemosensors8020033 - 9 May 2020
Cited by 6 | Viewed by 3239
Abstract
The field of chemo- and biosensors, ranging from biomedical/clinical applications to environmental applications and food analyses, has been growing in the last two decades [...] Full article
(This article belongs to the Collection Optical Chemosensors and Biosensors)
20 pages, 2024 KiB  
Review
The Use of Aptamers and Molecularly Imprinted Polymers in Biosensors for Environmental Monitoring: A Tale of Two Receptors
by Maryam Naseri, Mohsen Mohammadniaei, Yi Sun and Jon Ashley
Chemosensors 2020, 8(2), 32; https://doi.org/10.3390/chemosensors8020032 - 6 May 2020
Cited by 29 | Viewed by 4764
Abstract
Effective molecular recognition remains a major challenge in the development of robust receptors for biosensing applications. Over the last three decades, aptamers and molecularly imprinted polymers (MIPs) have emerged as the receptors of choice for use in biosensors as viable alternatives to natural [...] Read more.
Effective molecular recognition remains a major challenge in the development of robust receptors for biosensing applications. Over the last three decades, aptamers and molecularly imprinted polymers (MIPs) have emerged as the receptors of choice for use in biosensors as viable alternatives to natural antibodies, due to their superior stability, comparable binding performance, and lower costs. Although both of these technologies have been developed in parallel, they both suffer from their own unique problems. In this review, we will compare and contrast both types of receptor, with a focus on the area of environmental monitoring. Firstly, we will discuss the strategies and challenges involved in their development. We will also discuss the challenges that are involved in interfacing them with the biosensors. We will then compare and contrast their performance with a focus on their use in the detection of environmental contaminants, namely, antibiotics, pesticides, heavy metals, and pathogens detection. Finally, we will discuss the future direction of these two technologies. Full article
(This article belongs to the Section Applied Chemical Sensors)
Show Figures

Figure 1

17 pages, 3857 KiB  
Article
Synthesis of a 5-Carboxy Indole-Based Spiropyran Fluorophore: Thermal, Electrochemical, Photophysical and Bovine Serum Albumin Interaction Investigations
by Rodrigo da Costa Duarte, Fabiano da Silveira Santos, Bruno Bercini de Araújo, Rodrigo Cercena, Daniela Brondani, Eduardo Zapp, Paulo Fernando Bruno Gonçalves, Fabiano Severo Rodembusch and Alexandre Gonçalves Dal-Bó
Chemosensors 2020, 8(2), 31; https://doi.org/10.3390/chemosensors8020031 - 3 May 2020
Cited by 9 | Viewed by 3706
Abstract
In this study, we synthesized a spiropyran containing an electron-withdrawing carboxyl group in good yield by condensation of an aromatic aldehyde with enamine indole. The spiropyran absorbed at the ultraviolet region with a maximum at approximately 300 nm, demonstrating slight solvatochromism (~3 nm). [...] Read more.
In this study, we synthesized a spiropyran containing an electron-withdrawing carboxyl group in good yield by condensation of an aromatic aldehyde with enamine indole. The spiropyran absorbed at the ultraviolet region with a maximum at approximately 300 nm, demonstrating slight solvatochromism (~3 nm). A fluorescent emission around 360 nm was observed with a higher solvatochromic effect (~12 nm), indicating higher electronic delocalization in the excited state. The photoreversibility of the open and closed forms of spiropyran excited at 300 nm and 365 nm was not observed, indicating that the absence of the nitro group plays a fundamental role in this equilibrium. Theoretical calculations were also applied for better understanding the photophysics of these compounds. Electrochemical characterization revealed the values of the HOMO and LUMO energy levels at −1.89 eV (electron affinity) and −5.61 eV (ionization potential), respectively. Thermogravimetric analysis showed excellent thermal stability of the spiropyran, with 5% weight loss at approximately 250 °C. Finally, the photophysical features were used to explore the interaction of spiropyran with bovine serum albumin in a phosphate buffer solution, where a significant suppression mechanism was observed. Full article
(This article belongs to the Special Issue Chromogenic and Fluorogenic Chemosensors)
Show Figures

