Next Issue
Volume 13, September-1
Previous Issue
Volume 13, August-1
 
 

Nanomaterials, Volume 13, Issue 16 (August-2 2023) – 111 articles

Cover Story (view full-size image): A one-step hydrothermal method has been set up to transform biogenic eggshell calcite into apatite micro-nanoparticles. The transformation is strongly influenced by intracrystalline organic matter in the pristine material, yielding apatites with hexagonal plate-like morphologies and eventually showing a central hole. Furthermore, these particles are cytocompatible and promote the osteogenic differentiation of murine mesenchymal stem cells, thus providing added value to eggshell waste material, and fulfilling the principles of circular economy. Due to their physicochemical and biological characteristics, these apatite particles could be applied for applications in bone regeneration and clinical dentistry. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
16 pages, 2659 KiB  
Review
Nanoparticles, an Emerging Control Method for Harmful Algal Blooms: Current Technologies, Challenges, and Perspectives
by Jun Song, Zhibin Xu, Yu Chen and Jiaqing Guo
Nanomaterials 2023, 13(16), 2384; https://doi.org/10.3390/nano13162384 - 21 Aug 2023
Cited by 6 | Viewed by 2438
Abstract
Harmful algal blooms (HABs) are a global concern because they harm aquatic ecosystems and pose a risk to human health. Various physical, chemical, and biological approaches have been explored to control HABs. However, these methods have limitations in terms of cost, environmental impact, [...] Read more.
Harmful algal blooms (HABs) are a global concern because they harm aquatic ecosystems and pose a risk to human health. Various physical, chemical, and biological approaches have been explored to control HABs. However, these methods have limitations in terms of cost, environmental impact, and effectiveness, particularly for large water bodies. Recently, the use of nanoparticles has emerged as a promising strategy for controlling HABs. Briefly, nanoparticles can act as anti-algae agents via several mechanisms, including photocatalysis, flocculation, oxidation, adsorption, and nutrient recovery. Compared with traditional methods, nanoparticle-based approaches offer advantages in terms of environmental friendliness, effectiveness, and specificity. However, the challenges and risks associated with nanoparticles, such as their toxicity and ecological impact, must be considered. In this review, we summarize recent research progress concerning the use of nanoparticles to control HABs, compare the advantages and disadvantages of different types of nanoparticles, discuss the factors influencing their effectiveness and environmental impact, and suggest future directions for research and development in this field. Additionally, we explore the causes of algal blooms, their harmful effects, and various treatment methods, including restricting eutrophication, biological control, and disrupting living conditions. The potential of photocatalysis for generating reactive oxygen species and nutrient control methods using nanomaterials are also discussed in detail. Moreover, the application of flocculants/coagulants for algal removal is highlighted, along with the challenges and potential solutions associated with their use. This comprehensive overview aims to contribute to the development of efficient and sustainable strategies for controlling HAB control. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

13 pages, 2541 KiB  
Article
Cubic and Sphere Magnetic Nanoparticles for Magnetic Hyperthermia Therapy: Computational Results
by Iordana Astefanoaei, Radel Gimaev, Vladimir Zverev, Alexander Tishin and Alexandru Stancu
Nanomaterials 2023, 13(16), 2383; https://doi.org/10.3390/nano13162383 - 21 Aug 2023
Cited by 4 | Viewed by 1589
Abstract
Magnetic nanoparticles (MNPs) with various shapes and special (magnetic and thermal) properties are promising for magnetic hyperthermia. The efficiency of this therapy depends mainly on the MNPs’ physical characteristics: types, sizes and shapes. This paper presents the hyperthermic temperature values induced by cubic/sphere-shaped [...] Read more.
Magnetic nanoparticles (MNPs) with various shapes and special (magnetic and thermal) properties are promising for magnetic hyperthermia. The efficiency of this therapy depends mainly on the MNPs’ physical characteristics: types, sizes and shapes. This paper presents the hyperthermic temperature values induced by cubic/sphere-shaped MNPs injected within a concentric tissue configuration (malignant and healthy tissues) when an external time-dependent magnetic field was applied. The space-time distribution of the nanoparticles as a result of their injection within a tumoral (benign/malign) tissue was simulated with the bioheat transport equation (Pennes equation). A complex thermo-fluid model that considers the space-time MNP transport and its heating was developed in Comsol Multiphysics. The cubic-shaped MNPs give a larger spatial distribution of the therapeutic temperature in the tumoral volume compared to the spherical-shaped ones. MNP doses that induce the therapeutic (hyperthermic) values of the temperature (40 ÷ 45 °C) in smaller volumes from the tumoral region were analyzed. The size of these regions (covered by the hyperthermic temperature values) was computed for different magnetite cubic/sphere-shaped MNP doses. Lower doses of the cubic-shaped MNPs give the hyperthermic values of the temperature in a larger volume from the tumoral region compared with the spheric-shaped MNPs. The MNP doses were expressed as a ratio between mass concentration and the maximum clinical accepted doses. This thermo-fluid analysis is an important computational instrument that allows the computations of the MNP doses that give therapeutic temperature values within tissues. Full article
(This article belongs to the Special Issue Nanostructured Magnetic Materials and Technologies for Green Future)
Show Figures

Figure 1

13 pages, 5134 KiB  
Article
Silicon-Nanowire-Type Polarization-Diversified CWDM Demultiplexer for Low Polarization Crosstalk
by Seok-Hwan Jeong, Heuk Park and Joon Ki Lee
Nanomaterials 2023, 13(16), 2382; https://doi.org/10.3390/nano13162382 - 21 Aug 2023
Cited by 1 | Viewed by 1160
Abstract
Coarse wavelength division multiplexing (CWDM)-targeted novel silicon (Si)-nanowire-type polarization-diversified optical demultiplexers were numerically analyzed and experimentally verified. The optical demultiplexer comprised a hybrid mode conversion-type polarization splitter rotator (PSR) and a delayed Mach–Zehnder interferometric demultiplexer. Si-nanowire-based devices were fabricated using a commercially available [...] Read more.
Coarse wavelength division multiplexing (CWDM)-targeted novel silicon (Si)-nanowire-type polarization-diversified optical demultiplexers were numerically analyzed and experimentally verified. The optical demultiplexer comprised a hybrid mode conversion-type polarization splitter rotator (PSR) and a delayed Mach–Zehnder interferometric demultiplexer. Si-nanowire-based devices were fabricated using a commercially available Si photonics foundry process, exhibiting nearly identical spectral responses regardless of the polarization states of the input signals under the PSR. The experiment demonstrated a low insertion loss of 1.0 dB and a polarization-dependent loss of 1.0 dB, effectively suppressing spectral crosstalk from other channels by less than −15 dB. Furthermore, a TM-mode rejection-filter-integrated optical demultiplexer was designed and experimentally validated to mitigate unwanted TM-mode-related polarization crosstalk that arose from the PSR. It exhibited an improved polarization crosstalk rejection efficiency of −25 dB to −50 dB within the whole CWDM spectral range. Full article
(This article belongs to the Special Issue Recent Advances in Nanowires and Superconductors)
Show Figures

