Fabrication of a Nitrogen and Boron-Doped Reduced Graphene Oxide Membrane-Less Amperometric Sensor for Measurement of Dissolved Oxygen in a Microbial Fermentation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Preparation
2.2. Instruments and Methodology
3. Results and Discussion
3.1. Material and Electrochemical Characterization
3.2. Electrocatalytic Activity
3.3. Amperometric Sensing of Dissolved Oxygen
3.4. Real-Time Monitoring of Dissolved Oxygen during the Growth of Amycalotopsis methanolica
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mills, A. Oxygen indicators and intelligent inks for packaging food. Chem. Soc. Rev. 2005, 34, 1003–1011. [Google Scholar] [CrossRef] [PubMed]
- Clark, J.R.L.C.; Misrahy, G.; Fox, R.P. Chronically implanted polarographic electrodes. J. Appl. Physiol. 1958, 13, 85–91. [Google Scholar] [CrossRef]
- Krommenhoek, E.; Gardeniers, J.G.; Bomer, J.G.; Li, X.; Ottens, M.; Van Dedem, G.; Van Leeuwen, M.; Van Gulik, W.; Van Der Wielen, L.; Heijnen, J. Integrated electrochemical sensor array for on-line monitoring of yeast fermentations. Anal. Chem. 2007, 79, 5567–5573. [Google Scholar] [CrossRef]
- Lee, J.-H.; Lim, T.-S.; Seo, Y.; Bishop, P.L.; Papautsky, I. Needle-type dissolved oxygen microelectrode array sensors for in situ measurements. Sens. Actuators B Chem. 2007, 128, 179–185. [Google Scholar] [CrossRef]
- Ordeig, O.; del Campo, J.; Munoz, F.X.; Banks, C.E.; Compton, R.G. Electroanalysis utilizing amperometric microdisk electrode arrays. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal. 2007, 19, 1973–1986. [Google Scholar] [CrossRef]
- Orozco, J.; Fernández-Sánchez, C.; Jiménez-Jorquera, C. Ultramicroelectrode array based sensors: A promising analytical tool for environmental monitoring. Sensors 2010, 10, 475–490. [Google Scholar] [CrossRef]
- van Rossem, F.; Bomer, J.G.; de Boer, H.L.; Abbas, Y.; de Weerd, E.; van den Berg, A.; Le Gac, S. Sensing oxygen at the millisecond time-scale using an ultra-microelectrode array (UMEA). Sens. Actuators B Chem. 2017, 238, 1008–1016. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A. The rise of graphene. Nat. Mater 2007, 6, 183–191. [Google Scholar]
- Liang, J.; Jiao, Y.; Jaroniec, M.; Qiao, S.Z. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem. Int. Ed. 2012, 51, 11496–11500. [Google Scholar] [CrossRef]
- Liu, Z.W.; Peng, F.; Wang, H.J.; Yu, H.; Zheng, W.X.; Yang, J. Phosphorus-doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium. Angew. Chem. Int. Ed. 2011, 50, 3257–3261. [Google Scholar] [CrossRef]
- Qu, L.; Liu, Y.; Baek, J.-B.; Dai, L. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 2010, 4, 1321–1326. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Z.-H.; Gao, H.-L.; Bao, W.-J.; Wang, F.-B.; Xia, X.-H. Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells. J. Mater. Chem. 2012, 22, 390–395. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, L.; Xia, Z.; Roy, A.; Chang, D.W.; Baek, J.B.; Dai, L. BCN graphene as efficient metal-free electrocatalyst for the oxygen reduction reaction. Angew. Chem. Int. Ed. 2012, 51, 4209–4212. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Yao, Z.; Li, G.; Fang, G.; Nie, H.; Liu, Z.; Zhou, X.; Chen, X.A.; Huang, S. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 2012, 6, 205–211. [Google Scholar] [CrossRef]
- Yao, Z.; Nie, H.; Yang, Z.; Zhou, X.; Liu, Z.; Huang, S. Catalyst-free synthesis of iodine-doped graphene via a facile thermal annealing process and its use for electrocatalytic oxygen reduction in an alkaline medium. Chem. Commun. 2012, 48, 1027–1029. [Google Scholar] [CrossRef]
