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Abstract: In this work, we demonstrate that optical pulling forces (OPFs) can be induced by a hybrid
dimer consisting of a Si nanoparticle (NP) and a coated nanoparticle with a gain core and Au shell
under normal plane wave illumination. Analytical theory reveals that the underlying physical
mechanism relies on interactions between the electric dipole (ED) modes excited in the NPs. As
compared with the individual NP, it is found that the magnitude of optical force can be enlarged
by almost three orders for the Si NP and one order for the coated gain NP in the coupled dimer.
In addition, we find that the OPFs exerted on the NPs are heavily dependent on the gain level of
the core materials, the incident polarization angle and the sizes of the NPs. More interestingly, we
find that the OPF can also be exerted on a trimer system consisting of two identical Si NPs and a
coated NP arranged in a line. The related results could be used to propose a versatile platform for
manipulating NPs.

Keywords: optical pulling force; hybrid nanoparticles; surface plasmon polariton; resonant mode

1. Introduction

Since the demonstration on manipulation with micro-meter size particles reported by
Ashkin in the 1970s [1], optical manipulation based on optical force has been well-developed
and has opened numerous avenues in fundamental and applied science, e.g., physics,
chemistry and biology [2–4]. Optical force exerted on small objects, in general, can be
decomposed into gradient force and radiation pressure. The former is proportional to
the intensity gradient of the incident light and originates from the inhomogeneity of the
electromagnetic field, which can manipulate small particles [5]. Radiation pressure, on
the other hand, always pushes particles made of a passive medium in the direction of
light propagation due to the momentum conservation, thus destabilizing optical trapping.
Recently, nonconservative negative optical forces or optical pulling forces (OPFs) have
attracted extensive considerable attention due to their unusual behaviors: they can pull
particles towards the source of light via a backward scattering force [6–15]. In fact, it can be
rigorously shown that OPF is impossible for a passive nanoparticle (NP) of any shape or
composition with a uniform electromagnetic plane wave. However, in some special cases,
OPFs can be obtained. For instance, structured beams can provide the means for generating
OPF [7,9,10]. In other schemes, the OPF can exert on gain (active) NPs because of an
enhancement in the optical linear momentum as the interaction of light occurs with the
NPs [11–13]. An OPF can also appear when a particle located near the plasmonic interfaces
occurs due to the spin–orbit coupling effect [14]. In addition, strong mode coupling arising
from exceptional interaction between the resonant modes in NPs has raised much attention,
which can also be used to generate OPFs. For example, Lin et al. found that an OPF can
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act on a plasmonic NP due to the Fano resonance coupling between adjacent plasmon
modes [15]. More recently, Xu et al. showed that a small OPF can exert on a low refractive
index NP by positioning it close to a plasmonic NP, due to the interplay between the ED
and the magnetic dipole [8]. Although intensive studies have been conducted for OPFs
on a single dielectric or metal NP [6–11,14,15], the intriguing physics and consequences
of the light pulling all the interacting NPs in a hybrid dimer, trimer and even polymer,
remain elusive and unexplored. In this theoretical paper, we show that induced OPFs can
both exert on a Si NP and a core-shell NP when they are placed close to each other, under
normal plane wave excitation. We then reveal the underlying physics and trace the origin
of this intriguing phenomenon. Finally, we show that the OPF can also be exerted on a
hybrid metal–dielectric trimer system.

2. Results and Discussion

The schematic of this hybrid dimer is depicted in Figure 1a and the system is assumed
to be freestanding in air. The full-wave calculations are performed using the finite-difference
time-domain (FDTD) method. The dimer consists of a Si and a core-shell NP. The coated
NP is composed of an active core with an inner radius r and the Au shell with an outer
radius RB. The refractive index of the core is n-ik and the negative k denotes the global level
of the gain in the materials. We note that the gain effect can be achieved by semiconductor
material with external pumping [16]. The radius of the Si NP is RA and g denotes the
surface-to-surface distance. The dimer is illuminated by a plane wave propagating towards
the z direction, which is polarized along the x-axis. The dielectric constant of Au and Si are
taken from [17] and [18], respectively.
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shell with an outer radius RB. The radius of the Si NP is RA and g is the surface-to-surface distance. The 
intensity of the incident light is 1 mW/mm2. (b) The z-component optical forces act on the dimer with 
RA = RB = 50 nm, r = 40 nm, g = 60 nm, and the refractive index of the core particle is 1.44-0.345i. The 
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(λ = 621 nm). 

