Cu(In,Ga)Se2 Solar Cells Integrated with Subwavelength Structured Cover Glass Fabricated by One-Step Self-Masked Etching
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Diedenhofen, S.L.; Vecchi, G.; Algra, R.E.; Hartsuiker, A.; Muskens, O.L.; Immink, G.; Bakkers, E.P.A.M.; Vos, W.L.; Rivas, J.G. Broad-band and Omnidirectional Antireflection Coatings Based on Semiconductor Nanorods. Adv. Mater. 2009, 21, 973–978. [Google Scholar] [CrossRef]
- Huang, Y.F.; Chattopadhyay, S.; Jen, Y.J.; Peng, C.Y.; Liu, T.A.; Hsu, Y.K.; Pan, C.L.; Lo, H.C.; Hsu, C.H.; Chang, Y.H.; et al. Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures. Nat. Nanotechnol. 2007, 2, 770–774. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.S.; Jeong, Y.; Jeong, H.; Jang, J.H. Triple-junction InGaP/GaAs/Ge solar cells integrated with polymethyl methacrylate subwavelength structure. Appl. Surf. Sci. 2014, 320, 901–907. [Google Scholar] [CrossRef] [Green Version]
- Chiu, M.Y.; Chang, C.H.; Tsai, M.A.; Chang, F.Y.; Yu, P.C. Improved optical transmission and current matching of a triple-junction solar cell utilizing sub-wavelength structures. Opt. Express 2010, 18, A308–A313. [Google Scholar] [CrossRef]
- Nishioka, K.; Horita, S.; Ohdaira, K.; Matsumura, H. Antireflection subwavelength structure of silicon surface formed by wet process using catalysis of single nano-sized gold particle. Sol. Energy Mater. Sol. Cells 2008, 92, 919–922. [Google Scholar] [CrossRef]
- Kuo, S.Y.; Hsieh, M.Y. Efficiency enhancement in Cu2ZnSnS4 solar cells with subwavelength grating nanostructures. Nanoscale 2014, 4, 7553–7559. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.M.; Jang, S.J.; Yu, J.S.; Lee, Y.T. Bioinspired parabola subwavelength structures for improved broadband antireflection. Small 2010, 6, 984–987. [Google Scholar] [CrossRef]
- Lalanne, P.; Morris, G.M. Antireflection behavior of silicon subwavelength periodic structures for visible light. Nanotechnology 1997, 8, 53. [Google Scholar] [CrossRef]
- Kim, D.S.; Kim, D.H.; Jang, J.H. A nanoscale conical polymethyl methacrylate (PMMA) sub-wavelength structure with a high aspect ratio realized by a stamping method. Opt. Express 2013, 21, 8450–8459. [Google Scholar] [CrossRef]
- Boden, S.A.; Bagnall, D.M. Tunable reflection minima of nanostructured antireflective surfaces. Appl. Phys. Lett. 2008, 93, 133108. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Liao, Y.; Liu, B.; Ge, L.; Li, G.; Fu, S.; Chen, Y.; Cui, Z. Free-standing SU-8 subwavelength gratings fabricated by UV curing imprint. Microelectron. Eng. 2008, 85, 910–913. [Google Scholar] [CrossRef]
- Kanamori, Y.; Ishimori, M.; Hane, K. High Efficient Light-Emitting Diodes with Antireflection Subwavelength Gratings. IEEE Photon. Technol. Lett. 2002, 14, 1064–1066. [Google Scholar] [CrossRef]
- Hadobás, K.; Kirsch, S.; Carl, A.; Acet, M.; Wassermann, E.F. Reflection properties of nanostructure-arrayed silicon surfaces. Nanotechnology 2000, 11, 161–164. [Google Scholar] [CrossRef]
- Yu, Z.; Gao, H.; Wu, W.; Ge, H.; Chou, S.Y. Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and lift-off. J. Vac. Sci. Technol. B 2003, 21, 2874–2877. [Google Scholar] [CrossRef] [Green Version]
- Xie, G.; Zhang, G.; Lin, F.; Zhang, J.; Liu, Z.; Mu, S. The fabrication of subwavelength anti-reflective nanostructures using a bio-template. Nanotechnology 2008, 19, 095605. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, J.; Xie, G.; Liu, Z.; Shao, H. Cicada wings: A stamp from nature for nanoimprint lithography. Small 2006, 2, 1440–1443. [Google Scholar] [CrossRef]
- Infante, D.; Koch, K.W.; Mazumder, P.; Tian, L.; Carrilero, A.; Tulli, D.; Baker, D.; Pruneri, V. Durable, superhydrophobic, antireflection, and low haze glass surfaces using scalable metal dewetting nanostructuring. Nano Res. 2013, 6, 429–440. [Google Scholar] [CrossRef]
- Kim, D.S.; Kwon, S.; Lee, K.; Jang, J.H. Efficient bulk heterojunction organic solar cell with antireflective subwavelength structure. Appl. Surf. Sci. 2015, 332, 716–719. [Google Scholar] [CrossRef] [Green Version]
