You are currently viewing a new version of our website. To view the old version click .

Journal of Functional Biomaterials

Journal of Functional Biomaterials is an international, interdisciplinary, peer-reviewed, open access journal on materials for biomedical use and is published monthly online by MDPI.

Indexed in PubMed | Quartile Ranking JCR - Q1 (Engineering, Biomedical)

All Articles (2,191)

Long-Term Chemical Solubility of 2.3Y-TZP Dental Ceramics

  • Lidija Ćurković,
  • Sanja Štefančić and
  • Irena Žmak
  • + 3 authors

In this study, the chemical solubility (stability) of yttria-partially stabilized zirconia (2.3Y-TZP) dental ceramics, both glazed (Group 2) and non-glazed samples (Group 1), was evaluated using a modified testing protocol based on ISO 6872:2024. Chemical stability was assessed by measuring ion release with inductively coupled plasma mass spectrometry (ICP-MS) and by analyzing phase composition with X-ray diffraction (XRD). While ISO 6872 prescribes chemical stability testing in a 4 wt.% aqueous acetic acid solution at 80 °C for 16 h, the exposure duration in this study was extended to 768 h (32 days) to allow a more accurate determination of long-term solubility behavior. Additionally, the surface roughness parameters (Ra, Rmax, Rz, Sa, Sq) were analyzed and evaluated before and after solubility testing. Kinetic analysis revealed that degradation followed a near-parabolic rate law, with power-law exponents of n = 2.261 for Group 1 and n = 1.935 for Group 2. The corresponding dissolution rate constants were 3.85 × 10−5 µgn·cm−2n·h−1 for Group 1 and 132.3 µgn·cm−2n·h−1 for Group 2. XRD results indicated that the long exposure to acetic acid induced a partial phase transformation of zirconia from the tetragonal to the monoclinic phase. Under prolonged acetic exposure, the glaze layer on 2.3Y-TZP exhibited significantly higher dissolution, whereas the zirconia (polished, unglazed) showed low ion release. The temporal change in the total amount of dissolved ions was statistically analyzed for Group 1 and Group 2. The samples showed a strong correlation, but ANOVA confirmed significant differences between them.

8 October 2025

Comparison of diffraction patterns of non-glazed 2.3Y-TZP dental ceramics before (Y-TZP b.c.) and after (Y-TZP a.c.) solubility test (blue and brown vertical bars represent the standard diffraction peaks of tetragonal (ICDD PDF No. 50-1089) and monoclinic (ICDD PDF No. 37-1484) ZrO2, respectively; yellow box represents monoclinic phase).

The aim of this pilot in vitro study is to investigate the fracture strength of hybrid abutment crowns (HACs) made of a 3D-printable, tooth-colored, ceramic-reinforced composite (CRC). Based on an upper first premolar, a crown was designed, and specimens were additively fabricated from a composite material (VarseoSmile Crown plus) (N = 32). The crowns were bonded to standard abutments using a universal resin cement. Half (n = 16) of the samples were subjected to artificial aging, during which three samples suffered minor damage. All specimens were mechanically loaded at an angle of 30° to the implant axis. In addition, an FEM simulation was computed. Statistical analysis was performed at a significance level of p < 0.05. The mean fracture load without aging was 389.04 N (SD: 101.60 N). Two HACs suffered screw fracture, while the crowns itself failed in all other specimens. In the aged specimens, the mean fracture load was 391.19 N (SD: 143.30 N). The failure mode was predominantly catastrophic crown fracture. FEM analysis showed a maximum compressive stress of 39.79 MPa, a maximum tensile stress of 173.37 MPa and a shear stress of 60.29 MPa when loaded with 389 N. Within the limitations of this pilot study, the tested 3D-printed hybrid abutment crowns demonstrated fracture resistance above a clinically acceptable threshold, suggesting promising potential for clinical application. However, further investigations with larger sample sizes, control groups, and clinical follow-up are required.

8 October 2025

Chitosan-based nanoparticles were prepared using an eco-friendly chemical procedure that conjugates natural fatty acids to the backbone of chitosan. This consists of reacting two molecules in the absence of a solvent and using microwaves to promote the chemical transformation. Both conditions make the whole chemical process more eco-compatible in terms of reagents and energy consumption. The chemical structure and the self-association behavior of chitosan–fatty acid conjugates were characterized by FT-IR, NMR, and dynamic light scattering. The conjugates displayed an enhanced solubility and efficient self-assembly in aqueous solution. The antimicrobial activity of the resulting nanoparticles was evaluated against Escherichia coli (Gram-negative) and Bacillus subtilis (Gram-positive). The micelles significantly inhibited E. coli growth (35–60%), even at relatively low concentrations, whereas negligible activity was observed against B. subtilis. The antibacterial efficacy appears to arise primarily from the ability of the developed nanostructured conjugates to perturb bacterial membranes. These results support the potential of chitosan–fatty acid conjugates as sustainable nanomaterials for biomedical applications, particularly as eco-friendly antimicrobial agents. Future work will evaluate their activity against other Gram-positive pathogens and explore their use in drug delivery.

7 October 2025

Background: The implant–abutment interface has been thoroughly examined due to its impact on the success of implant healing and longevity. Removing the abutment is advantageous, but it changes the biomechanics of the implant fixture and restoration. This in vitro three-dimensional finite element analytical (FEA) study aims to evaluate the distribution of von Mises stress (VMS) in abutment-free and three additional implant abutment connections composed of various titanium alloys. Materials and methods: A three-dimensional implant-supported single-crown prosthesis model was digitally generated on the mandibular section using a combination of microcomputed tomography imaging (microCT), a computer-assisted designing (CAD) program (SolidWorks), Analysis of Systems (ANSYS), and a 3D digital scan (Visual Computing Lab). Four digital models [A (BioHorizons), B (Straumann AG), C abutment-free (Matrix), and D (TRI)] representing three different functional biomaterials [wrought Ti-6Al-4Va ELI, Roxolid (85% Ti, 15% Zr), and Ti-6Al-4V ELI] were subjected to simulated static/cyclic static loading in axial/oblique directions after being restored with highly translucent monolithic zirconia restoration. The stresses generated on the implant fixture, abutment, crown, screw, cortical, and cancellous bones were measured. Results: The highest VMSs were generated by the abutment-free (Model C, Matrix) implant system on the implant fixture [static (32.36 Mpa), cyclic static (83.34 Mpa)], screw [static (16.85 Mpa), cyclic static (30.33 Mpa), oblique (57.46 Mpa)], and cortical bone [static (26.55), cyclic static (108.99 Mpa), oblique (47.8 Mpa)]. The lowest VMSs in the implant fixture, abutment, screw, and crown were associated with the binary alloy Roxolid [83–87% Ti and 13–17% Zr]. Conclusions: Abutment-free implant systems generate twice the stress on cortical bone than other abutment implant systems while producing the highest stresses on the fixture and screw, therefore demanding further clinical investigations. Roxolid, a binary alloy of titanium and zirconia, showed the least overall stresses in different loadings and directions.

2 October 2025

News & Conferences

Issues

Open for Submission

Editor's Choice

Reprints of Collections

Advanced Manufacturing and Surface Technology
Reprint

Advanced Manufacturing and Surface Technology

Editors: Dingding Xiang, Junying Hao, Xudong Sui, Kaiming Wang

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Journal of Functional Biomaterials - ISSN 2079-4983Creative Common CC BY license