Figure 1. (a) Schematic of OPF induced on a dimer consisting of a Si and a core-shell NP. The coated
NP is composed of an active core with an inner radius r and the refractive index is n-ik, and the Au
shell with an outer radius RB. The radius of the Si NP is RA and g is the surface-to-surface distance.
The intensity of the incident light is 1 mW/mm2. (b) The z-component optical forces act on the dimer
with RA = RB = 50 nm, r = 40 nm, g = 60 nm, and the refractive index of the core particle is 1.44-0.345i.
The inset in (b) shows the near-field intensity distribution at the wavelength position in the OPF peak
(λ = 621 nm).
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To quantify the OPFs exerted on the NPs, the calculations for the optical forces can be

performed by using the Maxwell stress tensor (MST) method
↔
T [13,19]:

〈↔
T
〉

=
1
2

Re

εrε0EE∗ + µrµ0HH∗ −
↔
I
2
(εrε0|E|2 + µrµ0|H|2)

 (1)

where εr, µr are the relative permittivity and permeability. The time-averaged force can be
obtained by integrating the MST over the surface S of the Si or the coated NP [13,19]:

〈F〉 =
∫
S

〈↔
T
〉
•nds (2)

Figure 1b shows the z-component optical forces acting on the dimer, with RA = RB = 50 nm,
r = 40 nm, g = 60 nm, and the refractive index of the core particle is 1.44-0.345i. For the
coated NP, it can be seen that the negative value of the z-component optical force appears
in the whole wavelength band (see black line), indicating that an OPF can be exerted on the
coated NP. Interestingly, for the Si NP, an OPF can also be achieved in the range from 618 nm
to 621.4 nm. The high-refractive-index NPs, e.g., Si and Ge, are generally difficult to trap
due to the mismatch between the NPs and their surrounding medium [15]; however, the
OPF acting on the Si NP can be easily realized in our system due to strong electromagnetic
coupling, which can be characterized by the near-field intensity distribution in the gap
region. We can clearly observe that the near-field intensity in the gap at the wavelength
position in the OPF peak (see inset in Figure 1b) is very large, and can induce a strong OPF.
We note that the strong OPFs on the NPs mainly come from the resonant interplay between
the gain medium and the metallic nanoshell. Furthermore, it is also clearly observed that
the OPF peaks for the Si and coated NPs appear at the same wavelength position (about
621 nm). To better understand the physical mechanism of the OPFs, we study the optical
response of the isolated NP, as shown in Figure 2a,b. For the individual coated NP, an
OPF can be obtained (see black solid line in Figure 2a), due to the recoil generated by the
extra momentum in the forward direction and the maximal OPF can be enlarged about
two orders larger than that of a single homogeneous gain NP, as has been corroborated
theoretically [11,20]. However, the magnitude of the OPF acting on the individual coated
NP can only reach about 3.4 pN at the position of the gain-assist plasmon ED mode, which
is weakened by about one order compared with that in the coupled case. The case of the
Si NP is shown in Figure 2b, where we can clearly see that the OPF is absent (see black
line) due to the momentum conservation theory, meanwhile, the magnitude of the OPF is
weakened by about three orders compared with that in the coupled dimer. Furthermore, we
can clearly observe that the scattering spectra of the Si and coated NPs are both dominated
by the contributions of the dipole modes (see red solid lines in Figure 2a,b). It is worth
noting that the OPFs can also be extended to other dielectric NPs in the coupled dimer.
Furthermore, the OPFs on the NPs appear in a very narrow wavelength range, which may
impose limitations for many practical applications, and to avoid this, we can use the silver
shell with the same size instead of the Au shell to broaden the OPFs band efficiently (the
related results are not shown here).
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The results shown above are numerical simulations, but in order to illustrate the
physical origin of the behaviors shown in Figure 2, from now on let us work on the OPF
analytically. For small NPs, we can employ the dipole approximation and their optical
properties can be described by the induced dipoles on NPs [21]:

pA,B = ε0αA,BE0,mA,B = χA,BH0 (3)

where PA (PB) and mA (mB) are the induced ED and MD moments of the Si NP and coated
NP, respectively. E0 and H0 are the external electric and magnetic fields. αA,B and χA,B are
the electric and magnetic polarizabilities, which can be calculated by the Mie coefficients a1
and b1 [21]:

αA,B = 6πi
a1

k3
0

,χA,B = 6πi
b1

k3
0

(4)

where k0 is the wavevector. To investigate the optical response of an interaction coated NP
and Si NP, the coupled electric and magnetic dipole approximation (CEMDA) method is
applied. The equations can be written as [8,21,22]:

pA = αA{ε0E0 + apB + b(n · pB)n +
d
c
(n×mB)} (5)

pB = αB{ε0E0 + apA + b(n · pA)n +
d
c
(n×mA)} (6)

mA = χA{H0 + amB + b(n ·mB)n− dc(n× pB)} (7)

mB = χB{H0 + amA + b(n ·mA)n− dc(n× pA)} (8)
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where c is the speed of light, n is a unit vector and points from the Si to the coated NP, and
the coefficients a, b and d can be written as:

