Experimental Study of a Broadband Vibration Energy Harvester Based on Orthogonal Magnetically Coupled Double Cantilever Beam
Abstract
:1. Introduction
2. Working Principle
3. Experimental Setup and Methodology
3.1. Experimental Setup
3.2. Experimental Methods
4. Experimental Results
4.1. Raw Data Display
4.2. Data Processing
4.3. Effect of Magnetic Angle on the Performance of the Collector System
4.4. Effect of Magnetic Spacing on the Performance of the Collector System
4.5. Comparison of the Results of the Best Combination with the Control Group
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kang, W.; Ji, G.; Huber, J.E. Mechanical energy harvesting: From piezoelectric effect to ferroelectric/ferroelastic switching. Nano Energy 2025, 133, 110489. [Google Scholar] [CrossRef]
- Singh, G.; Sharma, M.; Kiran, R.; Karmakar, S.; Vaish, R. Footwear for piezoelectric energy harvesting: A comprehensive review on prototypes development, applications and future prospects. Curr. Opin. Solid State Mater. Sci. 2024, 28, 101134. [Google Scholar] [CrossRef]
- Cai, H.; Cao, R.; Gao, J.; Qian, C.; Che, B.; Tang, R.; Zhu, C.; Chen, T. Interfacial Engineering towards Enhanced Photovoltaic Performance of Sb2Se3 Solar Cell. Adv. Funct. Mater. 2022, 32, 2208243. [Google Scholar] [CrossRef]
- Ishibe, T.; Tomeda, A.; Komatsubara, Y.; Kitaura, R.; Uenuma, M.; Uraoka, Y.; Yamashita, Y.; Nakamura, Y. Carrier and phonon transport control by domain engineering for high-performance transparent thin film thermoelectric generator. Appl. Phys. Lett. 2021, 118, 151601. [Google Scholar] [CrossRef]
- Feng, J.; Zhu, W.; Deng, Y. An overview of thermoelectric films: Fabrication techniques, classification, and regulation methods. Chin. Phys. B 2018, 27, 047210. [Google Scholar] [CrossRef]
- Chang, X.; Qi, Z.; Guo, J. Optimal Configuration of Wind Solar Hybrid Power Generation System. In Proceedings of the 2015 IEEE International Conference on Progress in Informatics and Computing(PIC 2015 V1), Nanjing, China, 18–20 December 2015; College of Electronic Information Engineering Inner Mongolia University: Hohhot, China, 2015; pp. 597–600. [Google Scholar]
- Yildirim, T.; Ghayesh, M.H.; Li, W.; Alici, G. A review on performance enhancement techniques for ambient vibration energy harvesters. Renew. Sustain. Energy Rev. 2016, 71, 435–449. [Google Scholar] [CrossRef]
- Mou, K.; Ji, X.; Liu, J.; Zhou, H.; Tian, H.; Li, X.; Liu, H. Using piezoelectric technology to harvest energy from pavement: A review. J. Traffic Transp. Eng. (Engl. Ed.) 2025, 12, 68–86. [Google Scholar] [CrossRef]
- Arroyo, E.; Badel, A. Electromagnetic vibration energy harvesting device optimization by synchronous energy extraction. Sens. Actuators A Phys. 2011, 171, 266–273. [Google Scholar] [CrossRef]
- Mitcheson, P.D.; Miao, P.; Stark, B.H.; Yeatman, E.M.; Holmes, A.S.; Green, T.C. MEMS electrostatic micropower generator for low frequency operation. Sens. Actuators A Phys. 2004, 115, 523–529. [Google Scholar] [CrossRef]
- Chen, R.; Ren, L.; Xia, H.; Wang, H. Research advance in multi-directional wide-band piezoelectric vibration energy harvesters. Chin. J. Sci. Instrum. 2014, 35, 2641–2652. [Google Scholar] [CrossRef]
- Khalili, M.; Ahmed, S.; Papagiannakis, A.T. Piezoelectric energy harvesting for powering a novel weigh-in-motion system. Energy Convers. Manag. X 2022, 15, 100259. [Google Scholar] [CrossRef]
