Next Issue
Volume 13, August-2
Previous Issue
Volume 13, July-2
 
 

Nanomaterials, Volume 13, Issue 15 (August-1 2023) – 122 articles

Cover Story (view full-size image): This paper presents a novel family of materials for bioelectronic, dielectric and piezoelectric substrates. Cellulose nanocrystals (CNCs) were combined with proteins to form strong, transparent, flexible films with dielectric permittivities ranging from e = 4 to 50. Some of the films also suggested that the piezoelectric properties of the self-assembled CNC films can be improved by the addition of proteins. Conductive flexible films were made by adding carbon nanotubes to CNCs, and these were used to fabricate simple, degradable, flexible metal-free capacitors with CNC–protein core dielectric layers. This preliminary work paves the way to further in-depth characterization. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
19 pages, 3243 KiB  
Article
Theoretical Study of the Defects and Doping in Tuning the Electrocatalytic Activity of Graphene for CO2 Reduction
Nanomaterials 2023, 13(15), 2273; https://doi.org/10.3390/nano13152273 - 07 Aug 2023
Viewed by 891
Abstract
The application of graphene-based catalysts in the electrocatalytic CO2 reduction reaction (ECO2RR) for mitigating the greenhouse effect and energy shortage is a growing trend. The unique and extraordinary properties of graphene-based catalysts, such as low cost, high electrical conductivity, structural [...] Read more.
The application of graphene-based catalysts in the electrocatalytic CO2 reduction reaction (ECO2RR) for mitigating the greenhouse effect and energy shortage is a growing trend. The unique and extraordinary properties of graphene-based catalysts, such as low cost, high electrical conductivity, structural tunability, and environmental friendliness, have rendered them promising materials in this area. By doping heteroatoms or artificially inducing defects in graphene, its catalytic performance can be effectively improved. In this work, the mechanisms underlying the CO2 reduction reaction on 10 graphene-based catalysts were systematically studied. N/B/O-codoped graphene with a single-atom vacancy defect showed the best performance and substantial improvement in catalytic activity compared with pristine graphene. The specific roles of the doped elements, including B, N, and O, as well as the defects, are discussed in detail. By analysing the geometric and electronic structures of the catalysts, we showed how the doped heteroatoms and defects influence the catalytic reaction process and synergistically promoted the catalytic efficiency of graphene. Full article
Show Figures

Figure 1

12 pages, 2774 KiB  
Article
Enhanced Lithium Storage Performance of α-MoO3/CNTs Composite Cathode
Nanomaterials 2023, 13(15), 2272; https://doi.org/10.3390/nano13152272 - 07 Aug 2023
Cited by 1 | Viewed by 628
Abstract
Orthorhombic molybdenum oxide (α-MoO3), as a one-layered pseudocapacitive material, has attracted widespread attention due to its high theoretical lithium storage specific capacity (279 mAh/g) for lithium-ion batteries’ cathode. Nevertheless, low conductivity, slack reaction kinetics, and large volume change during Li+ [...] Read more.
Orthorhombic molybdenum oxide (α-MoO3), as a one-layered pseudocapacitive material, has attracted widespread attention due to its high theoretical lithium storage specific capacity (279 mAh/g) for lithium-ion batteries’ cathode. Nevertheless, low conductivity, slack reaction kinetics, and large volume change during Li+ ions intercalation and deintercalation seriously limit the practical application of α-MoO3. Herein, we added a small number of CNTs (1.76%) to solve these problems in a one-step hydrothermal process for preparing the α-MoO3/CNTs composite. Because of the influence of CNTs, the α-MoO3 nanobelt in the α-MoO3/CNTs composite had a larger interlayer spacing, which provided more active sites and faster reaction kinetics for lithium storage. In addition, CNTs formed a three-dimensional conductive network between α-MoO3 nanobelts, enhanced the electrical conductivity of the composite, accelerated the electron conduction, shortened the ion transport path, and alleviated the structural fragmentation caused by the volume expansion during the α-MoO3 intercalation and deintercalation of Li+ ions. Therefore, the α-MoO3/CNTs composite cathode had a significantly higher rate performance and cycle life. After 150 cycles, the pure α-MoO3 cathode had almost no energy storage, but α-MoO3/CNTs composite cathode still retained 93 mAh/g specific capacity. Full article
(This article belongs to the Special Issue Nanostructures for Wastewater Treatment and Energy Conversion)
Show Figures

Figure 1

26 pages, 5625 KiB  
Article
Methane Catalytic Combustion under Lean Conditions over Pristine and Ir-Loaded La1−xSrxMnO3 Perovskites: Efficiency, Hysteresis, and Time-on-Stream and Thermal Aging Stabilities
Nanomaterials 2023, 13(15), 2271; https://doi.org/10.3390/nano13152271 - 07 Aug 2023
Viewed by 783
Abstract
The increasing use of natural gas as an efficient, reliable, affordable, and cleaner energy source, compared with other fossil fuels, has brought the catalytic CH4 complete oxidation reaction into the spotlight as a simple and economic way to control the amount of [...] Read more.
The increasing use of natural gas as an efficient, reliable, affordable, and cleaner energy source, compared with other fossil fuels, has brought the catalytic CH4 complete oxidation reaction into the spotlight as a simple and economic way to control the amount of unconverted methane escaping into the atmosphere. CH4 emissions are a major contributor to the ‘greenhouse effect’, and therefore, they need to be effectively reduced. Catalytic CH4 oxidation is a promising method that can be used for this purpose. Detailed studies of the activity, oxidative thermal aging, and the time-on-stream (TOS) stability of pristine La1−xSrxMnO3 perovskites (LSXM; X = % substitution of La with Sr = 0, 30, 50 and 70%) and iridium-loaded Ir/La1−xSrxMnO3 (Ir/LSXM) perovskite catalysts were conducted in a temperature range of 400–970 °C to achieve complete methane oxidation under excess oxygen (lean) conditions. The effect of X on the properties of the perovskites, and thus, their catalytic performance during heating/cooling cycles, was studied using samples that were subjected to various pretreatment conditions in order to gain an in-depth understanding of the structure–activity/stability correlations. Large (up to ca. 300 °C in terms of T50) inverted volcano-type differences in catalytic activity were found as a function of X, with the most active catalysts being those where X = 0%, and the least active were those where X = 50%. Inverse hysteresis phenomena (steady-state rate multiplicities) were revealed in heating/cooling cycles under reaction conditions, the occurrence of which was found to depend strongly on the employed catalyst pre-treatment (pre-reduction or pre-oxidation), while their shape and the loop amplitude were found to depend on X and the presence of Ir. All findings were consistently interpreted, which involved a two-term mechanistic model that utilized the synergy of Eley–Rideal and Mars–van Krevelen kinetics. Full article
Show Figures