a =
eikD

4πD
(k2

0 −
1

D2 +
ik0

D
) (9a)

b =
eikD

4πD
(−k2

0 +
3

D2 −
3ik0

D
) (9b)

d =
eikD

4πD
(k2

0 +
ik0

D
) (9c)

where D is the distance between the NPs. It is pointed out that these solutions can provide
us with useful insights and can provide information about the optical responses of the
hybrid under different conditions. In our system, the dimer is aligned at the x-axis (n = (1,
0, 0)) and the plane wave is propagated along the z-axis (k = (0, 0, k)), with the electric field
polarized along the y-axis (E0 = (0, Ey, 0)). In this configuration, one may note that all the
components, except pAx, pBx, mAy, mBy, pAz, and pBz, vanish. Once the induced ED and
magnetic dipole (MD) moments of the NPs are obtained, the optical force exerted on each
particle in the coupled system reads as [8,22]:

F =
1
2

Re{(∇E∗0) · p + (∇H∗0) ·m−
k4

0
6πε0c

(p×m∗)} (10)

In Equation (10), F can be decomposed into three components, i.e., Fe, Fm and Fem.
Physically, Fe and Fm arise from the dipole moments p and m, respectively. The component
Fem arises from the interaction between p and m. Figure 2c,d shows the results for Fz
calculated by the CEMDA (green dashed lines) acting on the coated and Si NPs, respectively.
They show excellent agreement with the results obtained by the FDTD calculations (black
solid line). Additionally, we see that Fe indeed plays a dominant role in Fz, while Fm and Fem
can be negligible due to their small magnitudes for both NPs. This can be easily explained
with the help of multipole expansion, as shown in Figure 2a,b. For both NPs, the MDs can
be neglected due to their very small contributions to the scattering compared with that of
EDs. In such case, Fz,A and Fz,B are mainly determined by the imaginary part of px,A and
px,B, respectively:

Fz(A,B) =
1
2

k0Im[px(A,B)]E0 (11)

It implies that Fz should be proportional to the imaginary of px once the wavelength is
fixed. In Figure 3a, we show the dependence of Fz on the g, exerting upon the Si NP (red
solid line) and coated NP (black solid line), respectively. Figure 3b shows the corresponding
imaginary part of px excited in the coated NP (black dashed line) and Si NP (red dashed
line). The incident wavelength is fixed at 621 nm. As anticipated in Equation (11), the
line shapes for Fz are similar to the corresponding px for both NPs. Furthermore, it can
be observed in Figure 3a that an optical pushing force can act on the coated NP when
the g is less than 57 nm, and a remarked OPF appears when the g increases further; in
addition, the maximum OPF emerges at around g = 60 nm. As the g increases, it decays
when approaching about 3.4 pN, which is the same as the result for the individual coated
NP (see black sold line in Figure 2a). This is because when the gap size g becomes very
large, the optical response of the resulting pB in the coupled dimer can be considered the
same as that of the individual coated NP due to a, b→ 0. For the Si NP, the OPF appears in
the range from 30 nm to 120 nm, where the maximum OPF occurs at around g = 59 nm,
and decays approaching a small optical pulling force when g is larger than 120 nm.
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Furthermore, the induced ED can also be strongly influenced by the gain level [11,12].
In Figure 4a,b, we show the results for the OPFs as a function of the wavelength and gain
parameter k exerted on the Si NP and core-shell NP, respectively. All the other parameters
are identical with that of Figure 1b. The white and colored regions in Figure 4 represent
the optical pushing force and OPF, respectively. For the coated NP, as shown in Figure 4b,
an optical pushing force is exerted on the NP when k is less than 0.345 and the OPF
appears beyond that. When k increases further, the amplitude of the OPF decreases and
the maximum OPF occurs at about l = 621 nm for k = 0.345. This is because when the gain
parameter k is increased after the singular point, the magnitude of the pB degrades due to
excess gain [12,13]. As shown in Figure 4a, we can clearly observe that the optical pushing
force acts on the Si NP when k is less than 0.24 in the whole range of wavelengths. Beyond
that, the OPF appears and the OPF wavelength band becomes wide as k increases. As k
increases to about 0.4, the OPF wavelength band gradually becomes narrow as k increases
further. We can also observe that the maximum OPF acting on the Si NP also appears
at λ = 621 nm for k = 0.345, this arises from the fact that the induced pA of the Si NP in
Equation (5) is totally determined by the pB coated NP when the coefficients a and b in
Equation (6) are non-negligible.
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the colored regions represent the parameters for the OPF.
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Next, we investigate the other geometry parameters that can affect the OPF exerted
on the core-shell NP and Si NP in the coupled dimer, including the incident polarization
angle (θ), and the sizes of the NPs (RA, RB and r). In Figure 5a,b, we show the results for
the OPFs with different θ exerted on the core-shell NP and Si NP, respectively. In fact,
the induced ED moments in both the Si and core-shell NPs could be changed when the
polarization angle θ is varied [8] therefore, the near-field coupling between the two NPs
will be varied too. From Figure 5a,b, we notice that both the Si NP and core-shell NP are
subject to OPFs along the propagation direction when the polarization angle θ is 0◦, 30◦