- Ramlan, R.; Brennan, M.J.; Mace, B.R.; Kovacic, I. Potential benefits of a non-linear stiffness in an energy harvesting device. Nonlinear Dyn. 2010, 59, 545–558. [Google Scholar] [CrossRef]
- Tang, L. Toward Broadband Vibration-based Energy Harvesting. J. Intell. Mater. Syst. Struct. 2010, 21, 1867–1897. [Google Scholar] [CrossRef]
- Bisegna, P.; Caruso, G.; Vairo, G. Coupled optimization of tuned-mass energy harvesters accounting for host structure dynamics. J. Intell. Mater. Syst. Struct. 2014, 25, 1553–1565. [Google Scholar] [CrossRef]
- Chen, X.; Liu, P.; Cui, F. A Passive Self-Tuning Piezoelectric Energy Harvester Based on a Spring-Slider Structure for Broadband Vibration Energy Harvesting. J. Vib. Eng. Technol. 2025, 13, 260. [Google Scholar] [CrossRef]
- Dai, X.; Zhang, Z.; Liu, X.; Bian, L. Research progress of broadband vibration energy harvesting technology using nonlinear method. Sci. Sin. Tech. 2016, 46, 791–807. (In Chinese) [Google Scholar] [CrossRef]
- Bai, X.; Wen, Y.; Li, P.; Yang, J.; Peng, X.; Yue, X. Multi-modal vibration energy harvesting utilizing spiral cantilever with magnetic coupling. Sens. Actuators A Phys. 2014, 209, 78–86. [Google Scholar] [CrossRef]
- Ramírez, J.M.; Gatti, C.D.; Machado, S.P.; Febbo, M. A multi-modal energy harvesting device for low-frequency vibrations. Extrem. Mech. Lett. 2018, 22, 1–7. [Google Scholar] [CrossRef]
- Chamanyeta, H.N.; El-Bab, A.M.R.F.; Ikua, B.W.; Murimi, E. Development of a varying multi-cantilever beam frequency up conversion energy harvester. Energy Convers. Manag. X 2022, 16, 100290. [Google Scholar] [CrossRef]
- Li, Z.; Yan, X.; Peng, Y.; Liu, J.; Shen, F.; Xie, X.; Zheng, J.; Duan, C. Nonlinear electromechanical behaviors of piezoelectric generators with hybrid stiffnesses. Energy Convers. Manag. X 2024, 23, 100686. [Google Scholar] [CrossRef]
- Stanton, C.S.; McGehee, C.C.; Mann, P.B. Reversible hysteresis for broadband magnetopiezoelastic energy harvesting. Appl. Phys. Lett. 2009, 95, 174103. [Google Scholar] [CrossRef]
- Xing, X.; Lou, J.; Yang, G.M.; Obi, O.; Driscoll, C.; Sun, N.X. Wideband vibration energy harvester with high permeability magnetic material. Appl. Phys. Lett. 2009, 95, 134103. [Google Scholar] [CrossRef]
- Cottone, F.; Vocca, H.; Gammaitoni, L. Nonlinear energy harvesting. Phys. Rev. Lett. 2009, 102, 080601. [Google Scholar] [CrossRef] [PubMed]
- Erturk, A.; Inman, D. Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling. J. Sound Vib. 2010, 330, 2339–2353. [Google Scholar] [CrossRef]
- Lan, C.; Tang, L.; Harne, L.R. Comparative methods to assess harmonic response of nonlinear piezoelectric energy harvesters interfaced with AC and DC circuits. J. Sound Vib. 2018, 421, 61–78. [Google Scholar] [CrossRef]
- Su, W.; Zu, J.; Zhu, Y. Design and development of a broadband magnet-induced dual-cantilever piezoelectric energy harvester. J. Intell. Mater. Syst. Struct. 2014, 25, 430–442. [Google Scholar] [CrossRef]
- Wang, T. Research on Broadband Piezoelectric Power Harvesting of a Bi-Stable Structure. Master’s Thesis, Harbin Engineering University, Harbin, China, 2018. [Google Scholar] [CrossRef]
- Zhou, S.; Cao, J.; Erturk, A.; Lin, J. Enhanced broadband piezoelectric energy harvesting using rotatable magnets. Appl. Phys. Lett. 2013, 102, 173901-1–173901-4. [Google Scholar] [CrossRef]