Graphical abstract

14 pages, 45200 KiB  
Communication
Transport Property of Wrinkled Graphene Nanoribbon Tuned by Spin-Polarized Gate Made of Vanadium-Benzene Nanowire
Nanomaterials 2023, 13(15), 2270; https://doi.org/10.3390/nano13152270 - 07 Aug 2023
Viewed by 753
Abstract
A series of four-terminal V7(Bz)8-WGNR devices were established with wrinkled graphene nanoribbon (WGNR) and vanadium-benzene nanowire (V7(Bz)8). The spin-polarized V7(Bz)8 as the gate channel was placed crossing the plane, the concave (endo-positioned) [...] Read more.
A series of four-terminal V7(Bz)8-WGNR devices were established with wrinkled graphene nanoribbon (WGNR) and vanadium-benzene nanowire (V7(Bz)8). The spin-polarized V7(Bz)8 as the gate channel was placed crossing the plane, the concave (endo-positioned) and the convex (endo-positioned) surface of WGNR with different curvatures via Van der Waals interaction. The density functional theory (DFT) and nonequilibrium Green’s function (NEGF) methods were adopted to calculate the transport properties of these devices at various bias voltages (VS) and gate voltages (VG), such as the conductance, spin-polarized currents, transmission spectra (TS), local density of states (LDOS), and scattering states. The results indicate that the position of V7(Bz)8 and the bending curvature of WGNR play important roles in tuning the transport properties of these four-terminal devices. A spin-polarized transport property is induced for these four-terminal devices by the spin-polarized nature of V7(Bz)8. Particularly, the down-spin channel disturbs strongly on the source-to-drain conductance of WGNR when V7(Bz)8 is endo-positioned crossing the WGNR. Our findings on the novel property of four-terminal V7(Bz)8-WGNR devices provide useful guidelines for achieving flexible graphene-based electronic nanodevices by attaching other similar multidecker metal-arene nanowires. Full article
(This article belongs to the Special Issue Current Advances in Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

29 pages, 8256 KiB  
Review
Recent Progress of Photothermal Therapy Based on Conjugated Nanomaterials in Combating Microbial Infections
Nanomaterials 2023, 13(15), 2269; https://doi.org/10.3390/nano13152269 - 07 Aug 2023
Cited by 4 | Viewed by 1325
Abstract
Photothermal therapy has the advantages of non-invasiveness, low toxicity, simple operation, a broad spectrum of antibacterial ability, and non-proneness to developing drug resistance, which provide it with irreplaceable superiority in fighting against microbial infection. The effect of photothermal therapy is closely related to [...] Read more.
Photothermal therapy has the advantages of non-invasiveness, low toxicity, simple operation, a broad spectrum of antibacterial ability, and non-proneness to developing drug resistance, which provide it with irreplaceable superiority in fighting against microbial infection. The effect of photothermal therapy is closely related to the choice of photothermal agent. Conjugated nanomaterials are potential candidates for photothermal agents because of their easy modification, excellent photothermal conversion efficiency, good photostability, and biodegradability. In this paper, the application of photothermal agents based on conjugated nanomaterials in photothermal antimicrobial treatment is reviewed, including conjugated small molecules, conjugated oligomers, conjugated polymers, and pseudo-conjugated polymers. At the same time, the application of conjugated nanomaterials in the combination of photothermal therapy (PTT) and photodynamic therapy (PDT) is briefly introduced. Finally, the research status, limitations, and prospects of photothermal therapy using conjugated nanomaterials as photothermal agents are discussed. Full article
(This article belongs to the Special Issue Applications of Smart Nanomaterials)
Show Figures

Figure 1

10 pages, 4602 KiB  
Communication
Controlled Fabrication of Hierarchically Structured MnO2@NiCo-LDH Nanoarrays for Efficient Electrocatalytic Urea Oxidization
Nanomaterials 2023, 13(15), 2268; https://doi.org/10.3390/nano13152268 - 07 Aug 2023
Viewed by 747
Abstract
Urea, a prevalent component found in wastewater, shows great promise as a substrate for energy-efficient hydrogen production by electrolysis. However, the slow kinetics of the anodic urea oxidation reaction (UOR) significantly hamper the overall reaction rate. This study presents the design and controlled [...] Read more.
Urea, a prevalent component found in wastewater, shows great promise as a substrate for energy-efficient hydrogen production by electrolysis. However, the slow kinetics of the anodic urea oxidation reaction (UOR) significantly hamper the overall reaction rate. This study presents the design and controlled fabrication of hierarchically structured nanomaterials as potential catalysts for UOR. The prepared MnO2@NiCo-LDH hybrid catalyst demonstrates remarkable improvements in reaction kinetics, benefiting from synergistic enhancements in charge transfer and efficient mass transport facilitated by its unique hierarchical architecture. Notably, the catalyst exhibits an exceptionally low onset potential of 1.228 V and requires only 1.326 V to achieve an impressive current density of 100 mA cm−2, representing a state-of-the-art performance in UORs. These findings highlight the tremendous potential of this innovative material designing strategy to drive advancements in electrocatalytic processes. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

28 pages, 8485 KiB  
Review
Intensity-Dependent Optical Response of 2D LTMDs Suspensions: From Thermal to Electronic Nonlinearities
Nanomaterials 2023, 13(15), 2267; https://doi.org/10.3390/nano13152267 - 07 Aug 2023
Viewed by 860
Abstract
The nonlinear optical (NLO) response of photonic materials plays an important role in the understanding of light–matter interaction as well as pointing out a diversity of photonic and optoelectronic applications. Among the recently studied materials, 2D-LTMDs (bi-dimensional layered transition metal dichalcogenides) have appeared [...] Read more.
The nonlinear optical (NLO) response of photonic materials plays an important role in the understanding of light–matter interaction as well as pointing out a diversity of photonic and optoelectronic applications. Among the recently studied materials, 2D-LTMDs (bi-dimensional layered transition metal dichalcogenides) have appeared as a beyond-graphene nanomaterial with semiconducting and metallic optical properties. In this article, we review most of our work in studies of the NLO response of a series of 2D-LTMDs nanomaterials in suspension, using six different NLO techniques, namely hyper Rayleigh scattering, Z-scan, photoacoustic Z-scan, optical Kerr gate, and spatial self-phase modulation, besides the Fourier transform nonlinear optics technique, to infer the nonlinear optical response of semiconducting MoS2, MoSe2, MoTe2, WS2, semimetallic WTe2, ZrTe2, and metallic NbS2 and NbSe2. The nonlinear optical response from a thermal to non-thermal origin was studied, and the nonlinear refraction index and nonlinear absorption coefficient, where present, were measured. Theoretical support was given to explain the origin of the nonlinear responses, which is very dependent on the spectro-temporal regime of the optical source employed in the studies. Full article
(This article belongs to the Special Issue Advances in Photonic and Plasmonic Nanomaterials—Volume II)
Show Figures