Graphical abstract

10 pages, 1429 KiB  
Article
An Electronic Nose Technology to Quantify Pyrethroid Pesticide Contamination in Tea
by Xiaoyan Tang, Wenmin Xiao, Tao Shang, Shanyan Zhang, Xiaoyang Han, Yuliang Wang and Haiwei Sun
Chemosensors 2020, 8(2), 30; https://doi.org/10.3390/chemosensors8020030 - 23 Apr 2020
Cited by 24 | Viewed by 3151
Abstract
The contamination of tea with toxic pesticides is a major concern. Additionally, because of improved detection methods, importers are increasingly rejecting contaminated teas. Here, we describe an electronic nose technique for the rapid detection of pyrethroid pesticides (cyhalothrin, bifenthrin, and fenpropathrin) in tea. [...] Read more.
The contamination of tea with toxic pesticides is a major concern. Additionally, because of improved detection methods, importers are increasingly rejecting contaminated teas. Here, we describe an electronic nose technique for the rapid detection of pyrethroid pesticides (cyhalothrin, bifenthrin, and fenpropathrin) in tea. Using a PEN 3 electronic nose, the text screened a group of metal oxide sensors and determined that four of them (W5S, W1S, W1W, and W2W) are suitable for the detection of the same pyrethroid pesticide in different concentrations and five of them (W5S, W1S, W1W, W2W, and W2S) are suitable for the detection of pyrethroid pesticide. The models for the determination of cyhalothrin, bifenthrin, and fenpropathrin are established by PLS method. Next, using back propagation (BP) neural network technology, we developed a three-hidden-layer model and a two-hidden-layer model to differentiate among the three pesticides. The accuracy of the three models is 96%, 92%, and 88%, respectively. The recognition accuracies of the three-hidden-layer BP neural network pattern and two-hidden-layer BP neural network pattern are 98.75% and 97.08%, respectively. Our electronic nose system accurately detected and quantified pyrethroid pesticides in tea leaves. We propose that this tool is now ready for practical application in the tea industry. Full article
(This article belongs to the Special Issue Chemosensors and Biosensors for Food Quality and Safety)
Show Figures

Figure 1

15 pages, 3719 KiB  
Article
Novel Platinum-Porphyrin as Sensing Compound for Efficient Fluorescent and Electrochemical Detection of H2O2
by Eugenia Fagadar-Cosma, Nicoleta Plesu, Anca Lascu, Diana Anghel, Maria Cazacu, Catalin Ianasi, Gheorghe Fagadar-Cosma, Ion Fratilescu and Camelia Epuran
Chemosensors 2020, 8(2), 29; https://doi.org/10.3390/chemosensors8020029 - 23 Apr 2020
Cited by 12 | Viewed by 3538
Abstract
Metalloporphyrins are highly recognized for their capacity to act as sensitive substances used in formulation of optical, fluorescent, and electrochemical sensors. A novel compound, namely Pt(II)-5,10,15,20-tetra-(4-allyloxy-phenyl) porphyrin, was synthesized by metalation with PtCl2(PhCN)2 of the corresponding porphyrin base and was [...] Read more.
Metalloporphyrins are highly recognized for their capacity to act as sensitive substances used in formulation of optical, fluorescent, and electrochemical sensors. A novel compound, namely Pt(II)-5,10,15,20-tetra-(4-allyloxy-phenyl) porphyrin, was synthesized by metalation with PtCl2(PhCN)2 of the corresponding porphyrin base and was fully characterized by UV-vis, fluorimetry, FT-IR, 1H-NMR, and 13C-NMR methods. The fluorescence response of this Pt-porphyrin in the presence of different concentrations of hydrogen peroxide was investigated. Besides, modified glassy carbon electrodes with this Pt-porphyrin (Pt-Porf-GCE) were realized and several electrochemical characterizations were comparatively performed with bare glassy carbon electrodes (GCE), in the absence or presence of hydrogen peroxide. The Pt-porphyrin demonstrated to be a successful sensitive material for the detection of hydrogen peroxide both by fluorimetric method in a concentration range relevant for biological samples (1.05–3.9 × 10−7 M) and by electrochemical method, in a larger concentration range from 1 × 10−6 M to 5 × 10−5 M. Based on different methods, this Pt-porphyrin can cover detection in diverse fields, from medical tests to food and agricultural monitoring, proving high accuracy (correlation coefficients over 99%) in both fluorimetric and electrochemical measurements. Full article
Show Figures