- Zou, H.-X.; Zhang, W.-M.; Li, W.-B.; Wei, K.-X.; Gao, Q.-H.; Peng, Z.-K.; Meng, G. Design and experimental investigation of a magnetically coupled vibration energy harvester using two inverted piezoelectric cantilever beams for rotational motion. Energy Convers. Manag. 2017, 148, 1391–1398. [Google Scholar] [CrossRef]
- Guan, M.; Liao, W. Design and analysis of a piezoelectric energy harvester for rotational motion system. Energy Convers. Manag. 2016, 111, 239–244. [Google Scholar] [CrossRef]
- Yin, P.; Tang, L.; Li, Z.; Xia, C.; Li, Z.; Aw, K.C. Harnessing ultra-low-frequency vibration energy by a rolling-swing electromagnetic energy harvester with counter-rotations. Appl. Energy 2025, 377 Pt B, 124507. [Google Scholar] [CrossRef]
- Andò, B.; Baglio, S.; Maiorca, F.; Trigona, C. Analysis of two dimensional, wide-band, bistable vibration energy harvester. Sens. Actuators A. Phys. 2013, 202, 176–182. [Google Scholar] [CrossRef]
- Su, W.; Zu, J. An innovative tri-directional broadband piezoelectric energy harvester. Appl. Phys. Lett. 2013, 103, 203901. [Google Scholar] [CrossRef]
- Jackson, N. PiezoMEMS Nonlinear Low Acceleration Energy Harvester with an Embedded Permanent Magnet. Micromachines 2020, 11, 500. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-E.; Chen, W.-Y.; Yang, R.-Y.; Wu, C.-C. A piezoelectric wave energy harvester equipped with a sequential-drive rotating mechanism and rotary piezoelectric harvesting component. Energy Convers. Manag. X 2023, 20, 100463. [Google Scholar] [CrossRef]
- Maskar, P.; Waghmode, L. Design of energy harvesting magneto-rheological fluid damper for vehicle. Mater. Today Proc. 2024, 103, 81–88. [Google Scholar] [CrossRef]
- Oveissi, S.; Salehi, M.; Ghassemi, A.; Eftekhari, S.A.; Ziaei-Rad, S. Energy harvesting of nanofluid-conveying axially moving cylindrical composite nanoshells of integrated CNT and piezoelectric layers with magnetorheological elastomer core under external fluid vortex-induced vibration. J. Magn. Magn. Mater. 2023, 572, 170551. [Google Scholar] [CrossRef]
Parameter | Symbol | Numeric Value |
---|---|---|
The quality of magnets and plastic devices | 0.00877 () | |
Young’s modulus of a beam | 90 () | |
The density of the beam | 8470 () | |
The size of the beam | 100 × 20 × 0.5 () | |
The size of the magnet | 10 × 10 × 10 () | |
Residual magnetic flux density of the magnet | 1.21 () | |
The distance from the fixed block to the center of the circle | 20 () | |
The thickness of the gasket | 2 () | |
The length of the iron plate (5). | 170 () | |
The length of the iron plate (6). | 250 () | |
The shaker increases the speed | 2 () | |
Piezoelectric element size | 41.40 × 16.26 × 0.27 () | |
The dielectric constant component at constant strain | 12 () | |
Strain coefficient of the piezoelectric layer | 23 × 10−12 () |
Constituencies | Angle (°) | Capture Voltage in the 5–10 Hz Band (V) | Capture Voltage in the 10–15 Hz Band (V) | Capture Voltage in the 15–20 Hz Band (V) | Constituencies | Angle (°) | Capture Voltage in the 5–10 Hz Band (V) | Capture Voltage in the 10–15 Hz Band (V) | Capture Voltage in the 15–20 Hz Band (V) |
---|---|---|---|---|---|---|---|---|---|
Vertical beam | 90 | 0 | 4.377 | 4.543 | Transverse beam | 90 | 0 | 5.210 | 1.525 |
100 | 0 | 4.816 | 4.606 | 100 | 0 | 5.339 | 1.542 | ||
110 | 0 | 6.639 | 1.268 | 110 | 0 | 5.638 | 0 | ||
120 | 0 | 6.732 | 0 | 120 | 0 | 5.564 | 0 | ||
