Transport Property of Wrinkled Graphene Nanoribbon Tuned by Spin-Polarized Gate Made of Vanadium-Benzene Nanowire
Abstract
1. Introduction
2. Models and Computation Details
2.1. Computational Models
2.2. Computational Details
3. Results and Discussions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Klein, B.P.; Ihle, A.; Kachel, S.R.; Ruppenthal, L.; Hall, S.J.; Sattler, L.; Weber, S.M.; Herritsch, J.; Jaegermann, A.; Ebeling, D.; et al. Topological stone–wales defects enhance bonding and electronic coupling at the graphene/metal interface. ACS Nano 2022, 16, 11979–11987. [Google Scholar] [CrossRef]
- Loes, M.J.; Lipatov, A.; Vorobeva, N.S.; Lu, H.; Abourahma, J.; Muratov, D.S.; Gruverman, A.; Sinitskii, A. Enhanced photoresponse in few-layer SnS2 field-effect transistors modified with methylammonium lead iodide perovskite. ACS Appl. Electron. Mater. 2023, 5, 705–713. [Google Scholar] [CrossRef]
- Gudelli, V.K.; Alaal, N.; Roqan, I.S. Strain-engineering of electronic and magnetic properties of chemically passivated zigzag GaN nanoribbons: An Ab Initio Study. ACS Appl. Eng. Mater. 2023, 1, 1292–1300. [Google Scholar] [CrossRef]
- Kim, J.; Mastro, M.A.; Tadjer, M.J.; Kim, J. Heterostructure WSe2−Ga2O3 junction field-effect transistor for low-dimensional high-power electronics. ACS Appl. Mater. Interfaces 2018, 10, 29724–29729. [Google Scholar] [CrossRef]
- Zhou, J.; Li, H.; Tian, M.; Chen, A.; Chen, L.; Pu, D.; Hu, J.; Cao, J.; Li, L.; Xu, X.; et al. Multi-stimuli-responsive synapse based on vertical van der Waals heterostructures. ACS Appl. Mater. Interfaces 2022, 14, 35917–35926. [Google Scholar] [CrossRef]
- Papadopoulos, N.; Flores, E.; Watanabe, K.; Taniguchi, T.; Ares, J.R.; Sanchez, C.; Ferrer, I.J.; Castellanos-Gomez, A.; Steele, G.A.; van der Zant, H.S.J. Multi-terminal electronic transport in boron nitride encapsulated TiS3 nanosheets. 2D Mater. 2019, 7, 015009. [Google Scholar] [CrossRef]
- Fan, L.; Xu, J.; Hong, Y.H. Defects in graphene-based heterostructures: Topological and geometrical effects. RSC Adv. 2022, 12, 6772–6782. [Google Scholar] [CrossRef]
- Cheng, B.T.; Zhou, Y.; Jiang, R.M.; Wang, X.L.; Huang, S.; Huang, X.Y.; Zhang, W.; Dai, Q.; Zhou, L.J.; Lu, P.F.; et al. Structural, electronic and optical properties of some new trilayer Van de Waals heterostructures. Nanomaterials 2023, 13, 1574. [Google Scholar] [CrossRef]
- Wen, F.; Yuan, J.; Wickramasinghe, K.S.; Mayer, W.; Shabani, J.; Tutuc, E. Epitaxial Al-InAs heterostructures as platform for Josephson junction field-effect transistor logic devices. IEEE Trans. Electron Dev. 2021, 68, 1524–1529. [Google Scholar] [CrossRef]
- Feng, X.Q.; Liu, Z.D.; Zhang, G.L.; Zhang, S.; Huang, S.P.; He, Z.Y.; Wei, G.W.; Yang, S.W.; Zhu, Y.G.; Ye, C.C.; et al. Natural graphene plasmonic nano-resonators for highly active surface-enhanced raman scattering platforms. Energy Environ. Mater. 2022, 1–12. [Google Scholar] [CrossRef]