Graphical abstract

12 pages, 3484 KiB  
Article
Synergistic Effect of Y Doping and Reduction of TiO2 on the Improvement of Photocatalytic Performance
Nanomaterials 2023, 13(15), 2266; https://doi.org/10.3390/nano13152266 - 07 Aug 2023
Cited by 2 | Viewed by 829
Abstract
Pure TiO2 and 3% Y-doped TiO2 (3% Y-TiO2) were prepared by a one-step hydrothermal method. Reduced TiO2 (TiO2-H2) and 3% Y-TiO2 (3% Y-TiO2-H2) were obtained through the thermal conversion [...] Read more.
Pure TiO2 and 3% Y-doped TiO2 (3% Y-TiO2) were prepared by a one-step hydrothermal method. Reduced TiO2 (TiO2-H2) and 3% Y-TiO2 (3% Y-TiO2-H2) were obtained through the thermal conversion treatment of Ar-H2 atmosphere at 500 °C for 3 h. By systematically comparing the crystalline phase, structure, morphological features, and photocatalytic properties of 3% Y-TiO2-H2 with pure TiO2, 3% Y-TiO2, and TiO2-H2, the synergistic effect of Y doping and reduction of TiO2 was obtained. All samples show the single anatase phase, and no diffraction peak shift is observed. Compared with single-doped TiO2 and single-reduced TiO2, 3% Y-TiO2-H2 exhibits the best photocatalytic performance for the degradation of RhB, which can be totally degraded in 20 min. The improvement of photocatalytic performance was attributed to the synergistic effect of Y doping and reduction treatment. Y doping broadened the range of light absorption and reduced the charge recombination rates, and the reduction treatment caused TiO2 to be enveloped by disordered shells. The remarkable feature of reduced TiO2 by H2 is its disordered shell filled with a limited amount of oxygen vacancies (OVs) or Ti3+, which significantly reduces the Eg of TiO2 and remarkably increases the absorption of visible light. The synergistic effect of Y doping, Ti3+ species, and OVs play an important role in the improvement of photocatalytic performances. The discovery of this work provides a new perspective for the improvement of other photocatalysts by combining doping and reduction to modify traditional photocatalytic materials and further improve their performance. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

12 pages, 3655 KiB  
Article
The Effect of Nanobubble Water Containing Cordyceps Extract and Withaferin A on Free Fatty Acid-Induced Lipid Accumulation in HepG2 Cells
Nanomaterials 2023, 13(15), 2265; https://doi.org/10.3390/nano13152265 - 07 Aug 2023
Viewed by 891
Abstract
Cordyceps extract and withaferin A (Wi-A) are natural compounds that have therapeutic effects on non-alcoholic fatty liver disease (NAFLD). However, their efficacy is limited and a long treatment duration is usually required. To enhance their efficiency, the synergistic effects of nanobubble water (NBW) [...] Read more.
Cordyceps extract and withaferin A (Wi-A) are natural compounds that have therapeutic effects on non-alcoholic fatty liver disease (NAFLD). However, their efficacy is limited and a long treatment duration is usually required. To enhance their efficiency, the synergistic effects of nanobubble water (NBW) derived from nitrogen, hydrogen, and oxygen gases were investigated. Results showed that the physical properties of all three NBWs, including nanobubble density (108 particles/mL) and zeta potential (below −22 mV), were stable during 48 h of storage. Hydrogen and nitrogen NBWs did not reduce, but instead promoted, free fatty acid-induced lipid accumulation in HepG2 cells. In contrast, oxygen NBW synergistically enhanced the effects of cordyceps extract and Wi-A. The lipid content decreased by 29% and 33% in the oxygen NBW + cordyceps extract and oxygen NBW + Wi-A groups, respectively, compared to reductions of 22% and 16% by aqueous extracts without NB. This study found that NBW may enhance the lipid-reducing effects of natural compounds, such as cordyceps extract and withaferin A, in hepatic cells. Further studies in animal experiments are needed to determine whether NBW has a potential application in NAFLD. Full article
(This article belongs to the Special Issue Micro/Nanobubbles for Biomedical Applications)
Show Figures

Figure 1

12 pages, 5959 KiB  
Article
Study on Oxygen Evolution Reaction of Ir Nanodendrites Supported on Antimony Tin Oxide
Nanomaterials 2023, 13(15), 2264; https://doi.org/10.3390/nano13152264 - 07 Aug 2023
Viewed by 930
Abstract
In this study, the iridium nanodendrites (Ir NDs) and antimony tin oxide (ATO)-supported Ir NDs (Ir ND/ATO) were prepared by a surfactant-mediated method to investigate the effect of ATO support and evaluate the electrocatalytic activity for the oxygen evolution reaction (OER). The nano-branched [...] Read more.
In this study, the iridium nanodendrites (Ir NDs) and antimony tin oxide (ATO)-supported Ir NDs (Ir ND/ATO) were prepared by a surfactant-mediated method to investigate the effect of ATO support and evaluate the electrocatalytic activity for the oxygen evolution reaction (OER). The nano-branched Ir ND structures were successfully prepared alone or supported on ATO. The Ir NDs exhibited major diffraction peaks of the fcc Ir metal, though the Ir NDs consisted of metallic Ir as well as Ir oxides. Among the Ir ND samples, Ir ND2 showed the highest mass-based OER catalytic activity (116 mA/mg at 1.8 V), while it suffered from high degradation in activity after a long-term test. On the other hand, Ir ND2/ATO had OER activity of 798 mA/mg, and this activity remained >99% after 100 cycles of LSV and the charge transfer resistance increased by less than 3 ohm. The enhanced durability of the OER mass activities of Ir ND2/ATO catalysts over Ir NDs and Ir black could be attributed to the small crystallite size of Ir and the increase in the ratio of Ir (III) to Ir (IV), improving the interactions between the Ir NDs and the ATO support. Full article
(This article belongs to the Special Issue Nanomaterials for Chemical Engineering (Volume II))
Show Figures