- Zheng, Y.; Jiao, Y.; Ge, L.; Jaroniec, M.; Qiao, S.Z. Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis. Angew. Chem. Int. Ed. 2013, 52, 3110–3116. [Google Scholar] [CrossRef]
- Gong, K.; Du, F.; Xia, Z.; Durstock, M.; Dai, L. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323, 760–764. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, T.; Boero, M.; Huang, S.-F.; Terakura, K.; Oshima, M.; Ozaki, J.-I. Carbon alloy catalysts: Active sites for oxygen reduction reaction. J. Phys. Chem. C 2008, 112, 14706–14709. [Google Scholar] [CrossRef]
- Radovic, L.R.; Karra, M.; Skokova, K.; Thrower, P.A. The role of substitutional boron in carbon oxidation. Carbon 1998, 36, 1841–1854. [Google Scholar] [CrossRef]
- Devi, K.S.; Jain, A.; Huang, S.-T.; Kumar, A.S. Metal and heteroatoms-free carbon soot obtained from atmospheric combustion of naphthalene for sensitive dissolved oxygen reduction reaction and sensing in neutral media. Electrochim. Acta 2019, 296, 407–417. [Google Scholar] [CrossRef]
- Hutton, L.; Newton, M.E.; Unwin, P.R.; Macpherson, J.V. Amperometric oxygen sensor based on a platinum nanoparticle-modified polycrystalline boron doped diamond disk electrode. Anal. Chem. 2009, 81, 1023–1032. [Google Scholar] [CrossRef] [PubMed]
- Ivandini, T.A.; Saepudin, E.; Wardah, H.; Dewangga, N.; Einaga, Y. Development of a biochemical oxygen demand sensor using gold-modified boron doped diamond electrodes. Anal. Chem. 2012, 84, 9825–9832. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.S.; Dadamos, T.R.; Teixeira, M.F. Development of an electrochemical sensor for determination of dissolved oxygen by nickel–salen polymeric film modified electrode. Sens. Actuators B Chem. 2012, 175, 111–117. [Google Scholar] [CrossRef]
- Moya, A.; Sowade, E.; del Campo, F.J.; Mitra, K.Y.; Ramon, E.; Villa, R.; Baumann, R.R.; Gabriel, G. All-inkjet-printed dissolved oxygen sensors on flexible plastic substrates. Org. Electron. 2016, 39, 168–176. [Google Scholar] [CrossRef]
- Saravia, L.P.H.; Anandhakumar, S.; Parússulo, A.L.A.; Matias, T.A.; da Silva, C.C.; Kowaltowski, A.J.; Araki, K.; Bertotti, M. Development of a tetraphenylporphyrin cobalt (II) modified glassy carbon electrode to monitor oxygen consumption in biological samples. J. Electroanal. Chem. 2016, 775, 72–76. [Google Scholar] [CrossRef]
- Tiwari, I.; Gupta, M.; Prakash, R.; Banks, C.E. An anthraquinone moiety/cysteamine functionalized-gold nanoparticle/chitosan based nanostructured composite for the electroanalytical detection of dissolved oxygen within aqueous media. Anal. Methods 2014, 6, 8793–8801. [Google Scholar] [CrossRef]
- Hsu, L.; Selvaganapathy, P.R.; Brash, J.; Fang, Q.; Xu, C.-Q.; Deen, M.J.; Chen, H. Development of a Low-Cost Hemin-Based Dissolved Oxygen Sensor With Anti-Biofouling Coating for Water Monitoring. IEEE Sens. J. 2014, 14, 3400–3407. [Google Scholar] [CrossRef]
- Sousa, C.P.; Coutinho-Neto, M.D.; Liberato, M.S.; Kubota, L.T.; Alves, W.A. Self-Assembly of Peptide Nanostructures onto an Electrode Surface for Nonenzymatic Oxygen Sensing. J. Phys. Chem. C 2014, 119, 1038–1046. [Google Scholar] [CrossRef]
- Damos, F.S.; Luz, R.C.; Tanaka, A.A.; Kubota, L.T. Dissolved oxygen amperometric sensor based on layer-by-layer assembly using host–guest supramolecular interactions. Anal. Chim. Acta 2010, 664, 144–150. [Google Scholar] [CrossRef]
- Duarte, J.C.; Luz, R.C.; Damos, F.S.; Tanaka, A.A.; Kubota, L.T. A highly sensitive amperometric sensor for oxygen based on iron (II) tetrasulfonated phthalocyanine and iron (III) tetra-(N-methyl-pyridyl)-porphyrin multilayers. Anal. Chim. Acta 2008, 612, 29–36. [Google Scholar] [CrossRef]