and 60◦. Furthermore, the magnitudes of the OPFs gradually decrease as the polarization
angle θ increases and the wavelength positions for the maximum OPF is fixed at about
621 nm. When θ = 90◦, it is observed that the Si NP is subject to an optical pushing force
(see green dashed line in Figure 5b), while the core-shell NP is subject to a weak OPF, this is
because the electromagnetic interaction between the two induced ED moments is minimal
in such a case. In order to study the effects of the size of the core-shell NP on the OPFs,
the z component of the optical force exerted on the NPs with different RB and r has been
calculated, as shown in Figure 6a–d. All the other parameters are identical with that of
Figure 1b. We can clearly see the maximal OPFs appear at RB = 50 nm (see Figure 6a,b) and
r = 40 nm (see Figure 6c,d) at about 621 nm, while a significant weak optical force occurs
for the other sizes. This is because the strong ED in the core-shell NP with a gain core and a
plasmonic shell is excited at certain geometrical parameters (singular point) and the small
changes in sizes will lead to dramatic variation in the optical force [12]. Hence, one could
optimize the core-shell particle’s structure parameters to realize optical manipulation. In
Figure 6e,f, we show the OPFs exerted on the core-shell NP and Si NP with different radius
for the Si NP (RA), respectively. For the core-shell NP, the OPF appears when the RA is
varied from 30 nm to 50 nm and the magnitude gradually increases when the RA increases
in the interested wavelength range; however, the optical force is positive (i.e., the pulling
force) when the RA is larger than 50 nm. For the Si NP, we can see that the OPF can be
exerted on this NP with different RA and the maximal OPF occurs at RA = 50 nm.
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The electromagnetic coupling induced OPF is not solely limited to a dimer system, but
more generally, it can occur in the case of multipole closely spaced NPs in a hybrid system,
which can offer an alternative strategy to manipulate multipole NPs. Figure 7a,b shows the
optical forces that act on the coated NP (denoted as B) and Si NPs (denoted as A and C) in a
trimer system, respectively. The hybrid metal–dielectric system consists of two identical Si
NPs, which are symmetrically placed on each side of a coated NP with a distance of l (50 nm,
60 nm and 70 nm). It is noted that the responses of the two Si NPs are the same due to the
symmetry of the system. It can be observed that notable OPFs can act on all the three NPs
when the incident wavelength ranges from 600 nm to 623 nm, originating from the same
physical mechanism mention above, as can be established from the corresponding induced
ED moment spectra displayed in Figure 7c,d. It is also observed that the magnitude of the
OPF is gradually decreased as l increases, as shown in Figure 7, this is because the mutual
interaction through the light exchange weakens as the coefficients a and b decrease [8].
In addition, we see that the OPF peak positions are gradually blue shifted as l increases
due to the mode hybridization [12]. Finally, we investigate the system when the dimer
is illuminated by a focus beam. Figure 8a shows schematics of the NPs illuminated by
a Gaussian beam propagated along the z-axis, which is polarized along the dimer axis
(x-axis), with the beam width set as 1 mm, and the intensity of the Gaussian beam is 1 mW,
and h is the distance between the beam center and the dimer axis. In Figure 8b, we show the
force as a function of the wavelength with different h, and we can see that the OPFs exerted
on the NPs can also be obtained in the range from 618 nm to 621.3 nm by the Gaussian
beam. Furthermore, the peak wavelengths of the OPF are almost fixed at about 621 nm by
the variations of h. The related results could be used to propose a versatile platform for
manipulating NPs.
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3. Conclusions

In conclusion, we have demonstrated that OPFs can be induced by a hybrid dimer
consisting of Si and coated NPs with a gain core and Au shell. Analytical theory reveals
that the underlying physical mechanism of the OPFs arises from interactions between the
ED modes excited in the NPs. As compared with a single NP, it is found that the magnitude
of the optical force can be enlarged by almost three orders for the Si NP and one order
for the coated gain NP in the hybrid dimer. We also show that an OPF can be exerted in
a metal–dielectric trimer system. Finally, we show that an OPF can be exerted on the Si
and coated NPs when the system is illuminated by a laser Gaussian beam. The interesting
results add a novel degree of freedom to optical manipulation.
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