Novel Hybrid Processing Techniques for Wideband HF Signals Impaired by Ionospheric Propagation
Abstract
1. Introduction
2. HF Channel Model
2.1. Raytracing
2.2. Transmission Losses
2.3. Watterson Model for Antenna Array
3. Hybrid SIMO/Beamforming
3.1. Hybrid MIMO/Beamforming Polarization Scheme
3.2. Hybrid SIMO/Beamforming Spatial Scheme
3.3. Hybrid MIMO/BEAMFORMING Spatial–Polarization Scheme
4. Simulations
5. Wideband Model of Propagation in the Ionosphere
| Algorithm 1. Algorithm for modeling the OFDM signal HF band. |
| 1. Initialization: |
| L_train (the length of the training sequence within each frame OFDM), |
| L_data (the length of the data sequence within each frame OFDM), |
| L = L_train + L_data, |
| N_ofdm (the number of subcarriers) |
| N (Number of antennas at the receiving side) |
| 2 Generating the training sequence matrix of the dimension L_train × N_ofdm |
| 3 Generating the data matrix L_data × N_ofdm |
| 4 Formation of the matrix of overall sequences tx_sig of the dimension L × N_ofdm |
| 5 Formation of a matrix of the steering vectors for each frequency for O- and X-waves A_O and A_X |
| 6 Setting of attenuation and time shifts for each frequency |
| for f = 1:N_ofdm |
| reset the channel settings O |
| reset the channel settings X |
| tx_chan_O = function_channel_O(tx_sig(:,f)) |
| tx_chan_X = function_channel_X(tx_sig(:,f)) |
| rx_chann_O(:,:,f) = A_O(:,f)* tx_chan_O |
| rx_chann_X(:,:,f) = A_X(:,f)* tx_chan_X |
| end |
| for n = 1:N |
| for l = 1:L |
| frames_O(:,l) = ifft(rx_chann_O (n,l,:)) |
| frames_X(:,l) = ifft(rx_chann_X (n,l,:)) |
| end |
| rx_ifft_O(n,:) = frames_O(:) |
| rx_ifft_X(n,:) = frames_X(:) |
| end |
| Output: |
| channel O signal on the receiving antenna array rx_ifft_O |
| channel X signal on the receiving antenna array rx_ifft_X |
| Algorithm 2. Algorithm for processing OFDM HF-band signal. |
| W_O—the vector of weight coefficients of channel O |
| W_X—the vector of weight coefficients of channel X |
| y_O—the signal vector of the antenna array O |
| y_X—the signal vector of the antenna array X |
| tx_Out—the vector of the training sequence |
| y_beam_O = W_O*y_O |
| y_beam_X = W_X*y_X |
| y_beam_fft_O = fft(y_beam_O) |
| y_beam_fft_X = fft((y_beam_X) |
| for f = 1:N_ofdm |
| y_ aligned_O = align(y_beam_fft_O, tx_Out) |
| y_ aligned_X = align(y_beam_fft_X, tx_Out) |
| h_ch _O = y_ aligned_O* tx_Out/L_train |
| h_ch _X = y_ aligned_X* tx_Out/L_train |
| h = [h_ch _O h_ch _X] |
| y = [y_ aligned_O y_ aligned_X] |
| y_mrc(f,:) = h’*y/(h*h’) |
| End |
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Davies, K.; Smith, E. Ionospheric effects on satellite land mobile systems. IEEE Antennas Propag. Mag. 2002, 44, 24–31. [Google Scholar] [CrossRef]
- Ferreira, A.A.; Borges, R.A.; Reis, L.R.; Borries, C.; Vasylyev, D. Investigation of Ionospheric Effects in the Planning of the Alfa Crux UHF Satellite Communication System. IEEE Access 2022, 10, 65744–65759. [Google Scholar] [CrossRef]
- Kintner, P.M.; Ledvina, B.M. The ionosphere, radio navigation, and global navigation satellite systems. Adv. Space Res. 2005, 35, 788–811. [Google Scholar] [CrossRef]
- Qi, C.; Ci, W.; Zhang, J.; You, X. Hybrid Beamforming for Millimeter Wave MIMO Integrated Sensing and Communications. IEEE Commun. Lett. 2022, 26, 1136–1140. [Google Scholar] [CrossRef]