- Fu, L.; Zheng, Y.; Fu, Z.; Wang, A.; Cai, W. Dissolved oxygen detection by galvanic displacement-induced graphene/silver nanocomposite. Bull. Mater. Sci. 2015, 38, 611–616. [Google Scholar] [CrossRef] [Green Version]
- Ju, H.; Shen, C. Electrocatalytic reduction and determination of dissolved oxygen at a poly (nile blue) modified electrode. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal. 2001, 13, 789–793. [Google Scholar] [CrossRef]
- Liu, Y.; Yan, Y.-L.; Lei, J.; Wu, F.; Ju, H. Functional multiwalled carbon nanotube nanocomposite with iron picket-fence porphyrin and its electrocatalytic behavior. Electrochem. Commun. 2007, 9, 2564–2570. [Google Scholar] [CrossRef]
- Luz, R.d.C.S.; Damos, F.S.; Tanaka, A.A.; Kubota, L.T. Dissolved oxygen sensor based on cobalt tetrasulphonated phthalocyanine immobilized in poly-l-lysine film onto glassy carbon electrode. Sens. Actuators B Chem. 2006, 114, 1019–1027. [Google Scholar] [CrossRef]
- Santos, L.S.; Landers, R.; Gushikem, Y. Application of manganese (II) phthalocyanine synthesized in situ in the SiO2/SnO2 mixed oxide matrix for determination of dissolved oxygen by electrochemical techniques. Talanta 2011, 85, 1213–1216. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, I.; Singh, M.; Gupta, M.; Aggarwal, S. Electroanalytical properties and application of anthraquinone derivative-functionalized multiwalled carbon nanotubes nanowires modified glassy carbon electrode in the determination of dissolved oxygen. Mater. Res. Bull. 2012, 47, 1697–1703. [Google Scholar] [CrossRef]
- Wang, J.; Bian, C.; Tong, J.; Sun, J.; Li, Y.; Hong, W.; Xia, S. Modification of Graphene on Ultramicroelectrode Array and Its Application in Detection of Dissolved Oxygen. Sensors 2015, 15, 382–393. [Google Scholar] [CrossRef] [PubMed]
- Saravia, L.P.; Sukeri, A.; Gonçalves, J.M.; Aguirre-Araque, J.S.; Brandão, B.B.; Matias, T.A.; Nakamura, M.; Araki, K.; Toma, H.E.; Bertotti, M. CoTRP/Graphene oxide composite as efficient electrode material for dissolved oxygen sensors. Electrochim. Acta 2016, 222, 1682–1690. [Google Scholar] [CrossRef]
- Wang, S.; Iyyamperumal, E.; Roy, A.; Xue, Y.; Yu, D.; Dai, L. Vertically aligned BCN nanotubes as efficient metal-free electrocatalysts for the oxygen reduction reaction: A synergetic effect by co-doping with boron and nitrogen. Angew. Chem. Int. Ed. 2011, 50, 11756–11760. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhao, X.; Tian, X.; Luo, L.; Fang, J.; Gao, H.; Jiang, Z.-J. Hydrothermal synthesis of boron and nitrogen codoped hollow graphene microspheres with enhanced electrocatalytic activity for oxygen reduction reaction. ACS Appl. Mater. Interfaces 2015, 7, 19398–19407. [Google Scholar] [CrossRef]
- Zhou, Y.; Bao, Q.; Tang, L.A.L.; Zhong, Y.; Loh, K.P. Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem. Mater. 2009, 21, 2950–2956. [Google Scholar] [CrossRef]
- Chinnathambi, S.; Euverink, G.J.W. Polyaniline functionalized electrochemically reduced graphene oxide chemiresistive sensor to monitor the pH in real time during microbial fermentations. Sens. Actuators B Chem. 2018, 264, 38–44. [Google Scholar] [CrossRef]
- Hummers, W.S., Jr.; Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Selvaraj, C.; Kumar, S.; Munichandraiah, N.; Scanlon, L.G. Reduced Graphene Oxide-Polypyrrole Composite as a Catalyst for Oxygen Electrode of High Rate Rechargeable Li-O2Cells. J. Electrochem. Soc. 2014, 161, A554–A560. [Google Scholar] [CrossRef]
- Li, J.; Li, X.; Zhao, P.; Lei, D.Y.; Li, W.; Bai, J.; Ren, Z.; Xu, X. Searching for magnetism in pyrrolic N-doped graphene synthesized via hydrothermal reaction. Carbon 2015, 84, 460–468. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, Y.; Wu, D.; Liao, L.; Zhao, S.; Peng, H.; Liu, Z. Synthesis of boron-doped graphene monolayers using the sole solid feedstock by chemical vapor deposition. Small 2013, 9, 1316–1320. [Google Scholar] [CrossRef]