- Song, S.; Qiao, J.; Shen, M.Y.; Zhang, G.P.; Feng, F.; Somekh, M.G. Ultrasensitive photodetectors based on graphene quantum dot-InSe mixed-dimensional van der Waals heterostructures. J. Mater. Chem. C 2022, 10, 18174–18181. [Google Scholar] [CrossRef]
- Li, Z.L.; Guo, S.; Weller, D.; Quan, S.F.; Yu, J.; Wang, R.Q.; Wu, M.X.; Jiang, J.; Wang, Y.Y.; Liu, R.B. Boosting Enhancement of the electron-phonon coupling in mixed dimensional CdS/graphene van der Waals heterojunction. Adv. Mater. Interfaces 2022, 9, 2101893. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, W.; Zhang, Y.; Zeng, C.X.; Zhang, W.N.; Fu, L.; Sun, M.; Wu, Y.Z.; Hao, J.; Zhong, W.; et al. Introducing spin polarization into mixed-dimensional van der waals heterostructures for high-efficiency visible-light photocatalysis. Energy Environ. Mater. 2022, 1–9. [Google Scholar] [CrossRef]
- Matsyshyn, O.; Xiong, Y.; Arora, A.; Song, J.C.W. Layer photovoltaic effect in van der Waals heterostructures. Phys. Rev. B 2023, 107, 205306. [Google Scholar] [CrossRef]
- Kakkar, S.; Majumdar, A.; Ahmed, T.; Parappurath, A.; Gill, N.K.; Watanabe, K.; Taniguchi, T.; Ghosh, A. High-efficiency infrared sensing with optically excited graphene-transition metal dichalcogenide heterostructures. Small 2022, 18, 2202626. [Google Scholar] [CrossRef]
- Wang, P.Q.; Jia, C.C.; Huang, Y.; Duan, X.F. Van der Waals heterostructures by design: From 1D and 2D to 3D. Matter 2021, 4, 552–581. [Google Scholar] [CrossRef]
- Wu, H.H.; Liu, X.C.; Zhu, K.Y.; Huang, Y. Fano resonance in near-field thermal radiation of two-Dimensional Van der Waals heterostructures. Nanomaterials 2023, 13, 1425. [Google Scholar] [CrossRef]
- Ye, F.; Islam, A.; Wang, Y.; Guo, J.; Feng, P.X.-L. Phase transition of MoTe2 controlled in van der Waals heterostructure nanoelectromechanical systems. Small 2023, 19, e2205327. [Google Scholar] [CrossRef]
- Sulleiro, M.V.; Develioglu, A.; Quiros-Ovies, R.; Martin-Perez, L.; Sabanes, N.M.; Gonzalez-Juarez, M.L.; Gomez, I.J.; Vera-Hidalgo, M.; Sebastian, V.; Santamaria, J. Fabrication of devices featuring covalently linked MoS2-graphene heterostructures. Nat. Chem. 2022, 14, 695. [Google Scholar] [CrossRef]
- Belete, M.; Engström, O.; Vaziri, S.; Lippert, G.; Lukosius, M.; Kataria, S.; Lemme, M.C. Electron Transport across vertical silicon/MoS2/graphene heterostructures: Towards efficient emitter diodes for graphene base hot electron transistors. ACS Appl. Mater. Interfaces 2020, 12, 9656–9663. [Google Scholar] [CrossRef]
- Wang, H.D.; Gao, S.; Zhang, F.; Meng, F.X.; Guo, Z.N.; Cao, R.; Zeng, Y.H.; Zhao, J.L.; Chen, S.; Hu, H.G.; et al. Repression of Interlayer Recombination by Graphene Generates a Sensitive Nanostructured 2D vdW Heterostructure ased Photodetector. Adv. Sci. 2021, 8, 2100503. [Google Scholar] [CrossRef]
- Liao, L.; Lin, Y.C.; Bao, M.; Cheng, R.; Bai, J.; Liu, Y.; Qu, Y.; Wang, K.L.; Huang, Y.; Duan, X. High-speed graphene transistors with a self-aligned nanowire gate. Nature 2010, 467, 305. [Google Scholar] [CrossRef]
- Liao, L.; Bai, J.; Qu, Y.; Lin, Y.C.; Li, Y.; Huang, Y.; Duan, X. High-kappa oxide nanoribbons as gate dielectrics for high mobility top-gated graphene transistors. Proc. Natl. Acad. Sci. USA 2010, 107, 6711–6715. [Google Scholar] [CrossRef]
- Liu, M.X.; Xue, Z.M.; Wang, Y.F.; Li, X.D.; Wang, C.G. Lateral constrained wrinkling of the film with partial contact. Int. J. Mech. Sci. 2022, 217, 107022. [Google Scholar] [CrossRef]
- Wimalananda, M.D.S.L.; Kim, J.K.; Lee, J.M. Characteristics of highly area-mismatched graphene-to-substrate transfers and the predictability of wrinkle formation in graphene for stretchable electronics. Adv. Mater. 2020, 7, 2001224. [Google Scholar] [CrossRef]
- Segawa, Y.; Yamazaki, K.; Yamasaki, J.; Gohara, K. Quasi-static 3D structure of graphene ripple measured using aberration-corrected TEM. Nanoscale 2021, 13, 5847–5856. [Google Scholar] [CrossRef]
- Banerjee, R.; Granzier-Nakajima, T.; Lele, A.; Schulze, J.A.; Hossain, M.J.; Zhu, W.B.; Pabbi, L.; Kowalik, M.; Duin, A.C.T.; Terrones, M.; et al. On the Origin of Nonclassical Ripples in Draped Graphene Nanosheets: Implications for Straintronics. ACS Appl. Nano Mater. 2022, 5, 10829–10838. [Google Scholar] [CrossRef]
- Li, Y.L.; Liu, X.Y.; Chen, C.H.; Duchamp, J.; Huang, R.; Chung, T.F.; Young, M.; Chalal, T.; Chen, Y.P.; Heflin, J.R.; et al. Differences in self-assembly of spherical C-60 and planar PTCDA on rippled graphene surfaces. Carbon 2019, 145, 549–555. [Google Scholar] [CrossRef]
- Min-Dianey, K.A.A.; Le, T.K.; Qadir, A.; M’Bouana, N.L.P.; Malik, M.; Kim, S.W.; Choi, J.R.; Pham, P.V. The ripple effect of graphite nanofilm on stretchable polydimethylsiloxane for optical sensing. Nanomaterials 2021, 11, 2934. [Google Scholar] [CrossRef]
- Sun, P.Z.; Xiong, W.Q.; Bera, A.; Timokhin, I.; Wu, Z.F.; Mishchenko, A.; Sellers, M.C.; Liu, B.L.; Cheng, H.M.; Janzen, E.; et al. Unexpected catalytic activity of nanorippled graphene. Proc. Natl. Acad. Sci. USA 2022, 120, e2300481120. [Google Scholar] [CrossRef]
- Hou, Y.T.; Stehle, R.C.; Qing, F.Z.; Li, X.S. Co-localized characterization of aged and transferred CVD graphene with scanning electron microscopy, atomic force microscopy, and raman spectroscopy. Adv. Mater. Technol. 2023, 8, 2200596. [Google Scholar] [CrossRef]
- Yildiz, G.; Bolton-Warberg, M.; Awaja, F. Graphene and graphene oxide for bio-sensing: General properties and the effects of graphene ripples. Acta Biomater. 2021, 131, 62–79. [Google Scholar] [CrossRef] [PubMed]
- Manno, D.; Torrisi, L.; Silipigni, L.; Buccolieri, A.; Cutroneo, M.; Torrisi, A.; Calcagnile, L.; Serra, A. From GO to rGO: An analysis of the progressive rippling induced by energetic ion irradiation. Appl. Surf. Sci. 2022, 586, 152789. [Google Scholar] [CrossRef]
- Sun, R.X.; Guo, Q.Q.; Huo, C.F.; Yan, X.Q.; Liu, Z.B.; Tian, J.G. Latest strategies for rapid and point of care detection of mycotoxins in food: A review. ACS Appl. Mater. Interfaces 2021, 13, 21573–21581. [Google Scholar] [CrossRef] [PubMed]
- Nikolaievskyi, D.; Torregrosa, M.; Merlen, A.; Clair, S.; Chuzel, O.; Parrain, J.L.; Neisus, T.; Campos, A.; Cabie, M.; Martin, C.; et al. Wrinkling and crumpling in twisted few and multilayer CVD graphene: High density of edge modes influencing Raman spectra. Carbon 2023, 203, 650–660. [Google Scholar] [CrossRef]
- Musikhin, S.; Talebi-Moghaddam, S.; Corbin, J.C.; Smallwood, G.J.; Schulz, C.; Daun, K.J. Crumpled few-layer graphene: Connection between morphology and optical properties. Carbon 2021, 182, 677–690. [Google Scholar] [CrossRef]
- Komlenok, M.; Kurochitsky, N.; Pivovarov, P.; Rybin, M.; Obraztsova, E. Field Electron Emission from Crumpled CVD Graphene Patterns Printed via Laser-Induced Forward Transfer. Nanomaterials 2022, 12, 1934. [Google Scholar] [CrossRef]
- Lee, M.J.; Lee, K.; Lim, J.; Li, M.C.; Noda, S.; Kwon, S.J.; DeMattia, B.; Lee, B.; Lee, S.W. Outstanding low-temperature performance of structure-controlled graphene anode based on surface-controlled charge storage mechanism. Adv. Funct. Mater. 2021, 31, 2009397. [Google Scholar] [CrossRef]
- Hu, K.M.; Liu, Y.Q.; Zhou, L.W.; Xue, Z.Y.; Peng, B.; Yan, H.; Di, Z.F.; Jiang, X.S.; Meng, G.; Zhang, W.M. Delamination-free functional graphene surface by multiscale, conformal wrinkling. Adv. Funct. Mater. 2020, 30, 2003273. [Google Scholar] [CrossRef]
- Li, Z.L.; Young, R.J.; Papageorgiou, D.G.; Kinloch, I.A.; Zhao, X.; Yang, C.; Hao, S.J. Interfacial stress transfer in strain engineered wrinkled and folded graphene. 2D Mater. 2019, 6, 045026. [Google Scholar] [CrossRef]
- Rhee, D.; Deng, S.K.; Odom, T.W. Soft skin layers for reconfigurable and programmable nanowrinkles. Nanoscale 2020, 12, 23920–23938. [Google Scholar] [CrossRef]
- Feng, L.C.; Chen, M.H.; Qian, Y.; Tian, J.W.; Liu, J.C.; Niu, S.; Muhammad, H.; Dong, M.D.; Zhong, J. Wrinkles with changing orientation and complexity in a single piece of thin film. J. Appl. Phys. 2019, 125, 245301. [Google Scholar] [CrossRef]
- Sampathkumar, K.; Androulidakis, C.; Koukaras, E.N.; Rahova, J.; Drogowska, K.; Kalbac, M.; Vetushka, A.; Fejfar, A.; Galiotis, C.; Frank, O. Sculpturing graphene wrinkle patterns into compliant substrates. Carbon 2019, 146, 772–778. [Google Scholar] [CrossRef]
- Kil, M.S.; Park, H.J.; Yoon, J.H.; Jang, J.W.; Lee, K.G.; Choi, B.G. Stretchable graphene conductor based on fluid dynamics and its application to flexible conductometric sensor. Carbon Lett. 2022, 32, 1791–1798. [Google Scholar] [CrossRef]
- Deng, S.K.; Berry, V. Wrinkled, rippled and crumpled graphene: An overview of formation mechanism, electronic properties, and applications. Mater. Today 2016, 19, 197–212. [Google Scholar] [CrossRef]
- Zhang, T.F.; Zhao, J.; Wang, Z.L.; Zhao, Y.X.; Wu, S.M.; Lai, L.M.; Li, M.J.; Jin, Y.H.; Wang, P.J.; Fan, S.S.; et al. Substrate engineering-tailored fabrication of aligned graphene nanoribbon arrays: Implications for graphene electronic devices. ACS Appl. Nano Mater. 2022, 4, 13838–13847. [Google Scholar] [CrossRef]
- Kumar, J.; Karthik, P.; Neppolian, B.; Thiruvadigal, D.J. Functionalization of zigzag graphene nanoribbon with DNA nucleobases-A DFT study. Appl. Surf. Sci. 2019, 496, 143667. [Google Scholar] [CrossRef]
- Houtsma, R.S.K.; de la Rie, J.; Stohr, M. Atomically precise graphene nanoribbons: Interplay of structural and electronic properties. Chem. Soc. Rev. 2021, 50, 6541–6568. [Google Scholar] [CrossRef] [PubMed]
- Chuan, M.W.; Lok, S.Z.; Hamzah, A.; Alias, N.E.; Sultan, S.M.; Lim, C.S.; Tan, M.L.P. Electronic properties of graphene nanoribbons with Stone-Wales defects using the tight-binding method. Adv. Nano Res. 2023, 14, 1–15. [Google Scholar] [CrossRef]
- Schneider, S.; Hoffmann-Vogel, R. Electrostatic forces above graphene nanoribbons and edges interpreted as partly hydrogen-free. Nanoscale 2020, 12, 17895–17901. [Google Scholar] [CrossRef]
- Zhang, S.H.; Chen, H.Y.; Hu, J.; Zhao, X.H.; Niu, X.B. First-principles calculations on lateral heterostructures of armchair graphene antidot nanoribbons for band alignment. ACS Appl. Nano Mater. 2022, 5, 5699–5708. [Google Scholar] [CrossRef]
- Pan, Z.H.; Liu, N.; Fu, L.; Liu, Z.F. Wrinkle engineering: A new approach to massive graphene nanoribbon arrays. J. Am. Chem. Soc. 2011, 133, 17578–17581. [Google Scholar] [CrossRef]
- Miyajima, K.; Yabushita, S.; Knickelbein, M.B.; Nakajima, A. Stern-gerlach experiments of one-dimensional metal-benzene sandwich clusters: Mn(C6H6)m(M=Al, Sc, Ti, and V). J. Am. Chem. Soc. 2007, 129, 8473–8480. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.Y.; Zhang, X.Y.; Ye, X.Y.; Wang, J.L. Structure and electronic properties of bilayer graphene functionalized with half-sandwiched transition metal-cyclopentadienyl complexes. Phys. Chem. Chem. Phys. 2016, 18, 22390–22398. [Google Scholar] [CrossRef]
- Silva, W.R.; Cao, W.J.; Yang, D.S. Low-energy photoelectron imaging spectroscopy of Lan(Benzene) (n = 1 and 2). J. Phys. Chem. A 2017, 21, 8440–8447. [Google Scholar] [CrossRef] [PubMed]
- Pan, P.; Zhang, G.L.; Shang, Y.; Yang, Z.D.; Hu, Y.Y. (Bz)n and (VBz)n covalent functionalized MoS2 monolayer: Electronic and transport properties. Mater. Res. Express 2019, 6, 046304. [Google Scholar] [CrossRef]
- Gan, T.; Zhang, G.L.; Shang, Y.; Su, X.H.; Yang, Z.D.; Sun, X.J. Electronic and transport properties of the (VBz)n@MoS2NT nanocable. Phys. Chem. Chem. Phys. 2016, 18, 4385–4393. [Google Scholar] [CrossRef]
- Qu, L.T.; Liu, Y.; Baek, J.B.; Dai, L.M. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 2010, 4, 1321–1326. [Google Scholar] [CrossRef]
- Wang, Y.X.; Jiang, Y.J.; Gao, S.N.; Yu, H.; Zhang, G.L.; Zhang, F.M. Tuning magnetism and transport property of planar and wrinkled FePP@GNR hybrid materials. AIP Adv. 2020, 10, 045112. [Google Scholar] [CrossRef]
- Kondoh, H.; Iwasaki, M.; Shimada, T.; Amemiya, K.; Yokoyama, T.; Ohta, T. Adsorption of thiolates to singly coordinated sites on Au(111) evidenced by photoelectron diffraction. Phys Rev Lett 2003, 90, 066102. [Google Scholar] [CrossRef]
- Yang, Y.; Han, X.; Han, Y.; Gong, W.J. First-principle studies on electron transport properties in four-terminal MoS2 nanoribbons. Physica B 2019, 554, 90–96. [Google Scholar] [CrossRef]
- Junquera, J.; Paz, Ó.; Sánchez-Portal, D.; Artacho, E. Numerical Atomic Orbitals for Linear-scaling Calculations. Phys. Rev. B 2001, 64, 235111. [Google Scholar] [CrossRef]
- Büttiker, M.; Imry, Y.; Landauer, R.; Pinhas, S. Generalized Many-channel Conductance Formula with Application to Small Rings. Phys. Rev. B 1985, 31, 6207–6215. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhou, J.; Liu, X.J.; Yao, C.B.; Li, H.; Niu, L.; Wang, Y.; Yin, H.T. Spin transport through a junction entirely consisting of molecules from first principles. Appl. Phys. Lett. 2017, 111, 172408. [Google Scholar] [CrossRef]
Model | Spin State | 0.0 V | 0.2 V | 0.4 V |
---|---|---|---|---|
0 | Up-spin | |||
Down-spin | ||||
90exo | Up-spin | |||
Down-spin | ||||
180exo | Up-spin | |||
Down-spin | ||||
90endo | Up-spin | |||
Down-spin | ||||
180endo | Up-spin | |||
Down-spin |
Model | VS | S-Lead | D-Lead | ||
---|---|---|---|---|---|
Up-Spin | Down-Spin | Up-Spin | Down-Spin | ||
0 | 0.0 V | ||||
0.2 V | |||||
0.4 V | |||||
90exo | 0.0 V | ||||
0.2 V | |||||
0.4 V | |||||
180exo | 0.0 V | ||||
0.2 V | |||||
0.4 V | |||||
90endo | 0.0 V | ||||
0.2 V | |||||
0.4 V | |||||
180 endo | 0.0 V | ||||
0.2 V | |||||
0.4 V |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Shang, Y.; Hu, Y.; Pei, L.; Zhang, G. Transport Property of Wrinkled Graphene Nanoribbon Tuned by Spin-Polarized Gate Made of Vanadium-Benzene Nanowire. Nanomaterials 2023, 13, 2270. https://doi.org/10.3390/nano13152270
Yu H, Shang Y, Hu Y, Pei L, Zhang G. Transport Property of Wrinkled Graphene Nanoribbon Tuned by Spin-Polarized Gate Made of Vanadium-Benzene Nanowire. Nanomaterials. 2023; 13(15):2270. https://doi.org/10.3390/nano13152270
Chicago/Turabian StyleYu, Hong, Yan Shang, Yangyang Hu, Lei Pei, and Guiling Zhang. 2023. "Transport Property of Wrinkled Graphene Nanoribbon Tuned by Spin-Polarized Gate Made of Vanadium-Benzene Nanowire" Nanomaterials 13, no. 15: 2270. https://doi.org/10.3390/nano13152270
APA StyleYu, H., Shang, Y., Hu, Y., Pei, L., & Zhang, G. (2023). Transport Property of Wrinkled Graphene Nanoribbon Tuned by Spin-Polarized Gate Made of Vanadium-Benzene Nanowire. Nanomaterials, 13(15), 2270. https://doi.org/10.3390/nano13152270