Figure 1

11 pages, 4275 KiB  
Article
Construction of Reinforced Self-Cleaning and Efficient Photothermal PDMS@GDY@Cu Sponges toward Anticorrosion and Antibacterial Applications
by Yi Hu, Junmei Pu, Yingzi Hu, You Zi, Hongyan Chen, Mengke Wang and Weichun Huang
Nanomaterials 2023, 13(16), 2381; https://doi.org/10.3390/nano13162381 - 20 Aug 2023
Cited by 4 | Viewed by 1324
Abstract
Copper (Cu)-based materials are widely used in many fields from industry to life, including marine, medical apparatus and instruments, and microelectronic devices owing to their superior thermal, electrical, and mechanical properties. However, the interaction of copper with aggressive and fouling liquids under normal [...] Read more.
Copper (Cu)-based materials are widely used in many fields from industry to life, including marine, medical apparatus and instruments, and microelectronic devices owing to their superior thermal, electrical, and mechanical properties. However, the interaction of copper with aggressive and fouling liquids under normal circumstances easily brings about severe bacterial accumulation, resulting in undesirable functionality degeneration and bacterial infections. In this contribution, we reported a novel copper-based sponge, polydimethylsiloxane (PDMS)@graphdiyne (GDY)@Cu, constructed by in situ synthesis of GDY on a commercial Cu sponge, followed by the modification of PDMS. The as-fabricated PDMS@GDY@Cu sponge not only possesses excellent self-cleaning activity against the pollution of daily drinks and dirt due to an improved static contact angle (~136°), but also display a remarkably enhanced anticorrosion performance, attributed to intimate coverage of chemically stable GDY and PDMS on the Cu sponge. Based on high photothermal effect of GDY, the PDMS@GDY@Cu sponge also displays significantly improved antibacterial activities under irradiation. In addition, due to excellent chemical stability of PDMS and GDY, self-cleaning behavior and photothermal-assisted antibacterial performance are well maintained after long-term attack of bacteria. These results demonstrate that GDY-based functional coatings hold great promises in the protection of copper devices under harsh conditions. Full article
(This article belongs to the Special Issue Functionalized Hybridization for Next-Generation Nanophotonic Devices)
Show Figures

Figure 1

22 pages, 2533 KiB  
Review
Theranostic Applications of 2D Graphene-Based Materials for Solid Tumors Treatment
by Daniela Iannazzo, Consuelo Celesti, Salvatore V. Giofrè, Roberta Ettari and Alessandra Bitto
Nanomaterials 2023, 13(16), 2380; https://doi.org/10.3390/nano13162380 - 20 Aug 2023
Cited by 9 | Viewed by 1928
Abstract
Solid tumors are a leading cause of cancer-related deaths globally, being characterized by rapid tumor growth and local and distant metastases. The failures encountered in cancer treatment are mainly related to the complicated biology of the tumor microenvironment. Nanoparticles-based (NPs) approaches have shown [...] Read more.
Solid tumors are a leading cause of cancer-related deaths globally, being characterized by rapid tumor growth and local and distant metastases. The failures encountered in cancer treatment are mainly related to the complicated biology of the tumor microenvironment. Nanoparticles-based (NPs) approaches have shown the potential to overcome the limitations caused by the pathophysiological features of solid cancers, enabling the development of multifunctional systems for cancer diagnosis and therapy and allowing effective inhibition of tumor growth. Among the different classes of NPs, 2D graphene-based nanomaterials (GBNs), due to their outstanding chemical and physical properties, easy surface multi-functionalization, near-infrared (NIR) light absorption and tunable biocompatibility, represent ideal nanoplatforms for the development of theranostic tools for the treatment of solid tumors. Here, we reviewed the most recent advances related to the synthesis of nano-systems based on graphene, graphene oxide (GO), reduced graphene oxide (rGO), and graphene quantum dots (GQDs), for the development of theranostic NPs to be used for photoacoustic imaging-guided photothermal–chemotherapy, photothermal (PTT) and photodynamic therapy (PDT), applied to solid tumors destruction. The advantages in using these nano-systems are here discussed for each class of GBNs, taking into consideration the different chemical properties and possibility of multi-functionalization, as well as biodistribution and toxicity aspects that represent a key challenge for their translation into clinical use. Full article
(This article belongs to the Special Issue Graphene-Based Materials for Cancer Therapy)
Show Figures

Figure 1

21 pages, 3425 KiB  
Article
Hybrid Chitosan–TiO2 Nanocomposite Impregnated in Type A-2186 Maxillofacial Silicone Subjected to Different Accelerated Aging Conditions: An Evaluation of Color Stability
by Faten K. Al-Kadi, Jwan F. Abdulkareem and Bruska A. Azhdar
Nanomaterials 2023, 13(16), 2379; https://doi.org/10.3390/nano13162379 - 20 Aug 2023
Cited by 1 | Viewed by 1638
Abstract
This study explores the impact of the incorporation of a chitosan–TiO2 nanocomposite on the color stability of pigmented room-temperature vulcanization maxillofacial silicone under various accelerated aging conditions. Five hundred disk-shaped specimens were formed with type A-2186 silicone elastomer, and they were distributed [...] Read more.
This study explores the impact of the incorporation of a chitosan–TiO2 nanocomposite on the color stability of pigmented room-temperature vulcanization maxillofacial silicone under various accelerated aging conditions. Five hundred disk-shaped specimens were formed with type A-2186 silicone elastomer, and they were distributed into groups based on pigment types and nanoparticle treatments. The color difference (ΔE) was assessed using a colorimeter in the CIELAB color system before and after exposure to aging conditions, including UV-accelerated aging and outdoor weathering. ANOVA, Dennett’s T3, and Tukey HSD tests revealed significant color alterations across all silicone types, with the most pronounced being in the red-colored 3% chitosan specimens and the least pronounced being in the 2% TiO2 specimens that underwent UV-accelerated aging. Outdoor weathering consistently increased the ΔE values across all categories. This study suggests that while nanoparticles may offer some resistance against accelerated aging, they fall short in adequately defending against UV radiation during outdoor weathering. Full article
(This article belongs to the Topic Preparation and Application of Polymer Nanocomposites)
Show Figures

Figure 1

23 pages, 18868 KiB  
Review
Strain Engineering of Intrinsic Ferromagnetism in 2D van der Waals Materials
by Hongtao Ren and Gang Xiang
Nanomaterials 2023, 13(16), 2378; https://doi.org/10.3390/nano13162378 - 19 Aug 2023
Cited by 9 | Viewed by 2529
Abstract
Since the discovery of the low-temperature, long-range ferromagnetic order in monolayers Cr2Ge2Te6 and CrI3, many efforts have been made to achieve a room temperature (RT) ferromagnet. The outstanding deformation ability of two-dimensional (2D) materials provides an [...] Read more.
Since the discovery of the low-temperature, long-range ferromagnetic order in monolayers Cr2Ge2Te6 and CrI3, many efforts have been made to achieve a room temperature (RT) ferromagnet. The outstanding deformation ability of two-dimensional (2D) materials provides an exciting way to mediate their intrinsic ferromagnetism (FM) with strain engineering. Here, we summarize the recent progress of strain engineering of intrinsic FM in 2D van der Waals materials. First, we introduce how to explain the strain-mediated intrinsic FM on Cr-based and Fe-based 2D van der Waals materials through ab initio Density functional theory (DFT), and how to calculate magnetic anisotropy energy (MAE) and Curie temperature (TC) from the interlayer exchange coupling J. Subsequently, we focus on numerous attempts to apply strain to 2D materials in experiments, including wrinkle-induced strain, flexible substrate bending or stretching, lattice mismatch, electrostatic force and field-cooling. Last, we emphasize that this field is still in early stages, and there are many challenges that need to be overcome. More importantly, strengthening the guideline of strain-mediated FM in 2D van der Waals materials will promote the development of spintronics and straintronics. Full article
(This article belongs to the Special Issue Advanced Spintronic and Electronic Nanomaterials)
Show Figures

Figure 1

38 pages, 7393 KiB  
Review
Research Progress in Surface-Enhanced Infrared Absorption Spectroscopy: From Performance Optimization, Sensing Applications, to System Integration
by Dongxiao Li, Cheng Xu, Junsheng Xie and Chengkuo Lee
Nanomaterials 2023, 13(16), 2377; https://doi.org/10.3390/nano13162377 - 19 Aug 2023
Cited by 12 | Viewed by 4961
Abstract
Infrared absorption spectroscopy is an effective tool for the detection and identification of molecules. However, its application is limited by the low infrared absorption cross-section of the molecule, resulting in low sensitivity and a poor signal-to-noise ratio. Surface-Enhanced Infrared Absorption (SEIRA) spectroscopy is [...] Read more.
Infrared absorption spectroscopy is an effective tool for the detection and identification of molecules. However, its application is limited by the low infrared absorption cross-section of the molecule, resulting in low sensitivity and a poor signal-to-noise ratio. Surface-Enhanced Infrared Absorption (SEIRA) spectroscopy is a breakthrough technique that exploits the field-enhancing properties of periodic nanostructures to amplify the vibrational signals of trace molecules. The fascinating properties of SEIRA technology have aroused great interest, driving diverse sensing applications. In this review, we first discuss three ways for SEIRA performance optimization, including material selection, sensitivity enhancement, and bandwidth improvement. Subsequently, we discuss the potential applications of SEIRA technology in fields such as biomedicine and environmental monitoring. In recent years, we have ushered in a new era characterized by the Internet of Things, sensor networks, and wearable devices. These new demands spurred the pursuit of miniaturized and consolidated infrared spectroscopy systems and chips. In addition, the rise of machine learning has injected new vitality into SEIRA, bringing smart device design and data analysis to the foreground. The final section of this review explores the anticipated trajectory that SEIRA technology might take, highlighting future trends and possibilities. Full article
(This article belongs to the Special Issue Nano-Optics and Nano-Optoelectronics: Challenges and Future Trends)
Show Figures

