Switchable Graphene-Based Bioelectronics Interfaces
Abstract
:1. Introduction
2. Fundamentals of 2D Materials and Graphene-Based Bioelectronic Interfaces
3. Graphene in Biosensing
4. Switchable Graphene Bioelectronics
5. Conclusions and Future Perspective
Author Contributions
Funding
Conflicts of Interest
References
- Prianka, T.R.; Subhan, N.; Reza, H.M.; Hosain, K.; Rahman, A.; Lee, H.; Sharker, S.M. Recent exploration of bio-mimetic nanomaterials for potential biomedical applications. Mater. Sci. Eng. C 2018, 93, 1104–1115. [Google Scholar] [CrossRef]
- National Institute of Standards and Technology. A Framework for Bioelectronics: Discovery and Innovation; National Institute of Standards and Technology, Department of Commerce: Gaithersburg, MD, USA, 2018. Available online: https://www.nist.gov/engineering-physics-division/framework-bioelectronics-discovery-and-innovation (accessed on 25 August 2019).
- Simon, D.T.; Larsson, K.C.; Nilsson, D.; Burström, G.; Galter, D.; Berggren, M.; Richter-Dahlfors, A. An organic electronic biomimetic neuron enables auto-regulated neuromodulation. Biosens. Bioelectron. 2015, 71, 359–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, X.; Zeng, Z.Y.; Fan, Z.X.; Liu, J.Q.; Zhang, H. Graphene-based electrode. Adv. Mater. 2012, 24, 5979–6004. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, Z.; Wang, J.; Li, J.; Linb, Y. Graphene and graphene oxide: Biofunctionalization and applications in biotechnology. Trends Biotechnol. 2011, 29, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Löffler, S.; Libberton, B.; Richter-Dahlfors, A. Organic bioelectronic tools for biomedical applications. Electronics 2015, 4, 879–908. [Google Scholar] [CrossRef] [Green Version]
- Duan, X.; Lieber, C.M. Nanoscience and the nano-bioelectronics frontier. Nano Res. 2015, 8, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Noy, A. Bionanoelectronics. Adv. Mater. 2011, 23, 807–820. [Google Scholar] [CrossRef]
- Rivnay, J.; Owens, R.M.; Malliaras, G.G. The rise of organic bioelectronics. Chem. Mater. 2013, 26, 679–685. [Google Scholar] [CrossRef]
- Someya, T.; Bao, Z.; Malliaras, G.G. The rise of plastic bioelectronics. Nature 2016, 540, 379–385. [Google Scholar] [CrossRef]
- Lee, G.H.; Yu, Y.J.; Cui, X.; Petrone, N.; Lee, C.H.; Choi, M.S.; Lee, D.Y.; Lee, C.; Yoo, W.J.; Watanable, K.; et al. Flexible and tranparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostrures. ACS Nano 2013, 7, 7931–7936. [Google Scholar] [CrossRef]
- Geim, A.K. Graphene: Status and Prospects. Science 2009, 324, 1530–1534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geim, A.K.; Grigorieva, I.V. Van der Waals heterostructures. Nature 2013, 499, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Bunch, J.S.; Zande, A.M.; Verbridge, S.S.; Frank, I.W.; Tanenbaum, D.M.; Parpia, J.M.; Craighead, H.G.; McEuen, P.L. Electrochemical resonators from graphene sheets. Science 2007, 315, 490–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, N.M.Y.; Li, K.; Shum, P.P.; Yu, X.; Zeng, S.; Wu, Z.; Wang, Q.J.; Yong, K.-T.; Wei, L. Hybrid graphene/gold plasmonic fiber-optic biosensor. Adv. Mater. Technol. 2016, 2, 1600185. [Google Scholar] [CrossRef]
- Yang, G.; Zhu, C.; Du, D.; Zhu, J.; Lin, Y. Graphene-like two-dimensional layered nanomaterials: Applications in biosensors and nanomedicine. Nanoscale 2015, 7, 14217–14231. [Google Scholar] [CrossRef]
- Shao, Y.; Wang, J.; Wu, H.; Liu, J.; Aksay, I.A.; Lin, Y. Graphene based electrochemical sensor and biosensor: A review. Electroanalysis 2010, 22, 1027–1036. [Google Scholar] [CrossRef]
- Janegitz, B.C.; Dos Santos, F.A.; Faria, R.C.; Zucolotto, V. Electrochemical determination of estradiol using a thin film containing reduced graphene oxide and dihexadecylphosphate. Mater. Sci. Eng. C 2014, 37, 14–19. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsova, A.A. Electrocal field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Neto, A.H.C.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of grapheme. Rev. Mod. Phys. 2009, 81, 109–162. [Google Scholar] [CrossRef] [Green Version]