130 | 0 | 6.955 | 0 | 130 | 0 | 5.517 | 0 | ||
140 | 0 | 7.308 | 0 | 140 | 0 | 5.077 | 0 | ||
150 | 0 | 6.650 | 0 | 150 | 0 | 3.922 | 0 | ||
160 | 0 | 6.800 | 0 | 160 | 0 | 3.142 | 0 | ||
170 | 0.445 | 6.950 | 0 | 170 | 0 | 2.516 | 0 | ||
180 | 0.480 | 7.466 | 0 | 180 | 0 | 1.778 | 0 |
Constituencies | Angle (°) | Capture Voltage in the 5–10 Hz Band (V) | Capture Voltage in the 10–15 Hz Band (V) | Capture Voltage in the 15–20 Hz Band (V) | Constituencies | Angle (°) | Capture Voltage in the 5–10 Hz Band (V) | Capture Voltage in the 10–15 Hz Band (V) | Capture Voltage in the 15–20 Hz Band (V) |
---|---|---|---|---|---|---|---|---|---|
Vertical beam | 90 | 2.069 | 4.414 | 3.239 | Transverse beam | 90 | 0.897 | 3.103 | 1.555 |
100 | 2.075 | 4.216 | 3.591 | 100 | 0.797 | 2.986 | 1.647 | ||
110 | 2.001 | 6.207 | 4.062 | 110 | 1.083 | 4.653 | 1.849 | ||
120 | 2.008 | 6.581 | 4.166 | 120 | 1.237 | 4.858 | 1.937 | ||
130 | 2.256 | 6.866 | 3.832 | 130 | 1.549 | 4.986 | 1.662 | ||
140 | 2.673 | 7.290 | 2.821 | 140 | 1.787 | 5.058 | 1.365 | ||
150 | 3.100 | 7.936 | 0.332 | 150 | 1.944 | 5.230 | 0 | ||
160 | 3.358 | 8.841 | 0 | 160 | 1.681 | 6.003 | 0 | ||
170 | 3.455 | 7.198 | 0 | 170 | 1.188 | 4.674 | 0 | ||
180 | 3.529 | 6.676 | 0 | 180 | 0 | 1.699 | 0 |
Constituencies | Angle (°) | Capture Voltage in the 5–10 Hz Band (V) | Capture Voltage in the 10–15 Hz Band (V) | Capture Voltage in the 15–20 Hz Band (V) | Constituencies | Angle (°) | Capture Voltage in the 5–10 Hz Band (V) | Capture Voltage in the 10–15 Hz Band (V) | Capture Voltage in the 15–20 Hz Band (V) |
---|---|---|---|---|---|---|---|---|---|
Vertical beam | 90 | 0.733 | 4.359 | 5.081 | Transverse beam | 90 | 0 | 3.361 | 1.473 |
100 | 0 | 4.168 | 5.645 | 100 | 0 | 3.676 | 1.409 | ||
110 | 0 | 4.336 | 5.613 | 110 | 0 | 3.792 | 1.344 | ||
120 | 0 | 4.197 | 5.342 | 120 | 0 | 3.849 | 1.218 | ||
130 | 0 | 5.639 | 3.220 | 130 | 0 | 3.928 | 0 | ||
140 | 0 | 5.887 | 1.699 | 140 | 0 | 3.664 | 0 | ||
150 | 0 | 5.704 | 0.278 | 150 | 0 | 3.343 | 0 | ||
160 | 0 | 5.664 | 0 | 160 | 0 | 2.866 | 0 | ||
170 | 0 | 7.268 | 0 | 170 | 0 | 1.883 | 0 | ||
180 | 0 | 7.065 | 0 | 180 | 0 | 1.023 | 0 |
Constituencies | Angle (°) | Capture Voltage in the 5–10 Hz Band (V) | Capture Voltage in the 10–15 Hz Band (V) | Capture Voltage in the 15–20 Hz Band (V) | Constituencies | Angle (°) | Capture Voltage in the 5–10 Hz Band (V) | Capture Voltage in the 10–15 Hz Band (V) | Capture Voltage in the 15–20 Hz Band (V) |
---|---|---|---|---|---|---|---|---|---|
Vertical beam | 90 | 0 | 3.301 | 6.248 | Transverse beam | 90 | 0 | 3.598 | 1.272 |
100 | 0 | 3.254 | 6.396 | 100 | 0 | 3.717 | 1.198 | ||
110 | 0 | 3.091 | 6.125 | 110 | 0 | 3.451 | 0.858 | ||
120 | 0 | 5.911 | 2.380 | 120 | 0 | 3.448 | 0 | ||
130 | 0 | 6.043 | 0 | 130 | 0 | 4.787 | 0 | ||
140 | 0 | 6.046 | 0 | 140 | 0 | 4.574 | 0 | ||
150 | 0 | 6.663 | 0 | 150 | 0 | 4.120 | 0 | ||
160 | 0 | 6.908 | 0 | 160 | 0 | 3.684 | 0 | ||
170 | 0 | 7.029 | 0 | 170 | 0 | 3.300 | 0 | ||
180 | 0 | 7.721 | 0 | 180 | 0 | 0 | 0 |
Radius (mm) | Synthesis of Optimal Angles | Dominant Mechanism |
---|---|---|
14 | 100° | The negative stiffness effect under strong magnetic force |
16 | 130° | Axial magnetic force compensates for distance—induced attenuation and enhances modal coupling. |
18 | 90° | Orthogonal coupling maintains the potential energy gradient and suppresses chaos. |