Figure 1

17 pages, 3641 KiB  
Article
Low-Temperature Emission Dynamics of Methylammonium Lead Bromide Hybrid Perovskite Thin Films at the Sub-Micrometer Scale
by Justine Baronnier, Benoit Mahler, Christophe Dujardin and Julien Houel
Nanomaterials 2023, 13(16), 2376; https://doi.org/10.3390/nano13162376 - 19 Aug 2023
Cited by 1 | Viewed by 8699
Abstract
We study the low-temperature (T = 4.7 K) emission dynamics of a thin film of methylammonium lead bromide (MAPbBr3), prepared via the anti-solvent method. Using intensity-dependent (over 5 decades) hyperspectral microscopy under quasi-resonant (532 nm) continuous wave excitation, we revealed spatial [...] Read more.
We study the low-temperature (T = 4.7 K) emission dynamics of a thin film of methylammonium lead bromide (MAPbBr3), prepared via the anti-solvent method. Using intensity-dependent (over 5 decades) hyperspectral microscopy under quasi-resonant (532 nm) continuous wave excitation, we revealed spatial inhomogeneities in the thin film emission. This was drastically different at the band-edge (∼550 nm, sharp peaks) than in the emission tail (∼568 nm, continuum of emission). We are able to observe regions of the film at the micrometer scale where emission is dominated by excitons, in between regions of trap emission. Varying the density of absorbed photons by the MAPbBr3 thin films, two-color fluorescence lifetime imaging microscopy unraveled the emission dynamics: a fast, resolution-limited (∼200 ps) monoexponential tangled with a stretched exponential decay. We associate the first to the relaxation of excitons and the latter to trap emission dynamics. The obtained stretching exponents can be interpreted as the result of a two-dimensional electron diffusion process: Förster resonant transfer mechanism. Furthermore, the non-vanishing fast monoexponential component even in the tail of the MAPbBr3 emission indicates the subsistence of localized excitons. Finally, we estimate the density of traps in MAPbBr3 thin films prepared using the anti-solvent method at n∼1017 cm3. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

16 pages, 5063 KiB  
Article
Stretchable Sensors: Novel Human Motion Monitoring Wearables
by Chia-Jung Cho, Ping-Yu Chung, Ying-Wen Tsai, Yu-Tong Yang, Shih-Yu Lin and Pin-Shu Huang
Nanomaterials 2023, 13(16), 2375; https://doi.org/10.3390/nano13162375 - 19 Aug 2023
Cited by 1 | Viewed by 1900
Abstract
A human body monitoring system remains a significant focus, and to address the challenges in wearable sensors, a nanotechnology-enhanced strategy is proposed for designing stretchable metal-organic polymer nanocomposites. The nanocomposite comprises reduced graphene oxide (rGO) and in-situ generated silver nanoparticles (AgNPs) within elastic [...] Read more.
A human body monitoring system remains a significant focus, and to address the challenges in wearable sensors, a nanotechnology-enhanced strategy is proposed for designing stretchable metal-organic polymer nanocomposites. The nanocomposite comprises reduced graphene oxide (rGO) and in-situ generated silver nanoparticles (AgNPs) within elastic electrospun polystyrene-butadiene-polystyrene (SBS) fibers. The resulting Sandwich Structure Piezoresistive Woven Nanofabric (SSPWN) is a tactile-sensitive wearable sensor with remarkable performance. It exhibits a rapid response time (less than three milliseconds) and high reproducible stability over 5500 cycles. The nanocomposite also demonstrates exceptional thermal stability due to effective connections between rGO and AgNPs, making it suitable for wearable electronic applications. Furthermore, the SSPWN is successfully applied to human motion monitoring, including various areas of the hand and RGB sensing shoes for foot motion monitoring. This nanotechnology-enhanced strategy shows promising potential for intelligent healthcare, health monitoring, gait detection, and analysis, offering exciting prospects for future wearable electronic products. Full article
Show Figures

Graphical abstract

18 pages, 7214 KiB  
Article
A Combined Plasmonic and Electrochemical Aptasensor Based on Gold Nanopit Arrays for the Detection of Human Serum Albumin
by Ruifeng Zhu, Gabriela Figueroa-Miranda, Lei Zhou, Ziheng Hu, Bohdan Lenyk, Sven Ingebrandt, Andreas Offenhäusser and Dirk Mayer
Nanomaterials 2023, 13(16), 2374; https://doi.org/10.3390/nano13162374 - 19 Aug 2023
Cited by 2 | Viewed by 1448
Abstract
Electrochemical and optical platforms are commonly employed in designing biosensors. However, one signal readout can easily lead to inaccuracies due to the effect of nonstandard test procedures, different operators, and experimental environments. We have developed a dual-signal protocol that combined two transducer principles [...] Read more.
Electrochemical and optical platforms are commonly employed in designing biosensors. However, one signal readout can easily lead to inaccuracies due to the effect of nonstandard test procedures, different operators, and experimental environments. We have developed a dual-signal protocol that combined two transducer principles in one aptamer-based biosensor by simultaneously performing electrochemical- and extraordinary optical transmission (EOT)-based plasmonic detection using gold nanopit arrays (AuNpA). Compared with full hole structures, we found that nanopits, that did not fully penetrate the gold film, not only exhibited a better plasmonic bandwidth and refractive index sensitivity both in the finite-difference time-domain simulation and in experiments by shielding the gold/quartz mode but also enlarged the electrochemical active surface area. Therefore, the periodic non-fully penetrating AuNpA were modified with ferrocene-labeled human serum albumin aptamer receptors. The formation of the receptor layer and human serum albumin binding complex induced a conformational change, which resulted in variation in the electron transfer between the electro-active ferrocene units and the AuNpA surface. Simultaneously, the binding event caused a surface plasmon polaritons wavelength shift corresponding to a change in the surface refractive index. Interestingly, although both transducers recorded the same binding process, they led to different limits of detection, dynamic ranges, and sensitivities. The electrochemical transducer showed a dynamic detection range from 1 nM to 600 μM, while the optical transducer covered high concentrations from 100 μM to 600 μM. This study not only provides new insights into the design of plasmonic nanostructures but also potentially opens an exciting avenue for dual-signal disease diagnosis and point-of-care testing applications. Full article
Show Figures