- Geim, A.K.; Novoselov, K.S. The rise of grapheme. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef]
- Ambrosi, A.; Chua, C.K.; Bonanni, A.; Pumera, M. Electrochemistry of graphene and related materials. Chem. Rev. 2014, 115, 7150–7188. [Google Scholar] [CrossRef] [PubMed]
- Brownson, D.A.C.; Banks, C.E. Graphene electrochemistry: An overview of potential applications. Analyst 2010, 135, 2768–2778. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Kirkman, P.M.; Patel, A.N.; Cuharuc, A.S.; Mckelvey, K.; Unwin, P.R. Molecular functionalization of graphene surfaces: Basal plane versus step edge electrochemical activity. J. Am. Chem. Soc. 2014, 136, 11444–11451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, M.; Zhai, Y.; Dong, S. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal. Chem. 2009, 81, 5603–5613. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.F.; Park, J.Y. Fabrication of sensitive enzymatic biosensor based on multi-layered reduced graphene oxide added PtAu nanoparticles-modified hybrid electrode. PLoS ONE 2017, 12, e0173553. [Google Scholar] [CrossRef]
- Konkena, B.; Vasudevan, S. Understnding aqueous dispersibility of graphene oxide and reduced graphene oxide through pKa measurements. J. Phys. Chem. Lett. 2012, 3, 867–872. [Google Scholar] [CrossRef]
- Morales-Narváez, E.; Merkoçi, A. Graphene oxide as an optical biosensing platform. Adv. Mater. 2012, 24, 3298–3308. [Google Scholar] [CrossRef]
- Clark, L.C., Jr.; Lyons, C.; Ann, N.Y. Electrode systems for continuous monitoring in cardiovascular system. Acad. Sci. 1962, 102, 29–45. [Google Scholar] [CrossRef]
- Turner, A.P.F.; Karube, I.; Wilson, G.S. Biosensors: Fundamentals and Applications; Oxford University Press: Oxford, UK, 1987. [Google Scholar]
- Willner, I.; Katz, E. Bioelectronics: From Theory to Applications; John Wiley & Sons: New York, NY, USA, 2006. [Google Scholar]
- Berggren, M.; Richter-Dahlfors, A. Organic bioelectronics. Adv. Mater. 2007, 19, 3201–3213. [Google Scholar] [CrossRef]
- Cave, J.W.; Wickiser, J.K.; Mitropoulos, A.N. Progress in the development of olfactory-based bioeelctronics chemosensors. Biosens. Bioelectron. 2019, 123, 211–222. [Google Scholar] [CrossRef]
- Willner, I.; Willner, B. Biomaterials integrated with electronic elements: En route to bioelectronics. Trends Biotechnol. 2001, 19, 222–230. [Google Scholar] [CrossRef]
- Joachim, C.; Gimzewski, J.K.; Aviram, A. Electronics using hybrid-molecular and mono-molecular devices. Nature 2000, 408, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wu, G.; Yang, G.; Peng, J.; Zhao, J.; Zhu, J. Focusing on luminescent graphene quantum dots: Current status and future perspectives. Nanoscale 2013, 5, 4015–4039. [Google Scholar] [CrossRef] [Green Version]
- Shan, C.; Yang, H.; Song, J.; Han, D.; Ivaska, A.; Niu, L. Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal. Chem. 2009, 81, 2378–2382. [Google Scholar] [CrossRef]
- Guo, S.; Wen, D.; Zhai, Y.; Dong, S.; Wang, E. Platinum nanoparticle ensemble-on-graphene hybrid nanosheet: One-pot, rapid synthesis, and used as new electrode material for electrochemical sensing. ACS Nano 2010, 4, 3959–3968. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, X.; Zhang, J.; Boey, F.; Zhang, H. Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase. J. Phys. Chem. C 2009, 113, 14071–14075. [Google Scholar] [CrossRef]
- Huang, Y.; Dong, X.; Liu, Y.; Li, L.-J.; Chen, P. Graphene-based biosensors for detection of bacteria and their metabolic activities. J. Mater. Chem. 2011, 21, 12358–12362. [Google Scholar] [CrossRef]
- Bocharova, V.; Katz, E. Switchable electrode interfaces controlled by physical, chemical and biological signals. Chem. Rec. 2011, 12, 114–130. [Google Scholar] [CrossRef]
- Privman, M.; Tam, T.K.; Pita, M.; Katz, E. Switchable electrode controlled by enzyme logic network system: Approaching physiologically regulated bioelectronics. J. Am. Chem. Soc. 2009, 131, 1314–1321. [Google Scholar] [CrossRef]