Figure 1

16 pages, 5384 KiB  
Article
Temperature-Dependent Optical Properties of Oxidized Graphenes
Nanomaterials 2023, 13(15), 2263; https://doi.org/10.3390/nano13152263 - 07 Aug 2023
Cited by 1 | Viewed by 794
Abstract
In this study, we investigate how changing important synthesis-related parameters can affect and control the optical characteristics of graphene oxide (GO) and reduced graphene oxide (rGO). These parameters include drying time and reduction time at two different temperatures. We obtain an understanding of [...] Read more.
In this study, we investigate how changing important synthesis-related parameters can affect and control the optical characteristics of graphene oxide (GO) and reduced graphene oxide (rGO). These parameters include drying time and reduction time at two different temperatures. We obtain an understanding of their impact on optical transitions, optical bandgap, absorption coefficient, and absorbance spectrum width by analyzing these factors. Accordingly, GO has an optical bandgap of about 4 eV, which is decreased by the reduction process to 1.9 eV. Both GO and rGO display greater absorption in the visible spectrum, which improves photon capture and boosts efficiency in energy conversion applications. Additionally, our results show that GO and rGO have higher absorption coefficients than those previously reported for dispersions of exfoliated graphene. Defects in GO and rGO, as well as the presence of functional oxygen groups, are the main contributors to this increased absorption. Several measurements are carried out, including spectroscopic and morphological studies, to further support our findings. Full article
(This article belongs to the Special Issue Functional Graphene-Based Nanodevices)
Show Figures

Figure 1

14 pages, 4012 KiB  
Article
One-Pot Mechanochemical Synthesis of Carbons with High Microporosity and Ordered Mesopores for CO2 Uptake at Ambient Conditions
Nanomaterials 2023, 13(15), 2262; https://doi.org/10.3390/nano13152262 - 07 Aug 2023
Cited by 3 | Viewed by 1138
Abstract
Mechanochemical synthesis of ordered mesoporous carbons with tunable mesopores and well-developed irregular microporosity is investigated. This synthesis was carried out by the self-assembly of ecofriendly chemicals such as tannin and glyoxal used as carbon precursors, and triblock copolymer as a soft templating agent. [...] Read more.
Mechanochemical synthesis of ordered mesoporous carbons with tunable mesopores and well-developed irregular microporosity is investigated. This synthesis was carried out by the self-assembly of ecofriendly chemicals such as tannin and glyoxal used as carbon precursors, and triblock copolymer as a soft templating agent. The structural properties of the resulting carbons were tailored by using different block copolymers (Pluronic F127, and P123) as soft templates. The various weight ratios of tannin and block copolymer were employed to tune the textural properties of these carbons. The tannin: Pluronic F127 ratios (1:0.75, 1:1, 1:1.1) gave the ordered mesoporous carbons among a wide variety of the samples studied. The ordered mesoporosity was not observed in the case of Pluronic P123 templated mesoporous carbons. The CO2-activated carbon samples obtained for both Pluronic templates showed a high specific surface area (close to 900 m2/g), large pore volume (about 0.6–0.7 cm3g−1), narrow pore size distribution, and high CO2 uptake of about 3.0 mmol g−1 at 1 bar pressure and ambient temperature. Full article
(This article belongs to the Special Issue Nanomaterials toward CO2 Reduction and Conversion)
Show Figures

Figure 1

13 pages, 5943 KiB  
Article
In Situ Growth of CdZnS Nanoparticles@Ti3C2Tx MXene Nanosheet Heterojunctions for Boosted Visible-Light-Driven Photocatalytic Hydrogen Evolution
Nanomaterials 2023, 13(15), 2261; https://doi.org/10.3390/nano13152261 - 06 Aug 2023
Viewed by 1210
Abstract
Using natural light energy to convert water into hydrogen is of great significance to solving energy shortages and environmental pollution. Due to the rapid recombination of photogenerated carriers after separation, the efficiency of photocatalytic hydrogen production using photocatalysts is usually very low. Here, [...] Read more.
Using natural light energy to convert water into hydrogen is of great significance to solving energy shortages and environmental pollution. Due to the rapid recombination of photogenerated carriers after separation, the efficiency of photocatalytic hydrogen production using photocatalysts is usually very low. Here, efficient CdZnS nanoparticles@Ti3C2Tx MXene nanosheet heterojunction photocatalysts have been successfully prepared by a facile in situ growth strategy. Since the CdZnS nanoparticles uniformly covered the Ti3C2Tx Mxene nanosheets, the agglomeration phenomenon of CdZnS nanoparticles could be effectively inhibited, accompanied by increased Schottky barrier sites and an enhanced migration rate of photogenerated carriers. The utilization efficiency of light energy can be improved by inhibiting the recombination of photogenerated electron-hole pairs. As a result, under the visible-light-driven photocatalytic experiments, this composite achieved a high hydrogen evolution rate of 47.1 mmol h−1 g−1, which is much higher than pristine CdZnS and Mxene. The boosted photocatalytic performances can be attributed to the formed heterojunction of CdZnS nanoparticles and Ti3C2Tx MXene nanosheets, as well as the weakened agglomeration effects. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Photocatalysis)
Show Figures

Figure 1

17 pages, 2206 KiB  
Article
Plant Photocatalysts: Photoinduced Oxidation and Reduction Abilities of Plant Leaf Ashes under Solar Light
Nanomaterials 2023, 13(15), 2260; https://doi.org/10.3390/nano13152260 - 06 Aug 2023
Cited by 2 | Viewed by 1208
Abstract
Plant leaf ashes were obtained via the high temperature calcination of the leaves of various plants, such as sugarcane, couchgrass, bracteata, garlic sprout, and the yellowish leek. Although the photosynthesis systems in plant leaves cannot exist after calcination, minerals in these ashes were [...] Read more.
Plant leaf ashes were obtained via the high temperature calcination of the leaves of various plants, such as sugarcane, couchgrass, bracteata, garlic sprout, and the yellowish leek. Although the photosynthesis systems in plant leaves cannot exist after calcination, minerals in these ashes were found to exhibit photochemical activities. The samples showed solar light photocatalytic oxidation activities sufficient to degrade methylene blue dye. They were also shown to possess intrinsic dehydrogenase-like activities in reducing the colorless electron acceptor 2,3,5-triphenyltetrazolium chloride to a red formazan precipitate under solar light irradiation. The possible reasons behind these two unreported phenomena were also investigated. These ashes were characterized using a combination of physicochemical techniques. Moreover, our findings exemplify how the soluble and insoluble minerals in plant leaf ashes can be synergistically designed to yield next-generation photocatalysts. It may also lead to advances in artificial photosynthesis and photocatalytic dehydrogenase. Full article
(This article belongs to the Special Issue Nanomaterials for Catalytic Pollutant Destruction)
Show Figures