Figure 1

18 pages, 4737 KiB  
Article
Biosensor Based on Graphene Directly Grown by MW-PECVD for Detection of COVID-19 Spike (S) Protein and Its Entry Receptor ACE2
by Šarunas Meškinis, Rimantas Gudaitis, Andrius Vasiliauskas, Asta Guobienė, Šarūnas Jankauskas, Voitech Stankevič, Skirmantas Keršulis, Arūnas Stirkė, Eivydas Andriukonis, Wanessa Melo, Vilius Vertelis and Nerija Žurauskienė
Nanomaterials 2023, 13(16), 2373; https://doi.org/10.3390/nano13162373 - 18 Aug 2023
Cited by 2 | Viewed by 1851
Abstract
Biosensors based on graphene field-effect transistors (G-FET) for detecting COVID-19 spike S protein and its receptor ACE2 were reported. The graphene, directly synthesized on SiO2/Si substrate by microwave plasma-enhanced chemical vapor deposition (MW-PECVD), was used for FET biosensor fabrication. The commercial [...] Read more.
Biosensors based on graphene field-effect transistors (G-FET) for detecting COVID-19 spike S protein and its receptor ACE2 were reported. The graphene, directly synthesized on SiO2/Si substrate by microwave plasma-enhanced chemical vapor deposition (MW-PECVD), was used for FET biosensor fabrication. The commercial graphene, CVD-grown on a copper substrate and subsequently transferred onto a glass substrate, was applied for comparison purposes. The graphene structure and surface morphology were studied by Raman scattering spectroscopy and atomic force microscope. Graphene surfaces were functionalized by an aromatic molecule PBASE (1-pyrenebutanoic acid succinimidyl ester), and subsequent immobilization of the receptor angiotensin-converting enzyme 2 (ACE2) was performed. A microfluidic system was developed, and transfer curves of liquid-gated FET were measured after each graphene surface modification procedure to investigate ACE2 immobilization by varying its concentration and subsequent spike S protein detection. The directly synthesized graphene FET sensitivity to the receptor ACE2, evaluated in terms of the Dirac voltage shift, exceeded the sensitivity of the transferred commercial graphene-based FET. The concentration of the spike S protein was detected in the range of 10 ag/mL up to 10 μg/mL by using a developed microfluidic system and measuring the transfer characteristics of the liquid-gated G-FETs. It was found that the shift of the Dirac voltage depends on the spike S concentration and was 27 mV with saturation at 10 pg/mL for directly synthesized G-FET biosensor, while for transferred G-FET, the maximal shift of 70 mV was obtained at 10 μg/mL with a tendency of saturation at 10 ng/mL. The detection limit as low as 10 ag/mL was achieved for both G-FETs. The sensitivity of the biosensors at spike S concentration of 10 pg/mL measured as relative current change at a constant gate voltage corresponding to the highest transconductance of the G-FETs was found at 5.6% and 8.8% for directly synthesized and transferred graphene biosensors, respectively. Thus, MW-PECVD-synthesized graphene-based biosensor demonstrating high sensitivity and low detection limit has excellent potential for applications in COVID-19 diagnostics. Full article
(This article belongs to the Special Issue Vapor-Based Graphene Synthesis and Its Applications)
Show Figures

Figure 1

16 pages, 7168 KiB  
Article
Improvement of the Stability and Optical Properties of CsPbBr3 QDs
by Jiaming Wang, Li Zou, Meili Yang, Jiajie Cheng, Yufan Jiang, Guangdong Huang and Jingjing Dong
Nanomaterials 2023, 13(16), 2372; https://doi.org/10.3390/nano13162372 - 18 Aug 2023
Cited by 5 | Viewed by 1852
Abstract
All-inorganic perovskite quantum dots (CsPbX3 QDs) (X = Cl, Br, I) have the advantages of adjustable emission position, narrow emission spectrum, high fluorescence quantum efficiency (PLQY), easy preparation, and elevated defect tolerance; therefore, they are widely used in optoelectronic devices, such as [...] Read more.
All-inorganic perovskite quantum dots (CsPbX3 QDs) (X = Cl, Br, I) have the advantages of adjustable emission position, narrow emission spectrum, high fluorescence quantum efficiency (PLQY), easy preparation, and elevated defect tolerance; therefore, they are widely used in optoelectronic devices, such as solar cells, light-emitting diodes, and lasers. However, their stability still constrains their development due to their intrinsic crystal structure, ionic exchange of surface ligands, and exceptional sensitivity to environmental factors, such as light, water, oxygen, and heat. Therefore, in this paper, we investigate the stability improvement of CsPbX3 QDs and apply fabricated high-efficiency, stable perovskite QDs to solar cells to improve the performance of the cells further. In this paper, we focus on CsPbBr3 QDs with intrinsic extreme stability and optimize CsPbBr3 QDs using strategies, such as Mn+ doping, ligand regulation, and polymer encapsulation, which can improve optical properties while ensuring their stability. The test results show that the above five methods can improve the strength and luminescence performance of QDs, with the best stability achieved when PMMA encapsulates QDs with a ratio of PMMA = 2:1 and PLQY increases from 60.2% to 90.1%. Full article
Show Figures

Figure 1

16 pages, 6116 KiB  
Article
The Slight Adjustment in the Weight of Sulfur Sheets to Synthesize β-NiS Nanobelts for Maintaining Detection of Lower Concentrations of Glucose through a Long-Term Storage Test
by Hsiensheng Lin, Chengming Peng, Jenbin Shi, Bochi Zheng, Hsuanwei Lee, Pofeng Wu and Minway Lee
Nanomaterials 2023, 13(16), 2371; https://doi.org/10.3390/nano13162371 - 18 Aug 2023
Viewed by 1269
Abstract
The β-nickel sulfide (β-NiS) nanobelts were fabricated by electrodepositing a nickel nanosheet film on Indium tin oxide (ITO)-coated glass substrates and sulfuring the nickel film on ITO-coated glass substrates. The sulfurization method can be used to form nanobelts without a template. A small [...] Read more.
The β-nickel sulfide (β-NiS) nanobelts were fabricated by electrodepositing a nickel nanosheet film on Indium tin oxide (ITO)-coated glass substrates and sulfuring the nickel film on ITO-coated glass substrates. The sulfurization method can be used to form nanobelts without a template. A small glass tube was used to anneal the sulfur sheet with a nickel nanosheet film. After applying vacuum to the tube, the specimen was annealed at 500 °C. By adjusting the weight of the sulfur sheet in a small glass tube, a nanobelt structure can be formed on the film for 4 h. The β-NiS nanobelt film had a sulfide and nickel molar ratio that was nearly 0.7 (S/Ni). After five years of a long-term storage test, the β-NiS nanobelt films were able to measure the glucose in a solution with the value of sensitivity of 8.67 µA cm−2 µM−1. The β-NiS nanobelt film also detected glucose with a limit of low detection (LOD) of around 0.173 µM. The estimation of reproducibility was over 98%. Therefore, the β-NiS nanobelt film has a significant ability to detect low concentrations of glucose in a solution. Full article
(This article belongs to the Special Issue Nanotechnology in Chemical Sensors and Biosensors)
Show Figures

Figure 1

19 pages, 10633 KiB  
Article
Au- or Ag-Decorated ZnO-Rod/rGO Nanocomposite with Enhanced Room-Temperature NO2-Sensing Performance
by Ke Huang, Junfeng Lu, Donglin Li, Xianjia Chen, Dingfeng Jin and Hongxiao Jin
Nanomaterials 2023, 13(16), 2370; https://doi.org/10.3390/nano13162370 - 18 Aug 2023
Cited by 7 | Viewed by 1755
Abstract
To improve the gas sensitivity of reduced oxide graphene (rGO)-based NO2 room-temperature sensors, different contents (0–3 wt%) of rGO, ZnO rods, and noble metal nanoparticles (Au or Ag NPs) were synthesized to construct ternary hybrids that combine the advantages of each component. [...] Read more.
To improve the gas sensitivity of reduced oxide graphene (rGO)-based NO2 room-temperature sensors, different contents (0–3 wt%) of rGO, ZnO rods, and noble metal nanoparticles (Au or Ag NPs) were synthesized to construct ternary hybrids that combine the advantages of each component. The prepared ZnO rods had a diameter of around 200 nm and a length of about 2 μm. Au or Ag NPs with diameters of 20–30 nm were loaded on the ZnO-rod/rGO hybrid. It was found that rGO simply connects the monodispersed ZnO rods and does not change the morphology of ZnO rods. In addition, the rod-like ZnO prevents rGO stacking and makes nanocomposite-based ZnO/rGO achieve a porous structure, which facilitates the diffusion of gas molecules. The sensors’ gas-sensing properties for NO2 were evaluated. The results reveal that Ag@ZnO rods-2% rGO and Au@ZnO rods-2% rGO perform better in low concentrations of NO2 gas, with greater response and shorter recovery time at the ambient temperature. The response and recovery times with 15 ppm NO2 were 132 s, 139 s and 108 s, 120 s, and the sensitivity values were 2.26 and 2.87, respectively. The synergistic impact of ZnO and Au (Ag) doping was proposed to explain the improved gas sensing. The p-n junction formed on the ZnO and rGO interface and the catalytic effects of Au (Ag) NPs are the main reasons for the enhanced sensitivity of Au (Ag)@ZnO rods-2% rGO. Full article
(This article belongs to the Special Issue Chemical-Physical Properties and Applications of Nano-Scaled Oxides)
Show Figures