- Spyrou, K.; Calvaresi, M.; Diamanti, E.K.; Tsoufis, T.; Gournis, D.; Rudolf, P.; Zerbetto, F. Graphite oxide and aromatic amines: Size matters. Adv. Funct. Mater. 2015, 25, 263–269. [Google Scholar] [CrossRef]
- Li, S.; Wang, Z.; Jiang, H.; Zhang, L.; Ren, J.; Zheng, M.; Dong, L.; Sun, L. Plasma-induced highly efficient synthesis of boron doped reduced graphene oxide for supercapacitors. Chem. Commun. 2016, 52, 10988–10991. [Google Scholar] [CrossRef] [Green Version]
- Yadav, R.; Dixit, C. Synthesis, characterization and prospective applications of nitrogen-doped graphene: A short review. J. Sci. Adv. Mater. Devices 2017, 2, 141–149. [Google Scholar] [CrossRef]
- Zehtab Yazdi, A.; Fei, H.; Ye, R.; Wang, G.; Tour, J.; Sundararaj, U. Boron/nitrogen co-doped helically unzipped multiwalled carbon nanotubes as efficient electrocatalyst for oxygen reduction. ACS Appl. Mater. Interfaces 2015, 7, 7786–7794. [Google Scholar] [CrossRef]
Sensor Material | Potential (V) | Limit of Detection | Linear Response Range | Sensitivity | Ref. |
---|---|---|---|---|---|
N,B-HRGO 1 | −0.4 | 0.1 mg/L | 1.5–10.0 mg/L | 0.2 µA L mg−1 | This work |
CoTRP/GO 2 | −0.05 | 0.19 mg/L | 0–21.24 mg/L | 0.104 mA cm−2 | [38] |
Hemin/polypyrrole/Ag 3 | −0.7 | - | 2–7 mg/L | 8.5 µA L mg−1 | [27] |
Nickel/Salen/Platinum 4 | −0.25 | 0.17 mg/L−1 | 3.95–9.2 mg/L | 0.9 µA L mg−1 | [23] |
Graphene/Ag 5 | −0.3 | 0.031 µM | 1–120 µM | 0.205 µA µmol−1 | [31] |
Au-BDD 6 | −0.5 | 4 mg/L | 10–50 mg/L | 1.4 μA L mg−1 | [22] |
Au nanoparticles (IPE) 7 | − | 0.11 mg/L | 0–8 mg/L | 0.03 μA L mg−1 | [24] |
[Cu4(apyhist)4]4+/FF-MNT-coated/GCE 8 | −0.4 | 0.1 mg/L | 0.2–3.0 mg/L | 25 µA cm−2 L mg−1 | [28] |
HOOC-2 AQ/AMWCNTs 9 | −0.518 | 0.02 mg/L | 0.2–6.8 mg/L | 5 µA L mg−1 | [36] |
GNP/MWNTs-FeTMAPP 10 | −0.25 | 0.01 mg/L | 0.01–5.8 mg/L | 59.4 µA mM−1 | [33] |
SiO2/SnO2/MnPc 11 | −0.3 | 0.02 mg/L | 0–253 µM/L | 0.147 μA L μmol−1 | [35] |
βCDSH/FeTMPyP/ CDAuNP 12 | −0.15 | 0.02 mg/L | 0.2–6.5 mg/L | 5.5 μA L mg−1 | [29] |
poly(Nile blue)/GCE 8 | − | 0.01 mg/L | 0.02–0.4 mg/L | - | [32] |
cobalt tetrasulfonated pthalocyanine/poly-l-lysine | −0.16 | 0.09 mg/L | 0.2–8 mg/L | 11 µA cm−2 L mg−1 | [34] |
FeTsPc/FeT4MPyP 13 | −0.15 | 0.06 mg/L | 0.2–6.4 mg/L | 4.12 µA L mg−1 | [30] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chinnathambi, S.; Kumar, S.; Euverink, G.-J.W. Fabrication of a Nitrogen and Boron-Doped Reduced Graphene Oxide Membrane-Less Amperometric Sensor for Measurement of Dissolved Oxygen in a Microbial Fermentation. Chemosensors 2020, 8, 44. https://doi.org/10.3390/chemosensors8020044
Chinnathambi S, Kumar S, Euverink G-JW. Fabrication of a Nitrogen and Boron-Doped Reduced Graphene Oxide Membrane-Less Amperometric Sensor for Measurement of Dissolved Oxygen in a Microbial Fermentation. Chemosensors. 2020; 8(2):44. https://doi.org/10.3390/chemosensors8020044
Chicago/Turabian StyleChinnathambi, Selvaraj, Sumit Kumar, and Gert-Jan Willem Euverink. 2020. "Fabrication of a Nitrogen and Boron-Doped Reduced Graphene Oxide Membrane-Less Amperometric Sensor for Measurement of Dissolved Oxygen in a Microbial Fermentation" Chemosensors 8, no. 2: 44. https://doi.org/10.3390/chemosensors8020044
APA StyleChinnathambi, S., Kumar, S., & Euverink, G. -J. W. (2020). Fabrication of a Nitrogen and Boron-Doped Reduced Graphene Oxide Membrane-Less Amperometric Sensor for Measurement of Dissolved Oxygen in a Microbial Fermentation. Chemosensors, 8(2), 44. https://doi.org/10.3390/chemosensors8020044