- Shang, P.; Xiong, S.M.; Deng, Q.L.; Shi, L.F.; Zhang, M. Disordered antireflective subwavelength structures using Ag nanoparticles on fused silica windows. Appl. Opt. 2014, 53, 6789–6796. [Google Scholar] [CrossRef]
- Leem, J.W.; Yu, J.S. Wafer-scale highly-transparent and superhydrophilic sapphires for high-performance optics. Opt. Express 2012, 20, 26160–26166. [Google Scholar] [CrossRef]
- Kim, B.J.; Kim, J. Fabrication of GaAs subwavelength structure (SWS) for solar cell applications. Opt. Express 2011, 19, A326–A330. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.L.; Jang, S.J.; Lee, Y.T. Localized surface plasmon resonance with broadband ultralow reflectivity from metal nanoparticles on glass and silicon subwavelength structures. Opt. Express 2012, 20, 17448–17455. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, H.; Urushido, T.; Miyake, H.; Hiramatsu, K. Formation of GaN Self-Organized Nanotips by Reactive Ion Etching. Jpn. J. Appl. Phys. 2001, 40, 1301–1304. [Google Scholar] [CrossRef]
- Chen, M.H.; Chuang, Y.J.; Tseng, F.G. Self-masked high-aspect-ratio polymer nanopillars. Nanotechnology 2008, 19, 505301. [Google Scholar] [CrossRef]
- Ye, X.; Jiang, X.; Huang, J.; Geng, F.; Sun, L.; Zu, X.; Wu, W.; Zheng, W. Formation of broadband antireflective and superhydrophilic subwavelength structures on fused silica using one-step self-masking reactive ion etching. Sci. Rep. 2015, 5, 13023. [Google Scholar] [CrossRef] [Green Version]
- Hsu, C.H.; Lo, H.C.; Chen, C.F.; Wu, C.T.; Hwang, J.S.; Das, D.; Tsai, J.; Chen, L.C.; Chen, K.H. Generally Applicable Self-Masked Dry Etching Technique for Nanotip Array Fabrication. Nano Lett. 2004, 4, 471–475. [Google Scholar] [CrossRef]
- Jansen, H.; Deboer, M.; Legtenberg, R.; Elwenspoek, M. The black silicon method: A universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control. J. Micromech. Microeng. 1995, 5, 115–120. [Google Scholar] [CrossRef] [Green Version]
- Ichiki, T.; Sugiyama, Y.; Ujiie, T.; Horiike, Y. Deep dry etching of borosilicate glass using fluorine-based high-density plasma for microelectromechanical system fabrication. J. Vac. Sci. Technol. B 2003, 21, 2188–2192. [Google Scholar] [CrossRef]
- Jeong, H.J.; Kim, Y.C.; Lee, S.K.; Jeong, Y.; Song, J.W.; Yun, J.H.; Jang, J.H. Ultrawide Spectral Response of CIGS Solar Cells Integrated with Luminescent Down-Shifting Quantum Dots. ACS Appl. Mater. Inter. 2017, 9, 25404–25411. [Google Scholar] [CrossRef]
- Raguin, D.H.; Morris, G.M. Antireflection structured surfaces for the infrared spectral region. Appl. Opt. 1993, 32, 1154–1167. [Google Scholar] [CrossRef]
- Redfield, D. Method for evaluation of antireflection coatings. Sol. Cells 1981, 3, 27–33. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, H.-J.; Kim, Y.-C.; Kim, S.-T.; Choi, M.-H.; Song, Y.-H.; Yun, J.-H.; Park, M.-S.; Jang, J.-H. Cu(In,Ga)Se2 Solar Cells Integrated with Subwavelength Structured Cover Glass Fabricated by One-Step Self-Masked Etching. Micromachines 2020, 11, 877. https://doi.org/10.3390/mi11090877
Jeong H-J, Kim Y-C, Kim S-T, Choi M-H, Song Y-H, Yun J-H, Park M-S, Jang J-H. Cu(In,Ga)Se2 Solar Cells Integrated with Subwavelength Structured Cover Glass Fabricated by One-Step Self-Masked Etching. Micromachines. 2020; 11(9):877. https://doi.org/10.3390/mi11090877
Chicago/Turabian StyleJeong, Ho-Jung, Ye-Chan Kim, Sung-Tae Kim, Min-Ho Choi, Young-Hyun Song, Ju-Hyung Yun, Min-Su Park, and Jae-Hyung Jang. 2020. "Cu(In,Ga)Se2 Solar Cells Integrated with Subwavelength Structured Cover Glass Fabricated by One-Step Self-Masked Etching" Micromachines 11, no. 9: 877. https://doi.org/10.3390/mi11090877
APA StyleJeong, H.-J., Kim, Y.-C., Kim, S.-T., Choi, M.-H., Song, Y.-H., Yun, J.-H., Park, M.-S., & Jang, J.-H. (2020). Cu(In,Ga)Se2 Solar Cells Integrated with Subwavelength Structured Cover Glass Fabricated by One-Step Self-Masked Etching. Micromachines, 11(9), 877. https://doi.org/10.3390/mi11090877