Graphical abstract

11 pages, 1811 KiB  
Article
Electrochemical Aptasensor for Detection of Dopamine
by Hisham Abu-Ali, Cansu Ozkaya, Frank Davis, Nik Walch and Alexei Nabok
Chemosensors 2020, 8(2), 28; https://doi.org/10.3390/chemosensors8020028 - 15 Apr 2020
Cited by 20 | Viewed by 5825
Abstract
This work presents a proof of concept of a novel, simple, and sensitive method of detection of dopamine, a neurotransmitter within the human brain. We propose a simple electrochemical method for the detection of dopamine using a dopamine-specific aptamer labeled with an electrochemically [...] Read more.
This work presents a proof of concept of a novel, simple, and sensitive method of detection of dopamine, a neurotransmitter within the human brain. We propose a simple electrochemical method for the detection of dopamine using a dopamine-specific aptamer labeled with an electrochemically active ferrocene tag. Aptamers immobilized on the surface of gold screen-printed gold electrodes via thiol groups can change their secondary structure by wrapping around the target molecule. As a result, the ferrocene labels move closer to the electrode surface and subsequently increase the electron transfer. The cyclic voltammograms and impedance spectra recorded on electrodes in buffer solutions containing different concentration of dopamine showed, respectively, the increase in both the anodic and cathodic currents and decrease in the double layer resistance upon increasing the concentration of dopamine from 0.1 to 10 nM L−1. The high affinity of aptamer-dopamine binding (KD ≈ 5 nM) was found by the analysis of the binding kinetics. The occurrence of aptamer-dopamine binding was directly confirmed with spectroscopic ellipsometry measurements. Full article
Show Figures

Figure 1

11 pages, 2788 KiB  
Article
Yeast Propagation Control: Low Frequency Electrochemical Impedance Spectroscopy as an Alternative for Cell Counting Chambers in Brewery Applications
by Georg Christoph Brunauer, Oliver Spadiut, Alfred Gruber and Christoph Slouka
Chemosensors 2020, 8(2), 27; https://doi.org/10.3390/chemosensors8020027 - 7 Apr 2020
Cited by 2 | Viewed by 2874
Abstract
Electrochemical impedance spectroscopy is a powerful tool in life science for cell and pathogen detection, as well as for cell counting. The measurement principles and techniques using impedance spectroscopy are highly diverse. Differences can be found in used frequency range (β or α [...] Read more.
Electrochemical impedance spectroscopy is a powerful tool in life science for cell and pathogen detection, as well as for cell counting. The measurement principles and techniques using impedance spectroscopy are highly diverse. Differences can be found in used frequency range (β or α regime), analyzed quantities, like charge transfer resistance, dielectric permittivity of double layer capacitance and in off- or online usage. In recent contributions, applications of low-frequency impedance spectroscopy in the α regime were tested for determination of cell counts and metabolic burden in Escherichia coli and Saccharomyces cerevisiae. The established easy to use methods showed reasonable potential in the lab scale, especially for S. cerevisiae. However, until now, measurements for cell counts in food science are generally based on Thoma cell counting chambers. These microscopic cell counting methods decelerate an easy and quick prediction of yeast viability, as they are labor intensive and result in a time delayed response signal. In this contribution we tested our developed method using low frequency impedance spectroscopy locally at an industrial brewery propagation site and compared results to classic cell counting procedures. Full article
Show Figures