Figure 1

20 pages, 3950 KiB  
Article
Voltammetric Sensor for Doxorubicin Determination Based on Self-Assembled DNA-Polyphenothiazine Composite
by Anastasiya Malanina, Yurii Kuzin, Alena Khadieva, Kseniya Shibaeva, Pavel Padnya, Ivan Stoikov and Gennady Evtugyn
Nanomaterials 2023, 13(16), 2369; https://doi.org/10.3390/nano13162369 - 18 Aug 2023
Cited by 4 | Viewed by 1491
Abstract
A novel voltammetric sensor based on a self-assembled composite formed by native DNA and electropolymerized N-phenyl-3-(phenylimino)-3H-phenothiazin-7-amine has been developed and applied for sensitive determination of doxorubicin, an anthracycline drug applied for cancer therapy. For this purpose, a monomeric phenothiazine derivative has been deposited [...] Read more.
A novel voltammetric sensor based on a self-assembled composite formed by native DNA and electropolymerized N-phenyl-3-(phenylimino)-3H-phenothiazin-7-amine has been developed and applied for sensitive determination of doxorubicin, an anthracycline drug applied for cancer therapy. For this purpose, a monomeric phenothiazine derivative has been deposited on the glassy carbon electrode from the 0.4 M H2SO4-acetone mixture (1:1 v/v) by multiple potential cycling. The DNA aliquot was either on the electrode modified with electropolymerized film or added to the reaction medium prior to electropolymerization. The DNA entrapment and its influence on the redox behavior of the underlying layer were studied by scanning electron microscopy and electrochemical impedance spectroscopy. The DNA–doxorubicin interactions affected the charge distribution in the surface layer and, hence, altered the redox equilibrium of the polyphenothiazine coating. The voltametric signal was successfully applied for the determination of doxorubicin in the concentration range from 10 pM to 0.2 mM (limit of detection 5 pM). The DNA sensor was tested on spiked artificial plasma samples and two commercial medications (recovery of 90–95%). After further testing on real clinical samples, the electrochemical DNA sensor developed can find application in monitoring drug release and screening new antitumor drugs able to intercalate DNA. Full article
(This article belongs to the Special Issue Functional Nanomaterials Based on Self-Assembly)
Show Figures

Graphical abstract

15 pages, 9636 KiB  
Article
Use of Few-Layer Graphene Synthesized under Conditions of Self-Propagating High-Temperature Synthesis for Supercapacitors Applications
by Alexey A. Vozniakovskii, Evgenia A. Smirnova, Rostislav V. Apraksin, Sergey V. Kidalov and Alexander P. Voznyakovskii
Nanomaterials 2023, 13(16), 2368; https://doi.org/10.3390/nano13162368 - 18 Aug 2023
Cited by 4 | Viewed by 1293
Abstract
Graphene nanostructures (GNSs) are among the most promising materials for producing supercapacitors. However, GNSs are still not used in creating supercapacitors due to the impossibility of obtaining large volumes of high-quality material at an acceptable cost. In our previous works, we have shown [...] Read more.
Graphene nanostructures (GNSs) are among the most promising materials for producing supercapacitors. However, GNSs are still not used in creating supercapacitors due to the impossibility of obtaining large volumes of high-quality material at an acceptable cost. In our previous works, we have shown the possibility of synthesizing large volumes of few-layer graphene (FLG, the number of layers is not more than five) from cyclic biopolymers under conditions of self-propagating high-temperature synthesis (SHS). Using the SHS process makes it possible to synthesize large volumes of FLG without Stone–Wales defects. This work is devoted to the study of the possibility of using FLG synthesized under the conditions of the SHS process in the creation of supercapacitors. It was found that the synthesized FLG makes it possible to obtain better results than using classical materials, namely activated carbon (AC). It was found that the sample based on FLG had a higher specific capacitance of 65 F × g−1 compared to the sample from AC, the specific capacitance of which was 35 F × g−1; for a speed of 5 mV × s−1, these values were170 and 64 F × g−1, respectively. The drop in capacitance over 1000 cycles was 4%, indicating a sufficiently high FLG stability, allowing us to consider FLG as a prospective material for use in supercapacitors. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Graphical abstract

10 pages, 5907 KiB  
Article
Carbon-Supported High-Loading Sub-4 nm PtCo Alloy Electrocatalysts for Superior Oxygen Reduction Reaction
by Linlin Xiang, Yunqin Hu, Yanyan Zhao, Sufeng Cao and Long Kuai
Nanomaterials 2023, 13(16), 2367; https://doi.org/10.3390/nano13162367 - 18 Aug 2023
Cited by 3 | Viewed by 1469
Abstract
Increasing the loading density of nanoparticles on carbon support is essential for making Pt-alloy/C catalysts practical in H2-air fuel cells. The challenge lies in increasing the loading while suppressing the sintering of Pt-alloy nanoparticles. This work presents a 40% Pt-weighted sub-4 [...] Read more.
Increasing the loading density of nanoparticles on carbon support is essential for making Pt-alloy/C catalysts practical in H2-air fuel cells. The challenge lies in increasing the loading while suppressing the sintering of Pt-alloy nanoparticles. This work presents a 40% Pt-weighted sub-4 nm PtCo/C alloy catalyst via a simple incipient wetness impregnation method. By carefully optimizing the synthetic conditions such as Pt/Co ratios, calcination temperature, and time, the size of supported PtCo alloy nanoparticles is successfully controlled below 4 nm, and a high electrochemical surface area of 93.8 m2/g is achieved, which is 3.4 times that of commercial PtCo/C-TKK catalysts. Demonstrated by electrochemical oxygen reduction reactions, PtCo/C alloy catalysts present an enhanced mass activity of 0.465 A/mg at 0.9 V vs. RHE, which is 2.0 times that of the PtCo/C-TKK catalyst. Therefore, the developed PtCo/C alloy catalyst has the potential to be a highly practical catalyst for H2–air fuel cells. Full article
(This article belongs to the Special Issue Carbon-Based Nanomaterials for Highly Efficient Catalysis)
Show Figures

Figure 1

12 pages, 2957 KiB  
Article
Doping-Free Phosphorescent and Thermally Activated Delayed Fluorescent Organic Light-Emitting Diodes with an Ultra-Thin Emission Layer
by Eun-Bi Jang, Geun-Su Choi, Eun-Jeong Bae, Byeong-Kwon Ju and Young-Wook Park
Nanomaterials 2023, 13(16), 2366; https://doi.org/10.3390/nano13162366 - 18 Aug 2023
Cited by 3 | Viewed by 2133
Abstract
We report the electroluminescence (EL) characteristics of blue ultra-thin emissive layer (U-EML) phosphorescent (PH) organic light-emitting diodes (OLED) and thermally activated delayed fluorescence (TADF) OLED. A variety of transport layer (TL) materials were used in the fabricated OLEDs. The well-known FIrpic and DMAC-DPS [...] Read more.
We report the electroluminescence (EL) characteristics of blue ultra-thin emissive layer (U-EML) phosphorescent (PH) organic light-emitting diodes (OLED) and thermally activated delayed fluorescence (TADF) OLED. A variety of transport layer (TL) materials were used in the fabricated OLEDs. The well-known FIrpic and DMAC-DPS were used with a thickness of 0.3 nm, which is relatively thicker than the optimal thickness (0.15 nm) of the blue phosphorescent ultra-thin emissive layer to ensure sufficient energy transfer. While FIrpic showed overall high efficiency in various TLs, DMAC-DPS exhibited three times lower efficiency in limited TLs. To clarify/identify low efficiency and to improve the EL, the thickness of DMAC-DPS was varied. A significantly higher and comparable efficiency was observed with a thickness of 4.5 nm, which is 15 times thicker. This thickness was oriented from the TADF itself, which reduces quenching in a triplet–triplet annihilation compared to the PH process. The thinner optimal thickness compared with ~30 nm of fluorescent OLEDs suggests that there still is quenching taking place. We expect that the efficiency of TADF U-EML OLEDs can be enhanced through further research on controlling the exciton quenching using multiple U-EMLs with spacers and a novel material with a high energy transfer rate (ΔES-T). Full article
Show Figures