Figure 1

11 pages, 4641 KiB  
Article
Boosting the Self-Trapped Exciton Emission in Cs4SnBr6 Zero-Dimensional Perovskite via Rapid Heat Treatment
Nanomaterials 2023, 13(15), 2259; https://doi.org/10.3390/nano13152259 - 06 Aug 2023
Viewed by 914
Abstract
Zero-dimensional (0D) tin halide perovskites feature extraordinary properties, such as broadband emission, high photoluminescence quantum yield, and self-absorption-free characteristics. The innovation of synthesis approaches for high-quality 0D tin halide perovskites has facilitated the flourishing development of perovskite-based optoelectronic devices in recent years. However, [...] Read more.
Zero-dimensional (0D) tin halide perovskites feature extraordinary properties, such as broadband emission, high photoluminescence quantum yield, and self-absorption-free characteristics. The innovation of synthesis approaches for high-quality 0D tin halide perovskites has facilitated the flourishing development of perovskite-based optoelectronic devices in recent years. However, discovering an effective strategy to further enhance their emission efficiency remains a considerable challenge. Herein, we report a unique strategy employing rapid heat treatment to attain efficient self-trapped exciton (STE) emission in Cs4SnBr6 zero-dimensional perovskite. Compared to the pristine Cs4SnBr6, rapid thermal treatment (RTT) at 200 °C for a duration of 120 s results in an augmented STE emission with the photoluminescence (PL) quantum yield rising from an initial 50.1% to a substantial 64.7%. Temperature-dependent PL spectra analysis, Raman spectra, and PL decay traces reveal that the PL improvement is attributed to the appropriate electron–phonon coupling as well as the increased binding energies of STEs induced by the RTT. Our findings open up a new avenue for efficient luminescent 0D tin-halide perovskites toward the development of efficient optoelectronic devices based on 0D perovskites. Full article
Show Figures

Figure 1

18 pages, 4311 KiB  
Article
Biobased Electronics: Tunable Dielectric and Piezoelectric Cellulose Nanocrystal—Protein Films
Nanomaterials 2023, 13(15), 2258; https://doi.org/10.3390/nano13152258 - 06 Aug 2023
Viewed by 1398
Abstract
Cellulose has been a go-to material for its dielectric properties from the onset of capacitor development. The demand for an energy storage solution continues to grow, but the supply remains limited and relies too often on fossil and mined materials. This work proposes [...] Read more.
Cellulose has been a go-to material for its dielectric properties from the onset of capacitor development. The demand for an energy storage solution continues to grow, but the supply remains limited and relies too often on fossil and mined materials. This work proposes a fully sustainable and green method with which to produce dielectric thin films made of renewable and degradable materials. Cellulose nanocrystals (CNC) made an excellent matrix for the dispersion of proteins and the fabrication of robust transparent thin films with enhanced dielectric permittivity. A range of proteins sources, additives and concentrations allowed for us to control the dielectric permittivity from εr = 4 to 50. The proteins screened came from animal and plant sources. The films were formed from drying a water suspension of the CNC and proteins through evaporation-induced self-assembly. This yielded nano-layered structures with very high specific surface areas, ideal for energy storage devices. The resulting films were characterized with respect to the electrical, mechanical, piezoelectric, and optical properties to be compared. Electrically conductive (σ = 1.53 × 103 S/m) CNC films were prepared with carbon nanotubes (CNT). The fabricated films were used to make flexible, sustainable, and degradable capacitors by layering protein-based films between CNC–CNT composite films. Full article
Show Figures

Figure 1

12 pages, 5450 KiB  
Article
Antimony Selenide Solar Cells Fabricated by Hybrid Reactive Magnetron Sputtering
Nanomaterials 2023, 13(15), 2257; https://doi.org/10.3390/nano13152257 - 05 Aug 2023
Viewed by 1034
Abstract
The fabrication of Sb2Se3 thin-film solar cells deposited by a pulsed hybrid reactive magnetron sputtering (PHRMS) was proposed and examined for different growth conditions. The influence of growth temperature and Se pulse period were studied in terms of morphology, crystal [...] Read more.
The fabrication of Sb2Se3 thin-film solar cells deposited by a pulsed hybrid reactive magnetron sputtering (PHRMS) was proposed and examined for different growth conditions. The influence of growth temperature and Se pulse period were studied in terms of morphology, crystal structure, and composition. The Sb2Se3 growth showed to be dependent on the growth temperature, with a larger crystal size for growth at 270 °C. By controlling the Se pulse period, the crystal structure and crystal size could be modified as a function of the supplied Se amount. The solar cell performance for Sb2Se3 absorbers deposited at various temperatures, Se pulse periods and thicknesses were assessed through current-voltage characteristics. A power conversion efficiency (PCE) of 3.7% was achieved for a Sb2Se3 solar cell with 900 nm thickness, Sb2Se3 deposited at 270 °C and Se pulses with 0.1 s duration and period of 0.5 s. Finally, annealing the complete solar cell at 100 °C led to a further improvement of the Voc, leading to a PCE of 3.8%, slightly higher than the best reported Sb2Se3 solar cell prepared by sputtering without post-selenization. Full article
(This article belongs to the Topic Thin-Film Photovoltaics: Constituents and Devices)
Show Figures

Figure 1

15 pages, 2379 KiB  
Article
Laser-Ablative Synthesis of Silicon–Iron Composite Nanoparticles for Theranostic Applications
Nanomaterials 2023, 13(15), 2256; https://doi.org/10.3390/nano13152256 - 05 Aug 2023
Cited by 1 | Viewed by 1198
Abstract
The combination of photothermal and magnetic functionalities in one biocompatible nanoformulation forms an attractive basis for developing multifunctional agents for biomedical theranostics. Here, we report the fabrication of silicon–iron (Si-Fe) composite nanoparticles (NPs) for theranostic applications by using a method of femtosecond laser [...] Read more.
The combination of photothermal and magnetic functionalities in one biocompatible nanoformulation forms an attractive basis for developing multifunctional agents for biomedical theranostics. Here, we report the fabrication of silicon–iron (Si-Fe) composite nanoparticles (NPs) for theranostic applications by using a method of femtosecond laser ablation in acetone from a mixed target combining silicon and iron. The NPs were then transferred to water for subsequent biological use. From structural analyses, it was shown that the formed Si-Fe NPs have a spherical shape and sizes ranging from 5 to 150 nm, with the presence of two characteristic maxima around 20 nm and 90 nm in the size distribution. They are mostly composed of silicon with the presence of a significant iron silicide content and iron oxide inclusions. Our studies also show that the NPs exhibit magnetic properties due to the presence of iron ions in their composition, which makes the formation of contrast in magnetic resonance imaging (MRI) possible, as it is verified by magnetic resonance relaxometry at the proton resonance frequency. In addition, the Si-Fe NPs are characterized by strong optical absorption in the window of relative transparency of bio-tissue (650–950 nm). Benefiting from such absorption, the Si-Fe NPs provide strong photoheating in their aqueous suspensions under continuous wave laser excitation at 808 nm. The NP-induced photoheating is described by a photothermal conversion efficiency of 33–42%, which is approximately 3.0–3.3 times larger than that for pure laser-synthesized Si NPs, and it is explained by the presence of iron silicide in the NP composition. Combining the strong photothermal effect and MRI functionality, the synthesized Si-Fe NPs promise a major advancement of modalities for cancer theranostics, including MRI-guided photothermal therapy and surgery. Full article
(This article belongs to the Special Issue Laser Synthesis and Processing of Nanostructured Materials)
Show Figures