Figure 1

29 pages, 5419 KiB  
Review
Silver Nanoparticles as Colorimetric Sensors for Water Pollutants
by Paolo Prosposito, Luca Burratti and Iole Venditti
Chemosensors 2020, 8(2), 26; https://doi.org/10.3390/chemosensors8020026 - 31 Mar 2020
Cited by 127 | Viewed by 14588
Abstract
This review provides an up-to-date overview on silver nanoparticles-based materials suitable as optical sensors for water pollutants. The topic is really hot considering the implications for human health and environment due to water pollutants. In fact, the pollutants present in the water disturb [...] Read more.
This review provides an up-to-date overview on silver nanoparticles-based materials suitable as optical sensors for water pollutants. The topic is really hot considering the implications for human health and environment due to water pollutants. In fact, the pollutants present in the water disturb the spontaneity of life-related mechanisms, such as the synthesis of cellular constituents and the transport of nutrients into cells, and this causes long / short-term diseases. For this reason, research continuously tends to develop always innovative, selective and efficient processes / technologies to remove pollutants from water. In this paper we will report on the silver nanoparticles synthesis, paying attention to the stabilizers and mostly used ligands, to the characterizations, to the properties and applications as colorimetric sensors for water pollutants. As water pollutants our attention will be focused on several heavy metals ions, such as Hg(II), Ni(II),Cu(II), Fe(III), Mn(II), Cr(III/V) Co(II) Cd(II), Pb(II), due to their dangerous effects on human health. In addition, several systems based on silver nanoparticles employed as pesticides colorimetric sensors in water will be also discussed. All of this with the aim to provide to readers a guide about recent advanced silver nanomaterials, used as colorimetric sensors in water. Full article
Show Figures

Graphical abstract

11 pages, 1237 KiB  
Article
Development of a New Analytical Method for Determination of Veterinary Drug Oxyclozanide by Electrochemical Sensor and Its Application to Pharmaceutical Formulation
by Ersin Demir and Hulya Silah
Chemosensors 2020, 8(2), 25; https://doi.org/10.3390/chemosensors8020025 - 30 Mar 2020
Cited by 17 | Viewed by 3329
Abstract
A novel highly selective, sensitive and simple analytical technique was recommended for the investigation of anthelmintic veterinary drug oxyclozanide based on square wave anodic stripping voltammetry (SWASV) by using a carbon paste electrode (CPE). According to the cyclic voltammetric data, the oxidation and [...] Read more.
A novel highly selective, sensitive and simple analytical technique was recommended for the investigation of anthelmintic veterinary drug oxyclozanide based on square wave anodic stripping voltammetry (SWASV) by using a carbon paste electrode (CPE). According to the cyclic voltammetric data, the oxidation and electron transfer processes of oxyclozanide were found as irreversible and adsorption-controlled, respectively. The voltammetric anodic peak response was characterized with respect to pH, accumulation potential, accumulation time, frequency and pulse amplitude, etc. Under these optimized experimental conditions, the anodic peak density of oxyclozanide was linear to oxyclozanide concentrations in the range from 0.058 to 4.00 mg/L. The described electrochemical method was successfully carried out for the oxyclozanide in pharmaceutical formulation and tap water with mean percentage recovery of 101.5 % and 102.2 %, respectively. The results of pharmaceutical formulation studies were statistically compared to the high-performance liquid chromatographic method. Full article
Show Figures

Graphical abstract

18 pages, 10865 KiB  
Article
Multiple Zones Modification of Open Off-Stoichiometry Thiol-Ene Microchannel by Aptamers: A Methodological Study & A Proof of Concept
by Samantha Bourg, Fanny d’Orlyé, Sophie Griveau, Fethi Bedioui, Jose Alberto Fracassi da Silva and Anne Varenne
Chemosensors 2020, 8(2), 24; https://doi.org/10.3390/chemosensors8020024 - 30 Mar 2020
Cited by 4 | Viewed by 2793
Abstract
Off-stoichiometry thiol-ene polymer (OSTE) is an emerging thermoset with interesting properties for the development of lab-on-a-chip (LOAC), such as easy microfabrication process, suitable surface chemistry for modification and UV-transparency. One of the challenges for LOAC development is the integration of all the analytical [...] Read more.
Off-stoichiometry thiol-ene polymer (OSTE) is an emerging thermoset with interesting properties for the development of lab-on-a-chip (LOAC), such as easy microfabrication process, suitable surface chemistry for modification and UV-transparency. One of the challenges for LOAC development is the integration of all the analytical steps in one microchannel, and particularly, trace level analytes extraction/preconcentration steps. In this study, two strategies for the immobilization of efficient tools for this purpose, thiol-modified (C3-SH) aptamers, on OSTE polymer surfaces were developed and compared. The first approach relies on a direct UV-initiated click chemistry reaction to graft thiol-terminated aptamers on ene-terminated OSTE surfaces. The second strategy consists of the immobilization of thiol-terminated aptamers onto OSTE substrates covered by gold nanoparticles. The presence of an intermediate gold nanoparticle layer on OSTE has shown great interest in the efficient immobilization of aptamers, preserving their interaction with the target, and preventing non-specific adsorption. With this second innovative strategy, we proved, for the first time the concept of creating multiple functional zones for sample treatment in an open OSTE-microchannel thanks to the immobilization of aptamers in consecutive areas by the simple droplet deposition methodology. This methodological development allows further consideration of OSTE material for lab-on-a-chip designs, integrating multiple zones for sample pretreatment, based on molecular recognition by ligands, such as aptamers, in a specific zone of the microchannel and is adaptable to a large range of analytical applications for LOAC industrialization. Full article
Show Figures