- Hu, Y.; Hong, W. A Novel Hybrid Analog-Digital Multibeam Antenna Array for Massive MIMO Applications. In Proceedings of the 2018 IEEE Asia-Pacific Conference on Antennas and Propagation (APCAP), Auckland, New Zealand, 5–8 August 2018; pp. 42–45. [Google Scholar] [CrossRef]
- Suharto, T.I.; Hendrantoro, G.; Mauludiyanto, A.; Umaisaroh, U.; Corputty, R.; Muriani. Capacity Improvement Factor of HF Multi-Mode Skywave MIMO Channels. In Proceedings of the 2019 International Seminar on Intelligent Technology and Its Applications (ISITIA), Surabaya, Indonesia, 28–29 August 2019; pp. 7–12. [Google Scholar] [CrossRef]
- Wang, X.; Wan, L.; Huang, M.; Shen, C.; Zhang, K. Polarization Channel Estimation for Circular and Non-Circular Signals in Massive MIMO Systems. IEEE J. Sel. Top. Signal Process 2019, 13, 1001–1016. [Google Scholar] [CrossRef]
- Erhel, Y.; Lemur, D.; Oger, M.; Le Masson, J.; Marie, F. Evaluation of Ionospheric HF MIMO Channels: Two complementary circular polarizations reduce correlation. IEEE Antennas Propag. Mag. 2016, 58, 38–48. [Google Scholar] [CrossRef]
- Kim, T.; Salonidis, T.; Lundgren, H. MIMO wireless networks with directional antennas in indoor environments. In Proceedings of the 2012 Proceedings IEEE INFOCOM, Orlando, FL, USA, 25–30 March 2012; pp. 2941–2945. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, H.; Zhou, Q.; Zhou, L.; Wang, F. A novel digital beamformer applied in vehicle mounted HF receiving device. IEICE Electron. Express 2014, 11, 20130919. [Google Scholar] [CrossRef]
- Vogler, L.; Hoffmeyer, J. A model for wideband HF propagation channels. Radio Sci. 1993, 28, 1131–1142. [Google Scholar] [CrossRef]
- Ibrahim, A.; Abdelaziz, A.; Salah, M. On the performance of OFDM and single carrier communication over wideband HF channel: Theory and practice. Telecommun. Syst. 2021, 77, 671–682. [Google Scholar] [CrossRef]
- Yu, X.; Lu, A.-A.; Gao, X.; Li, G.Y.; Ding, G.; Wang, C.-X. HF Skywave Massive MIMO Communication. IEEE Trans. Wirel. Commun. 2021, 21, 2769–2785. [Google Scholar] [CrossRef]
- Appleton, E.V. Wireless studies of the ionosphere. J. Inst. Electr. Eng. 1932, 71, 257–265. [Google Scholar] [CrossRef]
- Nguyen, D.C.; Dao, K.A.; Tran, V.P.; Dao, D. Numerical Estimation of the Complex Refractive Indexes by the Altitude Depending on Wave Frequency in the Ionized Region of the Earth Atmosphere for Microwaves Infor-mation and Power Transmissions. Prog. Electromagn. Res. M 2016, 52, 21–31. [Google Scholar] [CrossRef]
- Hoque, M.M.; Jakowski, N. Ionospheric Propagation Effects on GNSS Signals and New Correction Approaches. In Global Navigation Satellite Systems: Signal, Theory and Applications; Jin, S., Ed.; IntechOpen: London, UK, 2012; Chapter 16. [Google Scholar] [CrossRef]
- Azzarone, A.; Bianchi, C.; Pezzopane, M.; Pietrella, M.; Scotto, C.; Settimi, A. IONORT: A Windows software tool to calculate the HF ray tracing in the ionosphere. Comput. Geosci. 2012, 42, 57–63. [Google Scholar] [CrossRef]
- Datsko, V.N. On the new approach to the problem of over-the-horizon radar and communication. J. Radio Electron. 2013, 6. [Google Scholar]