Figure 1

15 pages, 2811 KiB  
Article
Hybrid Mesoporous Carbon/Copper Ferrite Electrode for Asymmetric Supercapacitors
by Khang Huynh, Bharathkiran Maddipudi and Rajesh Shende
Nanomaterials 2023, 13(16), 2365; https://doi.org/10.3390/nano13162365 - 18 Aug 2023
Cited by 2 | Viewed by 1483
Abstract
Asymmetric supercapacitors (ASCs) with two dissimilar electrodes are known to exhibit relatively moderate energy and power densities. If electrodes derived from earth-abundant materials or renewable resources such as lignocellulosic biomass (LCB) are used for fabrication, energy storage systems are expected to become less [...] Read more.
Asymmetric supercapacitors (ASCs) with two dissimilar electrodes are known to exhibit relatively moderate energy and power densities. If electrodes derived from earth-abundant materials or renewable resources such as lignocellulosic biomass (LCB) are used for fabrication, energy storage systems are expected to become less expensive and more sustainable. Hybrid electrode materials have advantages such as higher surface area, better chemical stability, and superior energy density. This study reports on the synthesis of a novel hybrid electrode material containing porous carbon (POC) and copper ferrite, which is designated as POC@Cu-ferrite, and its electrochemical performance in ASC configuration. Corn stover derived hydrochar is utilized for the sol–gel synthesis of POC@Cu-ferrite hybrid material using earth-abundant Cu and Fe-based precursors. This material is characterized using X-ray diffraction (XRD), Raman spectroscopy, Brunauer–Emmett–Teller (BET) surface area analyzer, and scanning and transmission electron microscopy (SEM/TEM). As-synthesized Cu-ferrite is found to contain 89.2% CuFe2O4 and 10.8% Fe2O3, whereas other phases such as Fe3O4, CuFeO2, and CuO are observed for the POC@Cu-ferrite. BET-specific surface area (SSA) and pore volume of POC@Cu-ferrite are observed as 1068 m2/g and 0.72 cm3/g, respectively. POC@Cu-ferrite hybrid electrode is used with POC opposite electrode to fabricate ASC, which is tested using Gamry G-300 potentiostat/galvanostat/ZRA to obtain cyclic voltammetry (CV) profiles and galvanostatic charge–discharge (GCD) plots. ASC is also prepared using Cu-ferrite and POC materials and its specific capacitance and stability are compared with ASCs prepared with POC@Cu-ferrite and POC or graphene nanoplatelets (GNPs) electrodes. POC@Cu-ferrite hybrid electrode is found to be superior with a 2-fold higher capacitance and significant electrochemical stability over 100 GCD cycles as compared to the Cu-ferrite electrode. Full article
(This article belongs to the Special Issue Nano-Materials in Electrocatalyst)
Show Figures

Figure 1

22 pages, 4063 KiB  
Article
The Influence of Reduced Graphene Oxide on the Texture and Chemistry of N,S-Doped Porous Carbon. Implications for Electrocatalytic and Energy Storage Applications
by Samantha K. Samaniego Andrade, Shiva Shankar Lakshmi, István Bakos, Szilvia Klébert, Robert Kun, Miklós Mohai, Balázs Nagy and Krisztina László
Nanomaterials 2023, 13(16), 2364; https://doi.org/10.3390/nano13162364 - 18 Aug 2023
Cited by 2 | Viewed by 1756
Abstract
In this work, we study the influence of reduced graphene oxide (rGO) on the morphology and chemistry of highly porous N,S-doped carbon cryogels. Simultaneously, we propose an easily upscalable route to prepare such carbons by adding graphene oxide (GO) in as-received suspended form [...] Read more.
In this work, we study the influence of reduced graphene oxide (rGO) on the morphology and chemistry of highly porous N,S-doped carbon cryogels. Simultaneously, we propose an easily upscalable route to prepare such carbons by adding graphene oxide (GO) in as-received suspended form to the aqueous solution of the ι-carrageenan and urea precursors. First, 1.25–5 wt% GO was incorporated into the dual-doped polymer matrix. The CO2, CO, and H2O emitted during the thermal treatments resulted in the multifaceted modification of the textural and chemical properties of the porous carbon. This facilitated the formation of micropores through self-activation and resulted in a substantial increase in the apparent surface area (up to 1780 m2/g) and pore volume (up to 1.72 cm3/g). However, adding 5 wt% GO led to overactivation. The incorporated rGO has an ordering effect on the carbon matrix. The evolving oxidative species influence the surface chemistry in a complex way, but sufficient N and S atoms (ca. 4 and >1 at%, respectively) were preserved in addition to the large number of developing defects. Despite the complexity of the textural and chemical changes, rGO increased the electrical conductivity monotonically. In alkaline oxygen reduction reaction (ORR) tests, the sample with 1.25 wt% GO exhibited a 4e mechanism and reasonable stability, but a higher rGO content gradually compromised the performance of the electrodes. The sample containing 5 wt% GO was the most sensitive under oxidative conditions, but after stabilization it exhibited the highest gravimetric capacitance. In Li-ion battery tests, the coulombic efficiency of all the samples was consistently above 98%, indicating the high potential of these carbons for efficient Li-ion insertion and reinsertion during the charge–discharge process, thereby providing a promising alternative for graphite-based anodes. The cell from the 1.25 wt% GO sample showed an initial discharge capacity of 313 mAh/g, 95.1% capacity retention, and 99.3% coulombic efficiency after 50 charge–discharge cycles. Full article
(This article belongs to the Special Issue 2D and Carbon Nanomaterials for Energy Conversion and Storage)
Show Figures

Figure 1

14 pages, 7912 KiB  
Article
Controlling the Surface Morphology of Two-Dimensional Nano-Materials upon Molecule-Mediated Crystal Growth
by Tetsuo Yamaguchi, Hyoung-Jun Kim, Hee Jung Park, Taeho Kim, Zubair Khalid, Jin Kuen Park and Jae-Min Oh
Nanomaterials 2023, 13(16), 2363; https://doi.org/10.3390/nano13162363 - 18 Aug 2023
Cited by 3 | Viewed by 1549
Abstract
The surface morphology of Mg-Al-layered double hydroxide (LDH) was successfully controlled by reconstruction during systematic phase transformation from calcined LDH, which is referred to as layered double oxide (LDO). The LDH reconstructed its original phase by the hydration of LDO with expanded basal [...] Read more.
The surface morphology of Mg-Al-layered double hydroxide (LDH) was successfully controlled by reconstruction during systematic phase transformation from calcined LDH, which is referred to as layered double oxide (LDO). The LDH reconstructed its original phase by the hydration of LDO with expanded basal spacing when reacted with water, including carbonate or methyl orange molecules. During the reaction, the degree of crystal growth along the ab-plane and stacking along the c-axis was significantly influenced by the molecular size and the reaction conditions. The lower concentration of carbonate gave smaller particles on the surface of larger LDO (2000 nm), while the higher concentration induced a sand-rose structure. The reconstruction of smaller-sized LDH (350 nm) did not depend on the concentration of carbonate due to effective adsorption, and it gave a sand-rose structure and exfoliated the LDH layers. The higher the concentration of methyl orange and the longer the reaction time applied, the rougher the surface was obtained with a certain threshold point of the methyl orange concentration. The surface roughness generally increased with the loading mount of methyl orange. However, the degree of the surface roughness even increased after the methyl orange loading reached equilibrium. The result suggested that the surface roughening was mediated by not only the incorporation of guest molecules into the LDH but also a crystal arrangement after a sufficient amount of methyl orange was accommodated. Full article
(This article belongs to the Special Issue 2D Structured Materials: Synthesis, Properties and Applications)
Show Figures

Figure 1

13 pages, 5997 KiB  
Article
Artificial SiNz:H Synapse Crossbar Arrays with Gradual Conductive Pathway for High-Accuracy Neuromorphic Computing
by Tong Chen, Zhongyuan Ma, Hongsheng Hu, Yang Yang, Chengfeng Zhou, Furao Shen, Haitao Xu, Jun Xu, Ling Xu, Wei Li and Kunji Chen
Nanomaterials 2023, 13(16), 2362; https://doi.org/10.3390/nano13162362 - 18 Aug 2023
Viewed by 1206
Abstract
Inspired by its highly efficient capability to deal with big data, the brain-like computational system has attracted a great amount of attention for its ability to outperform the von Neumann computation paradigm. As the core of the neuromorphic computing chip, an artificial synapse [...] Read more.
Inspired by its highly efficient capability to deal with big data, the brain-like computational system has attracted a great amount of attention for its ability to outperform the von Neumann computation paradigm. As the core of the neuromorphic computing chip, an artificial synapse based on the memristor, with a high accuracy in processing images, is highly desired. We report, for the first time, that artificial synapse arrays with a high accuracy in image recognition can be obtained through the fabrication of a SiNz:H memristor with a gradient Si/N ratio. The training accuracy of SiNz:H synapse arrays for image learning can reach 93.65%. The temperature-dependent IV characteristic reveals that the gradual Si dangling bond pathway makes the main contribution towards improving the linearity of the tunable conductance. The thinner diameter and fixed disconnection point in the gradual pathway are of benefit in enhancing the accuracy of visual identification. The artificial SiNz:H synapse arrays display stable and uniform biological functions, such as the short-term biosynaptic functions, including spike-duration-dependent plasticity, spike-number-dependent plasticity, and paired-pulse facilitation, as well as the long-term ones, such as long-term potentiation, long-term depression, and spike-time-dependent plasticity. The highly efficient visual learning capability of the artificial SiNz:H synapse with a gradual conductive pathway for neuromorphic systems hold great application potential in the age of artificial intelligence (AI). Full article
Show Figures

Figure 1

14 pages, 4639 KiB  
Article
Sensing Approaches Exploiting Molecularly Imprinted Nanoparticles and Lossy Mode Resonance in Polymer Optical Fibers
by Francesco Arcadio, Laurent Noël, Domenico Del Prete, Mimimorena Seggio, Luigi Zeni, Alessandra Maria Bossi, Olivier Soppera and Nunzio Cennamo
Nanomaterials 2023, 13(16), 2361; https://doi.org/10.3390/nano13162361 - 18 Aug 2023
Cited by 1 | Viewed by 1121
Abstract
In this work, two different lossy mode resonance (LMR) platforms based on plastic optical fibers (POFs) are developed and tested in a biochemical sensing scenario. The LMR platforms are based on the combination of two metal oxides (MOs), i.e., zirconium oxide (ZrO2 [...] Read more.
In this work, two different lossy mode resonance (LMR) platforms based on plastic optical fibers (POFs) are developed and tested in a biochemical sensing scenario. The LMR platforms are based on the combination of two metal oxides (MOs), i.e., zirconium oxide (ZrO2) and titanium oxide (TiO2), and deposited on the exposed core of D-shaped POF chips. More specifically, two experimental sensor configurations were obtained by swapping the mutual position of the Mos films over to the core of the D-shaped POF probe. The POF–LMR sensors were first characterized as refractometers, proving the bulk sensitivities. Then, both the POF–LMR platforms were functionalized using molecularly imprinted nanoparticles (nanoMIPs) specific for human transferrin (HTR) in order to carry out binding tests. The achieved results report a bulk sensitivity equal to about 148 nm/RIU in the best sensor configuration, namely the POF-TiO2-ZrO2. In contrast, both optical configurations combined with nanoMIPs showed an ultra-low detection limit (fM), demonstrating excellent efficiency of the used receptor (nanoMIPs) and paving the way to disposable POF–LMR biochemical sensors that are easy-to-use, low-cost, and highly sensitive. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

15 pages, 5596 KiB  
Article
Delivery of Therapeutic miRNA via Plasma-Polymerised Nanoparticles Rescues Diabetes-Impaired Endothelial Function
by Yuen Ting Lam, Bob S. L. Lee, Juichien Hung, Praveesuda Michael, Miguel Santos, Richard P. Tan, Renjing Liu and Steven G. Wise
Nanomaterials 2023, 13(16), 2360; https://doi.org/10.3390/nano13162360 - 18 Aug 2023
Cited by 1 | Viewed by 1231
Abstract
MicroRNAs (miRNAs) are increasingly recognised as key regulators of the development and progression of many diseases due to their ability to modulate gene expression post-translationally. While this makes them an attractive therapeutic target, clinical application of miRNA therapy remains at an early stage [...] Read more.
MicroRNAs (miRNAs) are increasingly recognised as key regulators of the development and progression of many diseases due to their ability to modulate gene expression post-translationally. While this makes them an attractive therapeutic target, clinical application of miRNA therapy remains at an early stage and in part is limited by the lack of effective delivery modalities. Here, we determined the feasibility of delivering miRNA using a new class of plasma-polymerised nanoparticles (PPNs), which we have recently isolated and characterised. We showed that PPN-miRNAs have no significant effect on endothelial cell viability in vitro in either normal media or in the presence of high-glucose conditions. Delivery of a miRNA inhibitor targeting miR-503 suppressed glucose-induced miR-503 upregulation and restored the downstream mRNA expression of CCNE1 and CDC25a in endothelial cells. Subsequently, PPN delivery of miR-503 inhibitors enhanced endothelial angiogenesis, including tubulogenesis and migration, in culture conditions that mimic diabetic ischemia. An intramuscular injection of a PPN-miR-503 inhibitor promoted blood-perfusion recovery in the hindlimb of diabetic mice following surgically induced ischemia, linked with an increase in new blood vessel formation. Together, this study demonstrates the effective use of PPN to deliver therapeutic miRNAs in the context of diabetes. Full article
Show Figures

Figure 1

18 pages, 10775 KiB  
Review
Recent Advances in Fabrication of Durable, Transparent, and Superhydrophobic Surfaces
by Wenxin Luo and Mingjie Li
Nanomaterials 2023, 13(16), 2359; https://doi.org/10.3390/nano13162359 - 18 Aug 2023
Cited by 2 | Viewed by 3556
Abstract
Transparent superhydrophobic coatings have been extensively investigated due to their ability to provide self-cleaning properties for outdoor applications. However, the widespread implementation of these coatings on a large scale is impeded by the challenges of poor durability and complex fabrication procedures. In this [...] Read more.
Transparent superhydrophobic coatings have been extensively investigated due to their ability to provide self-cleaning properties for outdoor applications. However, the widespread implementation of these coatings on a large scale is impeded by the challenges of poor durability and complex fabrication procedures. In this review, the fundamentals and theories governing the mutually exclusive properties of superhydrophobicity, optical transparency, and susceptibility to wear are introduced, followed by a discussion of representative examples of advanced surface design and processing optimizations. Also, robust evaluation protocols for assessing mechanical and chemical stabilities are briefed and potential research directions are presented. This review can offer the research community a better understanding of durable and transparent superhydrophobic surfaces, thereby facilitating their development for real-world applications. Full article
(This article belongs to the Special Issue Bioinspired and Nanostructured Surfaces for Wetting Applications)
Show Figures

Figure 1

13 pages, 1211 KiB  
Article
Tuning Gaps and Schottky Contacts of Graphene/Phosphorene Heterostructures by Vertical Electric Field and Strain
by Alessia Muroni, Simone Brozzesi, Friedhelm Bechstedt, Paola Gori and Olivia Pulci
Nanomaterials 2023, 13(16), 2358; https://doi.org/10.3390/nano13162358 - 17 Aug 2023
Cited by 1 | Viewed by 1120
Abstract
We present a comprehensive study of the structural and electronic properties of a graphene/phosphorene (G/P) heterostructure in the framework of density functional theory, including van der Waals interaction in the exchange–correlation functional. While the G(4 × 1)/P(3 × 1) superlattice usually used in [...] Read more.
We present a comprehensive study of the structural and electronic properties of a graphene/phosphorene (G/P) heterostructure in the framework of density functional theory, including van der Waals interaction in the exchange–correlation functional. While the G(4 × 1)/P(3 × 1) superlattice usually used in the literature is subject to a strain as high as about 7%, the in-plane strain could be drastically reduced to under 1% in the G(4 × 13)/P(3 × 12) heterostructure investigated here. Adapting the lattice constants of the rectangular lattices, the equilibrium configuration in the xy plane of phosphorene relative to the graphene layer is optimized. This results in an equilibrium interlayer distance of 3.5 Å and a binding energy per carbon atom of 37 meV, confirming the presence of weak van der Waals interaction between the graphene and the phosphorene layers. The electronic properties of the heterostructure are evaluated under different values of interlayer distance, strain and applied vertical electric field. We demonstrate that G/P heterostructures form an n-type Schottky contact, which can be transformed into p-type under external perturbations. These findings, together with the possibility to control the gaps and barrier heights, suggest that G/P heterostructures are promising for novel applications in electronics and may open a new avenue for the realization of innovative optoelectronic devices. Full article
Show Figures

Figure 1

12 pages, 6374 KiB  
Article
Highly Efficient Ultra-Thin EML Blue PHOLEDs with an External Light-Extraction Diffuser
by Shin-Woo Kang, Eun-Jeong Bae, Young-Wook Park and Byeong-Kwon Ju
Nanomaterials 2023, 13(16), 2357; https://doi.org/10.3390/nano13162357 - 17 Aug 2023
Cited by 3 | Viewed by 1446
Abstract
In this study, various diffusers are applied to highly efficient ultra-thin emission layer (EML) structure-based blue phosphorescent organic light-emitting diodes (PHOLEDs) to improve the electroluminescence (EL) characteristics and viewing angle. To achieve highly efficient blue PHOLEDs, the EL characteristics of ultra-thin EML PHOLEDs [...] Read more.
In this study, various diffusers are applied to highly efficient ultra-thin emission layer (EML) structure-based blue phosphorescent organic light-emitting diodes (PHOLEDs) to improve the electroluminescence (EL) characteristics and viewing angle. To achieve highly efficient blue PHOLEDs, the EL characteristics of ultra-thin EML PHOLEDs with the various diffusers having different structures of pattern–shape (hemisphere/sphere), size (4~75 μm), distribution (surface/embedded), and packing (close-packed/random) were systematically analyzed. The diffusers showed different enhancements in the overall EL characteristics of efficiencies, viewing angle, and others. The EL characteristics showed apparent dependency on their structure. The external quantum efficiency (EQE) was enhanced mainly by following the orders of pattern, size, and shape. Following the pattern size, the EQE enhancement gradually increased; the largest-sized diffuser with a 75 μm closed-packed hemisphere (diffuser-1) showed a 1.47-fold EQE improvement, which was the highest. Meanwhile, the diffuser with a ~7 μm random embedded sphere with a low density (diffuser 5) showed the lowest 1.02-fold-improved EQE. The reference device with ultra-thin EML structure-based blue PHOLEDs showed a maximum EQE of 16.6%, and the device with diffuser 1 achieved a maximum EQE of 24.3% with a 5.1% wider viewing angle compared to the reference device without a diffuser. For the in-depth analysis, the viewing angle profile of the ultra-thin EML PHOLED device and fluorescent green OLEDs were compared. As a result, the efficiency enhancement characteristics of the diffusers show a difference in the viewing angle profile. Finally, the application of the diffuser successfully demonstrated that the EL efficiency and viewing angle could be selectively improved. Additionally, we found that it was possible to realize a wide viewing angle and achieve considerable EQE enhancement by further investigations using high-density and large-sized embedded structures of light-extraction film. Full article
Show Figures

Figure 1

9 pages, 1925 KiB  
Article
First-Principles Investigation of Size Effects on Cohesive Energies of Transition-Metal Nanoclusters
by Amogh Vig, Ethan Doan and Kesong Yang
Nanomaterials 2023, 13(16), 2356; https://doi.org/10.3390/nano13162356 - 17 Aug 2023
Cited by 5 | Viewed by 2859
Abstract
The cohesive energy of transition-metal nanoparticles is crucial to understanding their stability and fundamental properties, which are essential for developing new technologies and applications in fields such as catalysis, electronics, energy storage, and biomedical engineering. In this study, we systematically investigate the size-dependent [...] Read more.
The cohesive energy of transition-metal nanoparticles is crucial to understanding their stability and fundamental properties, which are essential for developing new technologies and applications in fields such as catalysis, electronics, energy storage, and biomedical engineering. In this study, we systematically investigate the size-dependent cohesive energies of all the 3d, 4d, and 5d transition-metal nanoclusters (small nanoparticles) based on a plane-wave-based method within general gradient approximation using first-principles density functional theory calculations. Our results show that the cohesive energies of nanoclusters decrease with decreasing size due to the increased surface-to-volume ratio and quantum confinement effects. A comparison of nanoclusters with different geometries reveals that the cohesive energy decreases as the number of nanocluster layers decreases. Notably, monolayer nanoclusters exhibit the lowest cohesive energies. We also find that the size-dependent cohesive energy trends are different for different transition metals, with some metals exhibiting stronger size effects than others. Our findings provide insights into the fundamental properties of transition-metal nanoclusters and have potential implications for their applications in various fields, such as catalysis, electronics, and biomedical engineering. Full article
(This article belongs to the Special Issue First-Principle Calculation Study of Nanomaterials)
Show Figures

Figure 1

15 pages, 2916 KiB  
Article
Synthesis of PDMS-μ-PCL Miktoarm Star Copolymers by Combinations (Є) of Styrenics-Assisted Atom Transfer Radical Coupling and Ring-Opening Polymerization and Study of the Self-Assembled Nanostructures
by Yi-Shen Huang, Dula Daksa Ejeta, Kun-Yi (Andrew) Lin, Shiao-Wei Kuo, Tongsai Jamnongkan and Chih-Feng Huang
Nanomaterials 2023, 13(16), 2355; https://doi.org/10.3390/nano13162355 - 17 Aug 2023
Cited by 2 | Viewed by 1717
Abstract
Due to their diverse and unique physical properties, miktoarm star copolymers (μ-SCPs) have garnered significant attention. In our study, we employed α-monobomoisobutyryl-terminated polydimethylsiloxane (PDMS-Br) to carry out styrenics-assisted atom transfer radical coupling (SA ATRC) in the presence of 4-vinylbenzyl alcohol (VBA) at 0 [...] Read more.
Due to their diverse and unique physical properties, miktoarm star copolymers (μ-SCPs) have garnered significant attention. In our study, we employed α-monobomoisobutyryl-terminated polydimethylsiloxane (PDMS-Br) to carry out styrenics-assisted atom transfer radical coupling (SA ATRC) in the presence of 4-vinylbenzyl alcohol (VBA) at 0 °C. By achieving high coupling efficiency (χc = 0.95), we obtained mid-chain functionalized PDMS-VBAm-PDMS polymers with benzylic alcohols. Interestingly, matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) analysis revealed the insertion of only two VBA coupling agents (m = 2). Subsequently, the PDMS-VBA2-PDMS products underwent mid-chain extensions using ε-caprolactone (ε-CL) through ring-opening polymerization (ROP) with an efficient organo-catalyst at 40 °C, resulting in the synthesis of novel (PDMS)2-μ-(PCL)2 μ-SCPs. Eventually, novel (PDMS)2-μ-(PCL)2 μ-SCPs were obtained. The obtained PDMS-μ-PCL μ-SCPs were further subjected to examination of their solid-state self-assembly through small-angle X-ray scattering (SAXS) experiments. Notably, various nanostructures, including lamellae and hexagonally packed cylinders, were observed with a periodic size of approximately 15 nm. As a result, we successfully developed a simple and effective reaction combination (Є) strategy (i.e., SA ATRC-Є-ROP) for the synthesis of well-defined PDMS-μ-PCL μ-SCPs. This approach may open up new possibilities for fabricating nanostructures from siloxane-based materials. Full article
(This article belongs to the Special Issue Functional Nanomaterials Based on Self-Assembly)
Show Figures

Graphical abstract

Previous Issue
Back to TopTop