Graphical abstract

16 pages, 1926 KiB  
Article
A New Perspective on Using Glycols in Glutamate Biosensor Design: From Stabilizing Agents to a New Containment Net
by Andrea Bacciu, Paola Arrigo, Giovanna Delogu, Salvatore Marceddu, Patrizia Monti, Gaia Rocchitta and Pier Andrea Serra
Chemosensors 2020, 8(2), 23; https://doi.org/10.3390/chemosensors8020023 - 26 Mar 2020
Cited by 6 | Viewed by 2660
Abstract
Glutamate is a major excitatory neurotransmitter in the brain. It is involved in many normal physiological brain activities, but also neurological disorders and excitotoxicity. Hence, glutamate measurement is important both in clinical and pre-clinical studies. Pre-clinical studies often use amperometric biosensors due to [...] Read more.
Glutamate is a major excitatory neurotransmitter in the brain. It is involved in many normal physiological brain activities, but also neurological disorders and excitotoxicity. Hence, glutamate measurement is important both in clinical and pre-clinical studies. Pre-clinical studies often use amperometric biosensors due to their low invasiveness and the relatively small size of the devices. These devices also provide fast, real-time measurements because of their high sensitivity. In the present study, diethylene glycol (DEG), neopentyl glycol (NPG), triethylene glycol (TEG), and glycerol (GLY) were used to increase the long-term stability of glutamate biosensors. The evaluation was made by measuring variations of the main enzymatic (VMAX and KM) and analytical (Linear Region Slope (LRS)) parameters. Of the glycols tested, TEG was the most promising stabilizer, showing about twice as high VMAX maintained over a greater duration than with other stabilizers tested. It is also yielded the most stable linear region slope (LRS) values over the study duration. Moreover, we highlighted the ability of glycols to interact with enzyme molecules to form a containment network, able to maintain all the layered components of the biosensor adhering to the transducer. Full article
Show Figures

Figure 1

8 pages, 2197 KiB  
Article
A Cobalt (II) Oxide Carbon Nanotube Composite to Assay Dopamine
by Mohammad S. Kader and Charles C. Chusuei
Chemosensors 2020, 8(2), 22; https://doi.org/10.3390/chemosensors8020022 - 25 Mar 2020
Cited by 5 | Viewed by 3482
Abstract
A cobalt (II) oxide/carboxylic acid functionalized multiwalled carbon nanotube (CoO/COOH-MWNT) composite was fabricated for the biochemical detection of dopamine (DA). CoO particles were tethered to COOH-MWNTs by sonication. The current response versus different concentration was measured using cyclic voltammetry. Various parameters, including sonication [...] Read more.
A cobalt (II) oxide/carboxylic acid functionalized multiwalled carbon nanotube (CoO/COOH-MWNT) composite was fabricated for the biochemical detection of dopamine (DA). CoO particles were tethered to COOH-MWNTs by sonication. The current response versus different concentration was measured using cyclic voltammetry. Various parameters, including sonication time, pH, and loading were varied for the best current response. The composite with optimum current response was formed using a 30-min sonication time, at pH 5.0 and a 0.89 µg/mm2 loading onto the glassy carbon electrode surface. Good sensitivity with a limit of detection of 0.61 ± 0.03 μM, and dynamic range of 10–100 µM for DA is shown, applicable for neuroblastoma screening. The sensor was selective against ascorbic and uric acids. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop