Chiral Mechanical Effect of the Tightly Focused Chiral Vector Vortex Fields Interacting with Particles
Abstract
1. Introduction
2. Theoretical Model
Numerical Results
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guijarro, A.; Yus, M. The Origin of Chirality in the Molecules of Life: A Revision from Awareness to the Current Theories and Perspectives of this Unsolved Problem; Royal Society of Chemistry: London, UK, 2008. [Google Scholar]
- Greenfield, J.L.; Wade, J.; Brandt, J.R.; Shi, X.; Penfold, T.J.; Fuchter, M.J. Pathways to increase the dissymmetry in the interaction of chiral light and chiral molecules. Chem. Sci. 2021, 12, 8589–8602. [Google Scholar] [CrossRef]
- Cameron, R.P.; Barnett, S.M.; Yao, A.M. Optical helicity, optical spin and related quantities in electromagnetic theory. New J. Phys. 2012, 14, 053050. [Google Scholar] [CrossRef]
- Lifson, A.; Reuschle, C.; Sjodahl, M. The chirality-flow formalism. Eur. Phys. J. C 2020, 80, 1–27. [Google Scholar] [CrossRef]
- Mun, J.; Kim, M.; Yang, Y.; Badloe, T.; Ni, J.; Chen, Y.; Qiu, C.W.; Rho, J. Electromagnetic chirality: From fundamentals to nontraditional chiroptical phenomena. Light Sci. Appl. 2020, 9, 139. [Google Scholar] [CrossRef]
- Forbes, K.A.; Andrews, D.L. Enhanced optical activity using the orbital angular momentum of structured light. Phys. Rev. Res. 2019, 1, 033080. [Google Scholar] [CrossRef]
- Moreno, E.; Colombier, J.P. Axicon lenses with chiral-focusing properties modeling by means of analytical functions. Opt. Lasers Eng. 2023, 163, 107437. [Google Scholar] [CrossRef]
- Greenberg, A.P.; Prabhakar, G.; Ramachandran, S. High resolution spectral metrology leveraging topologically enhanced optical activity in fibers. Nat. Commun. 2020, 11, 5257. [Google Scholar] [CrossRef]
- Davis, T.; Hendry, E. Superchiral electromagnetic fields created by surface plasmons in nonchiral metallic nanostructures. Phys. Rev. B 2013, 87, 085405. [Google Scholar] [CrossRef]
- Vázquez-Guardado, A.; Chanda, D. Superchiral light generation on degenerate achiral surfaces. Phys. Rev. Lett. 2018, 120, 137601. [Google Scholar] [CrossRef] [PubMed]
- Solomon, M.L.; Hu, J.; Lawrence, M.; García-Etxarri, A.; Dionne, J.A. Enantiospecific optical enhancement of chiral sensing and separation with dielectric metasurfaces. ACS Photonics 2018, 6, 43–49. [Google Scholar] [CrossRef]
- Kramer, C.; Schaferling, M.; Weiss, T.; Giessen, H.; Brixner, T. Analytic optimization of near-field optical chirality enhancement. ACS Photonics 2017, 4, 396–406. [Google Scholar] [CrossRef] [PubMed]
- Van Kruining, K.; Cameron, R.; Götte, J. Superpositions of up to six plane waves without electric-field interference. Optica 2018, 5, 1091–1098. [Google Scholar] [CrossRef]
- Narushima, T.; Hashiyada, S.; Okamoto, H. Nanoscopic study on developing optical activity with increasing chirality for two-dimensional metal nanostructures. ACS Photonics 2014, 1, 732–738. [Google Scholar] [CrossRef]
- Ayuso, D.; Neufeld, O.; Ordonez, A.F.; Decleva, P.; Lerner, G.; Cohen, O.; Ivanov, M.; Smirnova, O. Synthetic chiral light for efficient control of chiral light–matter interaction. Nat. Photonics 2019, 13, 866–871. [Google Scholar] [CrossRef]
- Tang, Y.; Cohen, A.E. Optical chirality and its interaction with matter. Phys. Rev. Lett. 2010, 104, 163901. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Cohen, A.E. Enhanced enantioselectivity in excitation of chiral molecules by superchiral light. Science 2011, 332, 333–336. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Askarpour, A.N.; Sun, L.; Shi, J.; Li, X.; Alù, A. Chirality detection of enantiomers using twisted optical metamaterials. Nat. Commun. 2017, 8, 14180. [Google Scholar] [CrossRef]
- Woźniak, P.; De Leon, I.; Höflich, K.; Leuchs, G.; Banzer, P. Interaction of light carrying orbital angular momentum with a chiral dipolar scatterer. Optica 2019, 6, 961–965. [Google Scholar] [CrossRef]
- Brullot, W.; Vanbel, M.K.; Swusten, T.; Verbiest, T. Resolving enantiomers using the optical angular momentum of twisted light. Sci. Adv. 2016, 2, e1501349. [Google Scholar] [CrossRef]
- Hu, H.; Gan, Q.; Zhan, Q. Generation of a nondiffracting superchiral optical needle for circular dichroism imaging of sparse subdiffraction objects. Phys. Rev. Lett. 2019, 122, 223901. [Google Scholar] [CrossRef]
- Horrer, A.; Zhang, Y.; Gérard, D.; Béal, J.; Kociak, M.; Plain, J.; Bachelot, R. Local optical chirality induced by near-field mode interference in achiral plasmonic metamolecules. Nano Lett. 2019, 20, 509–516. [Google Scholar] [CrossRef]
- Reddy, I.V.; Baev, A.; Furlani, E.P.; Prasad, P.N.; Haus, J.W. Interaction of structured light with a chiral plasmonic metasurface: Giant enhancement of chiro-optic response. Acs Photonics 2018, 5, 734–740. [Google Scholar] [CrossRef]
- Wang, Z.; Gao, M.; Hao, X.; Qin, W. Helical-chiroptical nanowires generated orbital angular momentum for the detection of circularly polarized light. Appl. Phys. Lett. 2020, 116, 053301. [Google Scholar] [CrossRef]
- Sirenko, A.A.; Marsik, P.; Bugnon, L.; Soulier, M.; Bernhard, C.; Stanislavchuk, T.; Xu, X.; Cheong, S.W. Total angular momentum dichroism of the terahertz vortex beams at the antiferromagnetic resonances. Phys. Rev. Lett. 2021, 126, 157401. [Google Scholar] [CrossRef]
- Ni, J.; Liu, S.; Wu, D.; Lao, Z.; Wang, Z.; Huang, K.; Ji, S.; Li, J.; Huang, Z.; Xiong, Q.; et al. Gigantic vortical differential scattering as a monochromatic probe for multiscale chiral structures. Proc. Natl. Acad. Sci. USA 2021, 118, e2020055118. [Google Scholar] [CrossRef]
- Yuan, Z.; Zhou, Y.; Qiao, Z.; Eng Aik, C.; Tu, W.C.; Wu, X.; Chen, Y.C. Stimulated chiral light–matter interactions in biological microlasers. ACS Nano 2021, 15, 8965–8975. [Google Scholar] [CrossRef]
- Genet, C. Chiral light–chiral matter interactions: An optical force perspective. ACS Photonics 2022, 9, 319–332. [Google Scholar] [CrossRef]
- Yoo, S.; Park, Q.H. Chiral light-matter interaction in optical resonators. Phys. Rev. Lett. 2015, 114, 203003. [Google Scholar] [CrossRef]
- Li, M.; Yan, S.; Zhang, Y.; Chen, X.; Yao, B. Optical separation and discrimination of chiral particles by vector beams with orbital angular momentum. Nanoscale Adv. 2021, 3, 6897–6902. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Lozano, J.E.; Martínez, A. Toward Chiral Sensing and Spectroscopy Enabled by All-Dielectric Integrated Photonic Waveguides. Laser Photonics Rev. 2020, 14, 1900422. [Google Scholar] [CrossRef]
- Zhao, R.; Li, J.; Zhang, Q.; Liu, X.; Zhang, Y. Behavior of SPPs in chiral–graphene–chiral structure. Opt. Lett. 2021, 46, 1975–1978. [Google Scholar] [CrossRef] [PubMed]
- Miliutina, E.; Zadny, J.; Guselnikova, O.; Storch, J.; Walaska, H.; Kushnarenko, A.; Burtsev, V.; Svorcik, V.; Lyutakov, O. Chiroplasmon-active optical fiber probe for environment chirality estimation. Sens. Actuators B Chem. 2021, 343, 130122. [Google Scholar] [CrossRef]
- Begzjav, T.K.; Zhang, Z.; Scully, M.O.; Agarwal, G.S. Enhanced signals from chiral molecules via molecular coherence. Opt. Express 2019, 27, 13965–13977. [Google Scholar] [CrossRef] [PubMed]
- Neubrech, F.; Hentschel, M.; Liu, N. Reconfigurable plasmonic chirality: Fundamentals and applications. Adv. Mater. 2020, 32, 1905640. [Google Scholar] [CrossRef] [PubMed]
- Ying, X.; Rui, G.; Zou, S.; Gu, B.; Zhan, Q.; Cui, Y. Synthesis of multiple longitudinal polarization vortex structures and its application in sorting chiral nanoparticles. Opt. Express 2021, 29, 19001–19014. [Google Scholar] [CrossRef]
- Stella, U.; Grosjean, T.; De Leo, N.; Boarino, L.; Munzert, P.; Lakowicz, J.R.; Descrovi, E. Vortex beam generation by spin-orbit interaction with Bloch surface waves. ACS Photonics 2020, 7, 774–783. [Google Scholar] [CrossRef]
- Maucher, F.; Skupin, S.; Gardiner, S.; Hughes, I. Creating complex optical longitudinal polarization structures. Phys. Rev. Lett. 2018, 120, 163903. [Google Scholar] [CrossRef]
- Ghosh, S.; Freimuth, F.; Gomonay, O.; Blügel, S.; Mokrousov, Y. Driving spin chirality by electron dynamics in laser-excited antiferromagnets. Commun. Phys. 2022, 5, 69. [Google Scholar] [CrossRef]
- Jia, S.; Peng, J.; Cheng, Y.; Wang, S. Chiral discrimination by polarization singularities of a metal sphere. Phys. Rev. A 2022, 105, 033513. [Google Scholar] [CrossRef]
- Caridad, J.M.; Tserkezis, C.; Santos, J.E.; Plochocka, P.; Venkatesan, M.; Coey, J.; Mortensen, N.A.; Rikken, G.L.; Krstić, V. Detection of the Faraday chiral anisotropy. Phys. Rev. Lett. 2021, 126, 177401. [Google Scholar] [CrossRef]
- Kim, S.W.; Kim, H.J.; Cheon, S.; Kim, T.H. Circular dichroism of emergent chiral stacking orders in quasi-one-dimensional charge density waves. Phys. Rev. Lett. 2022, 128, 046401. [Google Scholar] [CrossRef]
- Huft, P.R.; Kolbow, J.D.; Thweatt, J.T.; Lindquist, N.C. Holographic plasmonic nanotweezers for dynamic trapping and manipulation. Nano Lett. 2017, 12, 7920–7925. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Maccaferri, N.; Shen, Y.; Li, X.; Zaccaria, R.; Zhang, X.; Gorodetski, Y.; Garoli, D. Particle trapping and beaming using a 3D nanotip excited with a plasmonic vortex. Opt. Lett. 2020, 45, 823–826. [Google Scholar] [CrossRef]
- Kotsifaki, D.; Chormaic, S. Plasmonic optical tweezers based on nanostructures: Fundamentals, advances and prospects. Nanophotonics 2019, 8, 1227–1245. [Google Scholar] [CrossRef]
- Richards, B.; Wolf, E. Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system. Proc. R. Soc. Lond. 1959, 253, 358–379. [Google Scholar]
- Novotny, L.; Hecht, B. Principles of Nano Optics; Cambridge University Press: New York, NY, USA, 2006. [Google Scholar]
- Li, M.; Yan, S.; Zhang, Y.; Yao, B. Generation of controllable chiral optical fields by vector beams. Nanoscale 2020, 12, 15453–15459. [Google Scholar] [CrossRef]
- Albaladejo, S.; Marqués, M.I.; Laroche, M.; Sáenz, J.J. Scattering forces from the curl of the spin angular momentum of a light field. Phys. Rev. Lett. 2009, 102, 113602. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Yan, S.; Zhang, Y.; Liang, Y.; Zhang, P.; Yao, B. Optical sorting of small chiral particles by tightly focused vector beams. Phys. Rev. A 2019, 99, 033825. [Google Scholar] [CrossRef]
- Wang, X.; Rui, G.; Gong, L.; Gu, B.; Cui, Y. Manipulation of resonant metallic nanoparticle using 4Pi focusing system. Opt. Express 2016, 24, 24143–24152. [Google Scholar] [CrossRef]
- Gómez-Medina, R.; Nieto-Vesperinas, M.; Sáenz, J.J. Nonconservative electric and magnetic optical forces on submicron dielectric particles. Phys. Rev. A 2011, 83, 033825. [Google Scholar] [CrossRef]
- Nieto-Vesperinas, M.; Sáenz, J.; Gómez-Medina, R.; Chantada, L. Optical forces on small magnetodielectric particles. Opt. Express 2010, 18, 11428–11443. [Google Scholar] [CrossRef] [PubMed]
- Lakhtakia, A.; Varadan, V.K.; Varadan, V.V. Time-Harmonic Electromagnetic Fields in Chiral Media; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar]
- Canaguier-Durand, A.; Hutchison, J.A.; Genet, C.; Ebbesen, T.W. Mechanical separation of chiral dipoles by chiral light. New J. Phys. 2013, 15, 123037. [Google Scholar] [CrossRef]
- Alizadeh, M.; Reinhard, B.M. Plasmonically enhanced chiral optical fields and forces in achiral split ring resonators. ACS Photonics 2015, 2, 361–368. [Google Scholar] [CrossRef]
- Choi, J.S.; Cho, M. Limitations of a superchiral field. Phys. Rev. A 2012, 86, 063834. [Google Scholar] [CrossRef]
- Wang, S.; Chan, C.T. Lateral optical force on chiral particles near a surface. Nat. Commun. 2014, 5, 3307. [Google Scholar] [CrossRef]
- Xu, Z.; Song, W.; Crozier, K.B. Direct particle tracking observation and Brownian dynamics simulations of a single nanoparticle optically trapped by a plasmonic nanoaperture. Acs Photonics 2018, 5, 2850–2859. [Google Scholar] [CrossRef]
- Li, M.; Yan, S.; Liang, Y.; Zhang, P.; Yao, B. Transverse spinning of particles in highly focused vector vortex beams. Phys. Rev. A 2017, 95, 053802. [Google Scholar] [CrossRef]
- Paez-Lopez, R.; Ruiz, U.; Arrizon, V.; Ramos-Garcia, R. Optical manipulation using optimal annular vortices. Opt. Lett. 2016, 41, 4138–4141. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Liu, Z.; Cheng, Z. Chiral Mechanical Effect of the Tightly Focused Chiral Vector Vortex Fields Interacting with Particles. Nanomaterials 2023, 13, 2251. https://doi.org/10.3390/nano13152251
Zhang Q, Liu Z, Cheng Z. Chiral Mechanical Effect of the Tightly Focused Chiral Vector Vortex Fields Interacting with Particles. Nanomaterials. 2023; 13(15):2251. https://doi.org/10.3390/nano13152251
Chicago/Turabian StyleZhang, Qiang, Zhirong Liu, and Ziqiang Cheng. 2023. "Chiral Mechanical Effect of the Tightly Focused Chiral Vector Vortex Fields Interacting with Particles" Nanomaterials 13, no. 15: 2251. https://doi.org/10.3390/nano13152251
APA StyleZhang, Q., Liu, Z., & Cheng, Z. (2023). Chiral Mechanical Effect of the Tightly Focused Chiral Vector Vortex Fields Interacting with Particles. Nanomaterials, 13(15), 2251. https://doi.org/10.3390/nano13152251