Figure 1

15 pages, 4953 KiB  
Article
Investigation of Structural, Morphological, and Optical Properties of Novel Electrospun Mg-Doped TiO2 Nanofibers as an Electron Transport Material for Perovskite Solar Cells
Nanomaterials 2023, 13(15), 2255; https://doi.org/10.3390/nano13152255 - 05 Aug 2023
Cited by 1 | Viewed by 891
Abstract
Perovskite solar cells (PSCs) are quickly becoming efficient solar cells due to the effective physicochemical properties of the absorber layer. This layer should ideally be placed between a stable hole transport material (HTM) layer and a conductive electron transport material (ETM) layer. These [...] Read more.
Perovskite solar cells (PSCs) are quickly becoming efficient solar cells due to the effective physicochemical properties of the absorber layer. This layer should ideally be placed between a stable hole transport material (HTM) layer and a conductive electron transport material (ETM) layer. These outer layers play a critical role in the current densities and cell voltages of solar cells. In this work, we successfully fabricated Mg-doped TiO2 nanofibers as ETM layers via electrospinning. This study systematically investigates the morphological and optical features of Mg-doped nanofibers as mesoporous ETM layers. The existence of the Mg element in the lattice was confirmed by XRD and XPS. These optical characterizations indicated that Mg doping widened the energy band gap and shifted the edge of the conduction band minimum upward, which enhanced the open circuit voltage (Voc) and short current density (Jsc). The electron-hole recombination rate was lowered, and separation efficiency increased with Mg doping. The results have demonstrated the possibility of improving the efficiency of PSCs with the use of Mg-doped nanofibers as an ETM layer. Full article
(This article belongs to the Section Solar Energy and Solar Cells)
Show Figures

Figure 1

11 pages, 5529 KiB  
Article
Tailing Optical Pulling Force on a Metal–Dielectric Hybrid Dimer with Electromagnetic Coupling
Nanomaterials 2023, 13(15), 2254; https://doi.org/10.3390/nano13152254 - 05 Aug 2023
Viewed by 804
Abstract
In this work, we demonstrate that optical pulling forces (OPFs) can be induced by a hybrid dimer consisting of a Si nanoparticle (NP) and a coated nanoparticle with a gain core and Au shell under normal plane wave illumination. Analytical theory reveals that [...] Read more.
In this work, we demonstrate that optical pulling forces (OPFs) can be induced by a hybrid dimer consisting of a Si nanoparticle (NP) and a coated nanoparticle with a gain core and Au shell under normal plane wave illumination. Analytical theory reveals that the underlying physical mechanism relies on interactions between the electric dipole (ED) modes excited in the NPs. As compared with the individual NP, it is found that the magnitude of optical force can be enlarged by almost three orders for the Si NP and one order for the coated gain NP in the coupled dimer. In addition, we find that the OPFs exerted on the NPs are heavily dependent on the gain level of the core materials, the incident polarization angle and the sizes of the NPs. More interestingly, we find that the OPF can also be exerted on a trimer system consisting of two identical Si NPs and a coated NP arranged in a line. The related results could be used to propose a versatile platform for manipulating NPs. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

10 pages, 2484 KiB  
Article
Enhancing Light Extraction Efficiency in OLED Using Scattering Structure-Embedded DMD-Based Transparent Composite Electrodes
Nanomaterials 2023, 13(15), 2253; https://doi.org/10.3390/nano13152253 - 05 Aug 2023
Cited by 1 | Viewed by 1208
Abstract
This study investigates the application of scattering structures to the metal layer in a DMD (Dielectric/Metal/Dielectric) configuration through plasma treatment. The purpose is to enhance the light extraction efficiency of organic light-emitting diodes (OLEDs). Different plasma conditions were explored to create scattering structures [...] Read more.
This study investigates the application of scattering structures to the metal layer in a DMD (Dielectric/Metal/Dielectric) configuration through plasma treatment. The purpose is to enhance the light extraction efficiency of organic light-emitting diodes (OLEDs). Different plasma conditions were explored to create scattering structures on the metal layer. The fabricated devices were characterized for their electrical and optical properties. The results demonstrate that the introduction of scattering structures through plasma treatment effectively improves the light extraction efficiency of OLEDs. Specifically, using O2-plasma treatment on the metal layer resulted in significant enhancements in the total transmittance, haze, and figure of merit. These findings suggest that incorporating scattering structures within the DMD configuration can effectively promote light extraction in OLEDs, leading to enhanced overall performance and light efficiency. Full article
Show Figures

Figure 1

13 pages, 3597 KiB  
Article
Enhanced Thermochromic Performance of VO2 Nanoparticles by Quenching Process
Nanomaterials 2023, 13(15), 2252; https://doi.org/10.3390/nano13152252 - 04 Aug 2023
Cited by 1 | Viewed by 759
Abstract
Vanadium dioxide (VO2) has been a promising energy-saving material due to its reversible metal-insulator transition (MIT) performance. However, the application of VO2 films has been seriously restricted due to the intrinsic low solar-energy modulation ability (ΔTsol) and [...] Read more.
Vanadium dioxide (VO2) has been a promising energy-saving material due to its reversible metal-insulator transition (MIT) performance. However, the application of VO2 films has been seriously restricted due to the intrinsic low solar-energy modulation ability (ΔTsol) and low luminous transmittance (Tlum) of VO2. In order to solve the problems, the surface structure of VO2 particles was regulated by the quenching process and the VO2 dispersed films were fabricated by spin coating. Characterizations showed that the VO2 particles quenched in deionized water or ethanolreserved VO2(M) phase structure and they were accompanied by surface lattice distortion compared to the pristine VO2. Such distortion structure contributed to less aggregation and highly individual dispersion of the quenched particles in nanocomposite films. The corresponding film of VO2 quenched in water exhibited much higher ΔTsol with an increment of 42.5% from 8.8% of the original VO2 film, because of the significant localized surface plasmon resonance (LSPR) effect. The film fabricated from the VO2 quenched in ethanol presented enhanced thermochromic properties with 15.2% of ΔTsol and 62.5% of Tlum. It was found that the excellent Tlum resulted from the highly uniform dispersion state of the quenched VO2 nanoparticles. In summary, the study provided a facile way to fabricate well-dispersed VO2 nanocomposite films and to facilitate the industrialization development of VO2 thermochromic films in the smart window field. Full article
(This article belongs to the Special Issue Nanocomposite Design for Energy-Related Applications)
Show Figures