- Zawdie, K.A.; Drob, D.P.; Siskind, D.E.; Coker, C. Calculating the absorption of HF radio waves in the ionosphere. Radio Sci. 2017, 52, 767–783. [Google Scholar] [CrossRef]
- Watterson, C.C.; Juroshek, J.R.; Bensema, W.D. Experimental confirmation of an HF channel model. IEEE Trans. Commun. Technol. 1970, 18, 792–803. [Google Scholar] [CrossRef]
- Foschini, G.J.; Gans, M.J. On limits of Wireless Communications in a Fading Environment when Using Multiple Antennas. Wirel. Pers. Commun. 1998, 6, 311–335. [Google Scholar] [CrossRef]
- Balanis, C.A. Antenna Theory: Analysis and Design, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Li, Y.; Wang, Z.; Pang, C.; Wang, X. A Low Cross-Polarization Configuration Method for Phased Array Radar Antenna. Electronics 2020, 9, 396. [Google Scholar] [CrossRef]
- Schmidt, R. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 1986, 34, 276–280. [Google Scholar] [CrossRef]
- Capon, J. High-resolution frequency-wavenumber spectrum analysis. Proc. IEEE 1969, 57, 1408–1418. [Google Scholar] [CrossRef]
- Goldsmith, A. Wireless Communications; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Salucci, M.; Oliveri, G.; Hannan, M.A.; Azaro, R.; Massa, A. Wide-Band Wide-Beam Circularly-Polarized Slot-Coupled Antenna for Wide-Angle Beam Scanning Arrays. Sensors 2023, 23, 1123. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Chung, K.L.; Kong, F.; Du, L.; Li, K. A Simple Circularly Polarized Beam-Scanning Antenna Using Modulated Slotline-Spoof Surface Plasmon Polariton Slow-Wave Transmission Line. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 1109–1113. [Google Scholar] [CrossRef]
- Nosikov, I.A.; Klimenko, M.V.; Zhbankov, G.A.; Podlesnyi, A.V.; Ivanova, V.A.; Bessarab, P.F. Generalized Force Approach to Point-to-Point Ionospheric Ray Tracing and Systematic Identification of High and Low Rays. IEEE Trans. Antennas Propag. 2020, 68, 455–467. [Google Scholar] [CrossRef]
- Telecommunication Standardization Sector of ITU. Testing of HF Modems with Bandwidths of up to About 12 kHz Using Ionospheric Channel Simulators, ITU-R Recommendation F.1487. 2000. Available online: https://www.itu.int/dms_pubrec/itu-r/rec/f/R-REC-F.1487-0-200005-I!!PDF-E.pdf (accessed on 3 December 2025).
- Peshkov, I. Simulation Study of Digital Spatial Processing in Conditions of Tropospheric Propagation of Radio Waves for Telecommunication Applications. Prog. Electromagn. Res. C 2024, 143, 109–119. [Google Scholar] [CrossRef]




















Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peshkov, I. Novel Hybrid Processing Techniques for Wideband HF Signals Impaired by Ionospheric Propagation. Electronics 2025, 14, 4829. https://doi.org/10.3390/electronics14244829
Peshkov I. Novel Hybrid Processing Techniques for Wideband HF Signals Impaired by Ionospheric Propagation. Electronics. 2025; 14(24):4829. https://doi.org/10.3390/electronics14244829
Chicago/Turabian StylePeshkov, Ilia. 2025. "Novel Hybrid Processing Techniques for Wideband HF Signals Impaired by Ionospheric Propagation" Electronics 14, no. 24: 4829. https://doi.org/10.3390/electronics14244829
APA StylePeshkov, I. (2025). Novel Hybrid Processing Techniques for Wideband HF Signals Impaired by Ionospheric Propagation. Electronics, 14(24), 4829. https://doi.org/10.3390/electronics14244829