20 | 100° | Some axial components compensate for the weak magnetic force, balancing the stiffness and damping. |
Constituencies | Radius (mm) | Capture Voltage in the 5–10 Hz Band (V) | Capture Voltage in the 10–15 Hz Band (V) | Capture Voltage in the 15–20 Hz Band (V) | Constituencies | Radius (mm) | Capture Voltage in the 5–10 Hz Band (V) | Capture Voltage in the 10–15 Hz Band (V) | Capture Voltage in the 15–20 Hz Band (V) |
---|---|---|---|---|---|---|---|---|---|
Vertical beam | 14 | 0 | 4.377 | 4.543 | Transverse beam | 14 | 0 | 5.210 | 1.525 |
16 | 2.069 | 4.414 | 3.239 | 16 | 0.897 | 3.103 | 1.555 | ||
18 | 0.733 | 4.359 | 5.081 | 18 | 0 | 3.361 | 1.473 | ||
20 | 0 | 3.301 | 6.248 | 20 | 0 | 3.598 | 1.272 |
Constituencies | Radius (mm) | Capture Voltage in the 5–10 Hz Band (V) | Capture Voltage in the 10–15 Hz Band (V) | Capture Voltage in the 15–20 Hz Band (V) | Constituencies | Radius (mm) | Capture Voltage in the 5–10 Hz Band (V) | Capture Voltage in the 10–15 Hz Band (V) | Capture Voltage in the 15–20 Hz Band (V) |
---|---|---|---|---|---|---|---|---|---|
Vertical beam | 14 | 0 | 4.816 | 4.606 | Transverse beam | 14 | 0 | 5.339 | 1.542 |
16 | 2.075 | 4.216 | 3.591 | 16 | 0.797 | 2.986 | 1.647 | ||
18 | 0 | 4.168 | 5.645 | 18 | 0 | 3.676 | 1.409 | ||
20 | 0 | 3.254 | 6.396 | 20 | 0 | 3.717 | 1.198 |
Constituencies | Radius (mm) | Capture Voltage in the 5–10 Hz Band (V) | Capture Voltage in the 10–15 Hz Band (V) | Capture Voltage in the 15–20 Hz Band (V) | Constituencies | Radius (mm) | Capture Voltage in the 5–10 Hz Band (V) | Capture Voltage in the 10–15 Hz Band (V) | Capture Voltage in the 15–20 Hz Band (V) |
---|---|---|---|---|---|---|---|---|---|
Vertical beam | 14 | 0 | 6.955 | 0 | Transverse beam | 14 | 0 | 5.517 | 0 |
16 | 2.256 | 6.866 | 3.832 | 16 | 1.549 | 4.986 | 1.662 | ||
18 | 0 | 5.639 | 3.220 | 18 | 0 | 3.928 | 0 | ||
20 | 0 | 6.043 | 0 | 20 | 0 | 4.787 | 0 |
Constituencies | Radius (mm) | Magnetic Angle (°) | Effective Voltage Value of Vertical Beam Capture (V) | Beam Capture Effective Voltage Value (V) | Vertical Beam Widening Band Value (Hz) | Crosshead Widening Band Value (Hz) |
---|---|---|---|---|---|---|
Experimental group | 16 | 130 | 12.954 | 8.196 | 1.7 | 2 |
14 | 100 | 9.423 | 6.881 | 1.5 | 1.5 | |
16 | 90 | 9.721 | 5.556 | 1 | 2.5 | |
Control group | 14 | 90 | 1.980 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Y.; Wang, J.; Chen, X.; Liu, P. Experimental Study of a Broadband Vibration Energy Harvester Based on Orthogonal Magnetically Coupled Double Cantilever Beam. Micromachines 2025, 16, 722. https://doi.org/10.3390/mi16060722
Feng Y, Wang J, Chen X, Liu P. Experimental Study of a Broadband Vibration Energy Harvester Based on Orthogonal Magnetically Coupled Double Cantilever Beam. Micromachines. 2025; 16(6):722. https://doi.org/10.3390/mi16060722
Chicago/Turabian StyleFeng, Yanhao, Jianhua Wang, Xiangye Chen, and Peng Liu. 2025. "Experimental Study of a Broadband Vibration Energy Harvester Based on Orthogonal Magnetically Coupled Double Cantilever Beam" Micromachines 16, no. 6: 722. https://doi.org/10.3390/mi16060722
APA StyleFeng, Y., Wang, J., Chen, X., & Liu, P. (2025). Experimental Study of a Broadband Vibration Energy Harvester Based on Orthogonal Magnetically Coupled Double Cantilever Beam. Micromachines, 16(6), 722. https://doi.org/10.3390/mi16060722