Figure 1

13 pages, 2702 KiB  
Article
Chiral Mechanical Effect of the Tightly Focused Chiral Vector Vortex Fields Interacting with Particles
Nanomaterials 2023, 13(15), 2251; https://doi.org/10.3390/nano13152251 - 04 Aug 2023
Viewed by 714
Abstract
The coupling of the spin-orbit angular momentum of photons in a focused spatial region can enhance the localized optical field’s chirality. In this paper, a scheme for producing a superchiral optical field in a 4π microscopic system is presented by tightly focusing [...] Read more.
The coupling of the spin-orbit angular momentum of photons in a focused spatial region can enhance the localized optical field’s chirality. In this paper, a scheme for producing a superchiral optical field in a 4π microscopic system is presented by tightly focusing two counter-propagating spiral wavefronts. We calculate the optical forces and torques exerted on a chiral dipole by the chiral light field and reveal the chiral forces by combining the light field and dipoles. Results indicate that, in addition to the general optical force, particles’ motion would be affected by a chiral force that is directly related to the particle chirality. This chiral mechanical effect experienced by the electromagnetic dipoles excited on a chiral particle could be characterized by the behaviors of chirality density and flux, which are, respectively, associated with the reactive and dissipative components of the chiral forces. This work facilitates the advancement of optical separation and manipulation techniques for chiral particles. Full article
(This article belongs to the Special Issue Advances in Optical Nanomanipulation)
Show Figures

Figure 1

20 pages, 2629 KiB  
Article
Lipidic Formulations Inspired by COVID Vaccines as Smart Coatings to Enhance Nanoparticle-Based Cancer Therapy
Nanomaterials 2023, 13(15), 2250; https://doi.org/10.3390/nano13152250 - 03 Aug 2023
Cited by 2 | Viewed by 1269
Abstract
Recent advances in nanomedicine have led to the introduction and subsequent establishment of nanoparticles in cancer treatment and diagnosis. Nonetheless, their application is still hindered by a series of challenges related to their biocompatibility and biodistribution. In this paper, we take inspiration from [...] Read more.
Recent advances in nanomedicine have led to the introduction and subsequent establishment of nanoparticles in cancer treatment and diagnosis. Nonetheless, their application is still hindered by a series of challenges related to their biocompatibility and biodistribution. In this paper, we take inspiration from the recently produced and widely spread COVID vaccines, based on the combinational use of ionizable solid lipid nanoparticles, cholesterol, PEGylated lipids, and neutral lipids able to incorporate mRNA fragments. Here, we focus on the implementation of a lipidic formulation meant to be used as a smart coating of solid-state nanoparticles. The composition of this formulation is finely tuned to ensure efficient and stable shielding of the cargo. The resulting shell is a highly customized tool that enables the possibility of further functionalizations with targeting agents, peptides, antibodies, and fluorescent moieties for future in vitro and in vivo tests and validations. Finally, as a proof of concept, zinc oxide nanoparticles doped with iron and successively coated with this lipidic formulation are tested in a pancreatic cancer cell line, BxPC-3. The results show an astonishing increase in cell viability with respect to the same uncoated nanoparticles. The preliminary results presented here pave the way towards many different therapeutic approaches based on the massive presence of highly biostable and well-tolerated nanoparticles in tumor tissues, such as sonodynamic therapy, photodynamic therapy, hyperthermia, and diagnosis by means of magnetic resonance imaging. Full article
Show Figures

Figure 1

11 pages, 1777 KiB  
Article
An Aqueous Process for Preparing Flexible Transparent Electrodes Using Non-Oxidized Graphene/Single-Walled Carbon Nanotube Hybrid Solution
Nanomaterials 2023, 13(15), 2249; https://doi.org/10.3390/nano13152249 - 03 Aug 2023
Viewed by 680
Abstract
In this study, we prepared flexible and transparent hybrid electrodes based on an aqueous solution of non-oxidized graphene and single-walled carbon nanotubes. We used a simple halogen intercalation method to obtain high-quality graphene flakes without a redox process and prepared hybrid films using [...] Read more.
In this study, we prepared flexible and transparent hybrid electrodes based on an aqueous solution of non-oxidized graphene and single-walled carbon nanotubes. We used a simple halogen intercalation method to obtain high-quality graphene flakes without a redox process and prepared hybrid films using aqueous solutions of graphene, single-walled carbon nanotubes, and sodium dodecyl sulfate surfactant. The hybrid films showed excellent electrode properties, such as an optical transmittance of ≥90%, a sheet resistance of ~3.5 kΩ/sq., a flexibility of up to ε = 3.6% ((R) = 1.4 mm), and a high mechanical stability, even after 103 bending cycles at ε = 2.0% ((R) = 2.5 mm). Using the hybrid electrodes, thin-film transistors (TFTs) were fabricated, which exhibited an electron mobility of ~6.7 cm2 V−1 s−1, a current on-off ratio of ~1.04 × 107, and a subthreshold voltage of ~0.122 V/decade. These electrical properties are comparable with those of TFTs fabricated using Al electrodes. This suggests the possibility of customizing flexible transparent electrodes within a carbon nanomaterial system. Full article
(This article belongs to the Special Issue Carbon Nanomaterials for Electrochemical Applications)
Show Figures

Figure 1

13 pages, 4577 KiB  
Article
Effect of Atmospheric Temperature on Epoxy Coating Reinforced with Carbon Nanotubes for De-Icing on Road Systems
Nanomaterials 2023, 13(15), 2248; https://doi.org/10.3390/nano13152248 - 03 Aug 2023
Viewed by 899
Abstract
Traffic accidents caused by road icing are a serious global problem, and conventional de-icing methods like spraying chemicals have several limitations, including excessive manpower management, road damage, and environmental pollution. In this study, the carbon nanotubes reinforced de-icing coating for the road system [...] Read more.
Traffic accidents caused by road icing are a serious global problem, and conventional de-icing methods like spraying chemicals have several limitations, including excessive manpower management, road damage, and environmental pollution. In this study, the carbon nanotubes reinforced de-icing coating for the road system with a self-heating function was developed as part of the development of a new system to prevent accidents caused by road icing. The electrical characteristics of the fabricated coating were analyzed, and the carbon nanotube coating heating performance experiment was conducted to measure the temperature increments by applying a voltage to the coating at a sub-zero temperature using an environmental chamber. In addition, the coating was installed on the road pavement and the applicability was investigated through a heating test in winter. As a result of the experiment, the coating made with the higher carbon nanotube concentration presented higher heating owing to its higher electrical conductivity. In addition, the coating showed sufficient heating performance, although the maximum temperature by Joule heating decreased for the entire coating at sub-zero temperatures. Finally, field tests demonstrated the potential of electrically conductive coatings for de-icing applications. Full article
(This article belongs to the Special Issue Carbon Nanotubes and Nanosheets for Sustainable Solutions)
Show Figures