- Wang, Y.; Zhai, F.; Hasebe, Y.; Jia, H.; Zhang, Z. A highly sensitive electrochemical biosensor for phenol derivatives using a graphene oxide-modified tyrosinase electrode. Bioelectrochemistry 2018, 122, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Li, H.; Li, M.; Li, C.; Qian, L.; Yang, B. Electrochemical immunosensors with AuPt-vertical graphene/glassy carbon electrode for alpha-fetoprotein detection based on label-free nd sandwich-type strategies. Biosens. Bioelectron. 2019, 132, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Liu, H.; Tan, H.; Xu, F.; Jia, J.; Zhang, L.; Li, Z.; Wang, L. pH-switchable electrochemical sensing platform based on chitosan-reduced graphene oxide/concanavalin a layer for assay of glucose and urea. Anal. Chem. 2014, 86, 1980–1987. [Google Scholar] [CrossRef]
- Parlak, O.; Turner, A.P.F.; Tiwari, A. pH-induced on/off-switchable graphene bioelectronics. J. Mater. Chem. B 2015, 3, 7434–7439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akkaya, B.; Çakıroğlu, B.; Özacar, M. Tannic Acid-Reduced Graphene Oxide Deposited with Pt Nanoparticles for Switchable Bioelectronics and Biosensors Based on Direct Electrochemistry. ACS Sustain. Chem. Eng. 2018, 6, 3805–3814. [Google Scholar] [CrossRef]
- Parlak, O.; Turner, A.P.F.; Tiwari, A. On/off-switchable zipper-like bioelectronics on a graphene interface. Adv. Mater. 2013, 26, 482–486. [Google Scholar] [CrossRef] [Green Version]
- Parlak, O.; Beyazit, S.; Jafari, M.J.; Bui, B.T.S.; Haupt, K.; Tiwari, A.; Turner, A.P.F. Light-triggered switchable graphene-polymer hybrid bioelectronics. Adv. Mater. Interfaces 2016, 3, 1500353. [Google Scholar] [CrossRef]
- Mishra, S.; Ashaduzzaman, M.; Mishra, P.; Swart, H.C.; Turner, A.P.; Tiwari, A. Stimuli-enabled zipper-like graphene interface for auto-switchable bioelectronics. Biosens. Bioelectron. 2017, 89, 305–311. [Google Scholar] [CrossRef]
- Yuan, F.; Zhao, H.; Zang, H.; Ye, F.; Quan, X. Three-Dimensional Graphene Supported Bimetallic Nanocomposites with DNA Regulated-Flexibly Switchable Peroxidase-Like Activity. ACS Appl. Mater. Interfaces 2016, 8, 9855–9864. [Google Scholar] [CrossRef] [PubMed]
S. No. | Material System | Preparation Method | Switchable Mechanism | References |
---|---|---|---|---|
1. | Graphene-glucose oxidase | pH-induced on/off bioelectronic interface | pH based | [47] |
2. | Glucose oxidase/Tannic acid-reduced graphene oxide | Direct electrochemistry based interface | pH and temperature based | [48] |
3. | PANI-Graphene-AuNP | Zipper-like interface | Temperature based | [49] |
4. | Graphene-polymer | Light-switchable graphene interface | Light based | [50] |
5. | Graphene/poly(NIPAM-co-DEAEMA) | Zipper like graphene based interface | pH and temperature based | [51] |
6. | Graphene/Fe3O4–AuNPs | Flexibly switchable peroxidase-like activity | sDNA based | [52] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meenakshi; Shukla, S.K.; Narang, J.; Kumar, V.; Govender, P.P.; Niv, A.; Hussain, C.M.; Wang, R.; Mangla, B.; Babu, R.S. Switchable Graphene-Based Bioelectronics Interfaces. Chemosensors 2020, 8, 45. https://doi.org/10.3390/chemosensors8020045
Meenakshi, Shukla SK, Narang J, Kumar V, Govender PP, Niv A, Hussain CM, Wang R, Mangla B, Babu RS. Switchable Graphene-Based Bioelectronics Interfaces. Chemosensors. 2020; 8(2):45. https://doi.org/10.3390/chemosensors8020045
Chicago/Turabian StyleMeenakshi, Sudheesh K. Shukla, Jagriti Narang, Vinod Kumar, Penny P. Govender, Avi Niv, Chaudhery Mustansar Hussain, Rui Wang, Bindu Mangla, and Rajendran Suresh Babu. 2020. "Switchable Graphene-Based Bioelectronics Interfaces" Chemosensors 8, no. 2: 45. https://doi.org/10.3390/chemosensors8020045
APA StyleMeenakshi, Shukla, S. K., Narang, J., Kumar, V., Govender, P. P., Niv, A., Hussain, C. M., Wang, R., Mangla, B., & Babu, R. S. (2020). Switchable Graphene-Based Bioelectronics Interfaces. Chemosensors, 8(2), 45. https://doi.org/10.3390/chemosensors8020045