Figure 1

14 pages, 6040 KiB  
Article
Liquid-Phase Partial Hydrogenation of Phenylacetylene at Ambient Conditions Catalyzed by Pd-Fe-O Nanoparticles Supported on Silica
Nanomaterials 2023, 13(15), 2247; https://doi.org/10.3390/nano13152247 - 03 Aug 2023
Cited by 1 | Viewed by 771
Abstract
Catalysts with no hazardous or toxic components are required for the selective hydrogenation of acetylenic bonds in the synthesis of pharmaceuticals, vitamins, nutraceuticals, and fragrances. The present work demonstrates that a high selectivity to alkene can be reached over a Pd-Fe-O/SiO2 system [...] Read more.
Catalysts with no hazardous or toxic components are required for the selective hydrogenation of acetylenic bonds in the synthesis of pharmaceuticals, vitamins, nutraceuticals, and fragrances. The present work demonstrates that a high selectivity to alkene can be reached over a Pd-Fe-O/SiO2 system prepared by the co-impregnation of a silica support with a solution of the metal precursors (NH4)3[Fe(C2O4)3] and [Pd(NH3)4]Cl2 followed by thermal treatment in hydrogen or in air at 400 °C. A DRIFT spectroscopic study of CO adsorption revealed large shifts in the position of the Pdn+-CO bands for this system, indicating the strong effect of Fen+ on the Pd electronic state, resulting in a decreased rate of double C=C bond hydrogenation and an increased selectivity of alkyne hydrogenation to alkene. The prepared catalysts consisted of mono- and bimetallic nanoparticles on an SiO2 carrier and exhibited a selectivity as high as that of the commonly used Lindlar catalyst (which contains such hazardous components as lead and barium), while the activity of the Fe-Pd-O/SiO2 catalyst was an order of magnitude higher. The hydrogenation of a triple bond over the proposed Pd-Fe catalyst opens the way to selective hydrogenation over nontoxic catalysts with a high yield and productivity. Taking into account a simple procedure of catalyst preparation, this direction provides a rationale for the large-scale implementation of these catalysts. Full article
(This article belongs to the Special Issue Morphological Design and Synthesis of Nanoparticles)
Show Figures

Figure 1

3 pages, 189 KiB  
Editorial
Advanced Photocatalytic Nanomaterials for Energy Conversion and Environmental Remediation
Nanomaterials 2023, 13(15), 2246; https://doi.org/10.3390/nano13152246 - 03 Aug 2023
Viewed by 537
Abstract
With the rapid development of the economy and society, the problem of energy shortage and environmental pollution is receiving more and more attention [...] Full article
23 pages, 9450 KiB  
Article
Reductive Treatment of Pt Supported on Ti0.8Sn0.2O2-C Composite: A Route for Modulating the Sn–Pt Interactions
Nanomaterials 2023, 13(15), 2245; https://doi.org/10.3390/nano13152245 - 03 Aug 2023
Viewed by 857
Abstract
The composites of transition metal-doped titania and carbon have emerged as promising supports for Pt electrocatalysts in PEM fuel cells. In these multifunctional supports, the oxide component stabilizes the Pt particles, while the dopant provides a co-catalytic function. Among other elements, Sn is [...] Read more.
The composites of transition metal-doped titania and carbon have emerged as promising supports for Pt electrocatalysts in PEM fuel cells. In these multifunctional supports, the oxide component stabilizes the Pt particles, while the dopant provides a co-catalytic function. Among other elements, Sn is a valuable additive. Stong metal-support interaction (SMSI), i.e., the migration of a partially reduced oxide species from the support to the surface of Pt during reductive treatment is a general feature of TiO2-supported Pt catalysts. In order to explore the influence of SMSI on the stability and performance of Pt/Ti0.8Sn0.2O2-C catalysts, the structural and catalytic properties of the as prepared samples measured using XRD, TEM, XPS and electrochemical investigations were compared to those obtained from catalysts reduced in hydrogen at elevated temperatures. According to the observations, the uniform oxide coverage of the carbon backbone facilitated the formation of Pt–oxide–C triple junctions at a high density. The electrocatalytic behavior of the as prepared catalysts was determined by the atomic closeness of Sn to Pt, while even a low temperature reductive treatment resulted in Sn–Pt alloying. The segregation of tin oxide on the surface of the alloy particles, a characteristic material transport process in Sn–Pt alloys after oxygen exposure, contributed to a better stability of the reduced catalysts. Full article
(This article belongs to the Special Issue Nanomaterials Applied to Fuel Cells and Catalysts)
Show Figures

Graphical abstract

12 pages, 2711 KiB  
Article
Ce-Doped Three-Dimensional Ni/Fe LDH Composite as a Sulfur Host for Lithium–Sulfur Batteries
Nanomaterials 2023, 13(15), 2244; https://doi.org/10.3390/nano13152244 - 03 Aug 2023
Cited by 2 | Viewed by 1040
Abstract
Lithium–sulfur batteries (LSBs) have become the most promising choice in the new generation of energy storage/conversion equipment due to their high theoretical capacity of 1675 mAh g−1 and theoretical energy density of 2600 Wh kg−1. Nevertheless, the continuous shuttling of [...] Read more.
Lithium–sulfur batteries (LSBs) have become the most promising choice in the new generation of energy storage/conversion equipment due to their high theoretical capacity of 1675 mAh g−1 and theoretical energy density of 2600 Wh kg−1. Nevertheless, the continuous shuttling of lithium polysulfides (LiPSs) restricts the commercial application of LSBs. The appearance of layered double hydroxides (LDH) plays a certain role in the anchoring of LiPSs, but its unsatisfactory electronic conductivity and poor active sites hinder its realization as a sulfur host for high-performance LSBs. In this paper, metal organic framework-derived and Ce ion-doped LDH (Ce-Ni/Fe LDH) with a hollow capsule configuration is designed rationally. The hollow structure of Ce-Ni/Fe LDH contains a sufficient amount of sulfur. Fe, Ni, and Ce metal ions effectively trap LiPSs; speed up the conversion of LiPSs; and firmly anchor LiPSs, thus effectively inhibiting the shuttle of LiPSs. The electrochemical testing results demonstrate that a lithium–sulfur battery with capsule-type S@Ce-Ni/Fe LDH delivers the initial discharge capacities of 1207 mAh g−1 at 0.1 C and 1056 mAh g−1 at 0.2 C, respectively. Even at 1 C, a lithium–sulfur battery with S@Ce-Ni/Fe LDH can also cycle 1000 times. This work provides new ideas to enhance the electrochemical properties of LSBs by constructing a hollow capsule configuration. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop