Next Issue
Volume 23, January
Previous Issue
Volume 22, November
 
 

Mar. Drugs, Volume 22, Issue 12 (December 2024) – 54 articles

Cover Story (view full-size image): Cold-water marine invertebrates remain largely unexplored, contributing to only ~2% of known marine natural products. This study investigates the Antarctic sponge Suberites sp., collected near Palmer Station. With the use of HPLC, NMR, HRMS, and XRD, five new metabolites with the carbon skeleton of suberitane’s and four known suberitenone derivatives were isolated and characterized. The compounds were investigated for their activity against respiratory syncytial virus (RSV), demonstrating moderate antiviral potential with low cytotoxicity. The research highlights the promising biomedical potential of cold-water invertebrates for future studies towards novel therapeutic agents. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
14 pages, 6664 KiB  
Article
Characterisation of High Alkaline-Tolerant Novel Ulvan Lyase from Pseudoalteromonas agarivorans: Potential Applications of Enzyme Derived Oligo-Ulvan as Anti-Diabetic Agent
by Navindu Dinara Gajanayaka, Eunyoung Jo, Minthari Sakethanika Bandara, Svini Dileepa Marasinghe, Chinmayee Bawkar, Yeon-Ju Lee, Gun-Hoo Park, Chulhong Oh and Youngdeuk Lee
Mar. Drugs 2024, 22(12), 577; https://doi.org/10.3390/md22120577 - 23 Dec 2024
Viewed by 528
Abstract
Green algae, particularly Ulva species, are rich in complex polysaccharides, such as ulvan, which have significant potential for biotechnological applications. However, the biochemical properties of ulvan depolymerised products remain underexplored. The enzymatic depolymerisation of ulvan has garnered attention owing to its cost advantages [...] Read more.
Green algae, particularly Ulva species, are rich in complex polysaccharides, such as ulvan, which have significant potential for biotechnological applications. However, the biochemical properties of ulvan depolymerised products remain underexplored. The enzymatic depolymerisation of ulvan has garnered attention owing to its cost advantages over alternative methods. Nevertheless, the biochemical characterisation of ulvan lyases, specifically those belonging to the polysaccharide lyase family 25 (PL25), is limited. In this study, we identified and biochemically characterised a novel PL25 ulvan lyase, PaUL25, which functions optimally at pH 10. Additionally, we explored the alpha (α)-glucosidase inhibitory properties of ulvan depolymerised products. PaUL25 exhibited optimum activity at 35 °C in Tris-HCl buffer (pH 10). Moreover, enzyme activity was enhanced by more than 150% in the presence of Mn2+ metal ions at and below concentrations of 10 mM. The endolytic action of PaUL25 produced ulvan oligosaccharides with degrees of polymerisation of 2 and 4 as its end products. Partially and completely hydrolysed ulvan oligosaccharides exhibited α-glucosidase inhibitory activity, with half inhibitory concentration IC50 values of 3.21 ± 0.13 and 2.51 ± 0.19 mg/mL, respectively. These findings expand our understanding of PL25 and highlight the pharmaceutical potential of ulvan oligosaccharides, particularly as antidiabetic agents. Full article
(This article belongs to the Special Issue Biotechnological Applications of Marine Enzymes)
Show Figures

Figure 1

17 pages, 3077 KiB  
Article
Effects of Acute Salinity Stress on the Histological and Bacterial Community Structure and Function in Intestine of Stichopus monotuberculatus
by Lianghua Huang, Hui Wang, Chuanyan Pan, Xueming Yang, Guoqing Deng, Yaowen Meng, Yongxiang Yu, Xiuli Chen and Shengping Zhong
Mar. Drugs 2024, 22(12), 576; https://doi.org/10.3390/md22120576 - 23 Dec 2024
Viewed by 544
Abstract
This study focused on Stichopus monotuberculatus and conducted stress experiments at salinity levels of 20‰ and 40‰. Intestinal histological changes and the structural characteristics of the intestinal flora of S. monotuberculatus under salinity stress were analyzed. The results show that acute salinity stress [...] Read more.
This study focused on Stichopus monotuberculatus and conducted stress experiments at salinity levels of 20‰ and 40‰. Intestinal histological changes and the structural characteristics of the intestinal flora of S. monotuberculatus under salinity stress were analyzed. The results show that acute salinity stress inflicts varying degrees of damage to the intestinal tissues of S. monotuberculatus. Salinity stress enhances the species diversity of intestinal flora in S. monotuberculatus. Eight phyla of bacteria are detected in the intestine of S. monotuberculatus. Dominant phyla include Proteobacteria, Firmicutes, and Actinobacteria. Furthermore, functional prediction reveals that acute salinity stress can significantly modify the abundance of pathways associated with nutrient and energy metabolism mediated by the intestinal flora of S. monotuberculatus. These results indicate that acute salinity stress induces pathological damage to the intestinal tissues of S. monotuberculatus, compromising the microbial habitat and leading to alterations in the intestinal flora composition. Additionally, S. monotuberculatus can mitigate salinity stress by adjusting the composition of its intestinal flora and the corresponding functional pathways. Full article
Show Figures

Figure 1

26 pages, 1699 KiB  
Review
Marine Invasive Algae’s Bioactive Ingredients as a Sustainable Pathway in Cosmetics: The Azores Islands as a Case Study
by Marta Matos, Luísa Custódio and Catarina Pinto Reis
Mar. Drugs 2024, 22(12), 575; https://doi.org/10.3390/md22120575 - 23 Dec 2024
Viewed by 795
Abstract
Marine invasive species pose significant ecological, economic, and social challenges, disrupting native ecosystems, outcompeting local species and altering biodiversity. The spread of these species is largely driven by global trade, shipping, and climate change, which allow non-native species to establish themselves in new [...] Read more.
Marine invasive species pose significant ecological, economic, and social challenges, disrupting native ecosystems, outcompeting local species and altering biodiversity. The spread of these species is largely driven by global trade, shipping, and climate change, which allow non-native species to establish themselves in new environments. Current management strategies, including early detection, rapid response, and biosecurity measures, have had some success, but the complexity and scale of the problem require continuous monitoring. This review explores the possibility of using some marine invasive species as skincare ingredients and explores the Azorean islands as a case study for the valorization of biomass. Additionally, this review addresses legislative barriers that delay the development of sustainable cosmetic markets from invasive species, highlighting the regulatory landscape as a critical area. It concludes that marine invasive species present a regional and global problem that requires regional and global solutions. Such solutions strongly need to address environmental impacts and net socioeconomic benefits, but such solutions must also consider all regional differences, technical capacities and financial resources available. Thus, as a future perspective, strategies should emphasize the need for international collaboration and the development of more effective policies to prevent the spread of invasive species. There is still much work to be completed. By working together, the biodiversity for future generations will be better monitored and explored. Full article
(This article belongs to the Special Issue Marine Algal Biotechnology and Applications)
Show Figures

Graphical abstract

13 pages, 3232 KiB  
Article
Eremophilane- and Acorane-Type Sesquiterpenes from the Deep-Sea Cold-Seep-Derived Fungus Furcasterigmium furcatum CS-280 Cultured in the Presence of Autoclaved Pseudomonas aeruginosa QDIO-4
by Xiao-Dan Chen, Xin Li, Xiao-Ming Li, Sui-Qun Yang and Bin-Gui Wang
Mar. Drugs 2024, 22(12), 574; https://doi.org/10.3390/md22120574 - 22 Dec 2024
Viewed by 495
Abstract
Six new sesquiterpenes, including four eremophilane derivatives fureremophilanes A–D (14) and two acorane analogues furacoranes A and B (5 and 6), were characterized from the culture extract of the cold-seep derived fungus Furcasterigmium furcatum CS-280 co-cultured with [...] Read more.
Six new sesquiterpenes, including four eremophilane derivatives fureremophilanes A–D (14) and two acorane analogues furacoranes A and B (5 and 6), were characterized from the culture extract of the cold-seep derived fungus Furcasterigmium furcatum CS-280 co-cultured with autoclaved Pseudomonas aeruginosa QDIO-4. All the six compounds were highly oxygenated especially 2 and 3 with infrequent epoxyethane and tetrahydrofuran ring systems. The structures of 16 were established on the basis of detailed interpretation of 1D and 2D NMR and MS data. Their relative and absolute configurations were assigned by a combination of NOESY and single crystal X-ray crystallographic analysis, and by time-dependent density functional (TDDFT) ECD calculations as well. All compounds were tested the anti-inflammatory activity against human COX-2 protein, among which, compounds 2 and 3 displayed activities with IC50 values 123.00 µM and 93.45 µM, respectively. The interaction mechanism was interpreted by molecular docking. Full article
(This article belongs to the Special Issue Bioactive Natural Products from the Deep-Sea-Sourced Microbes)
Show Figures

Graphical abstract

11 pages, 4104 KiB  
Article
Lithium Coupled with C6-Carboxyl Improves the Efficacy of Oligoguluronate in DSS-Induced Ulcerative Colitis in C57BL/6J Mice
by Jiayi Li, Meng Shao, Hao Liu, Peng Guo, Fei Liu, Mingfeng Ma and Quancai Li
Mar. Drugs 2024, 22(12), 573; https://doi.org/10.3390/md22120573 - 21 Dec 2024
Viewed by 553
Abstract
Oligoguluronate lithium (OGLi) was prepared for the purpose of enhancing the anti-ulcerative colitis (UC) activities of OG, in which lithium (Li+) is coupled with the C6-carboxyl of G residue. The therapeutic effects of OGLi on dextran sulfate (DSS)-induced UC mice were [...] Read more.
Oligoguluronate lithium (OGLi) was prepared for the purpose of enhancing the anti-ulcerative colitis (UC) activities of OG, in which lithium (Li+) is coupled with the C6-carboxyl of G residue. The therapeutic effects of OGLi on dextran sulfate (DSS)-induced UC mice were investigated, and oligoguluronate sodium (OGNa) and lithium carbonate (LC) were used as contrasts. The effects of OGLi, OGNa and LC on the treatment of UC mice were studied by monitoring body weight change and evaluating colon length, the disease activity index (DAI), histopathological examination and gut microbiota regulation. The results showed that compared with OGNa and LC, OGLi significantly reduced the clinical symptoms and histopathological changes associated with UC in the acute model. It was worth noting that OGLi significantly changed the gut microbiota characteristics of the DSS-treated mice and corrected the typical dysbacteriosis of DSS-induced UC. This intervention resulted in increasing the abundance of norank_f_Muribaculaceae and Ileibacterium spp. while reducing the levels of Escherichia-Shigella spp. and Romboutsia spp. The OGLi could significantly increase the diversity of intestinal microorganisms in the short term. All of these discoveries demonstrate that lithium collaboratively enhances the anti-UC efficacy of OG, which will help to create OG-based drugs for the treatment of UC. Full article
(This article belongs to the Special Issue High-Value Algae Products)
Show Figures

Figure 1

28 pages, 6511 KiB  
Article
Identification and Characterization of Two Aryl Sulfotransferases from Deep-Sea Marine Fungi and Their Implications in the Sulfation of Secondary Metabolites
by Nicolas Graziano, Beatriz Arce-López, Tristan Barbeyron, Ludovic Delage, Elise Gerometta, Catherine Roullier, Gaëtan Burgaud, Elisabeth Poirier, Laure Martinelli, Jean-Luc Jany, Nolwenn Hymery and Laurence Meslet-Cladiere
Mar. Drugs 2024, 22(12), 572; https://doi.org/10.3390/md22120572 - 20 Dec 2024
Viewed by 752
Abstract
Sulfation plays a critical role in the biosynthesis of small molecules, regulatory mechanisms such as hormone signaling, and detoxification processes (phase II enzymes). The sulfation reaction is catalyzed by a broad family of enzymes known as sulfotransferases (SULTs), which have been extensively studied [...] Read more.
Sulfation plays a critical role in the biosynthesis of small molecules, regulatory mechanisms such as hormone signaling, and detoxification processes (phase II enzymes). The sulfation reaction is catalyzed by a broad family of enzymes known as sulfotransferases (SULTs), which have been extensively studied in animals due to their medical importance, but also in plant key processes. Despite the identification of some sulfated metabolites in fungi, the mechanisms underlying fungal sulfation remain largely unknown. To address this knowledge gap, we conducted a comprehensive search of available genomes, resulting in the identification of 174 putative SULT genes in the Ascomycota phylum. Phylogenetic analysis and structural modeling revealed that these SULTs belong to the aryl sulfotransferase family, and they are divided into two potential distinct clusters of PAPS-dependent SULTs within the fungal kingdom. SULT genes from two marine fungi isolated from deep-sea hydrothermal vents, Hortaea werneckii UBOCC-A-208029 (HwSULT) and Aspergillus sydowii UBOCC-A-108050 SULT (AsSULT), were selected as representatives of each cluster. Recombinant proteins were expressed in Escherichia coli and biochemically characterized. HwSULT demonstrated high and versatile activity, while AsSULT appeared more substrate-specific. Here, HwSULT was used to sulfate the mycotoxin zearalenone, enhancing its cytotoxicity toward healthy feline intestinal cells. Full article
(This article belongs to the Special Issue Advances of Marine-Derived Enzymes)
Show Figures

Figure 1

22 pages, 3596 KiB  
Article
Chondroitin Sulfate Nanovectorized by LC-PUFAs Nanocarriers Extracted from Salmon (Salmo salar) by Green Process with Decreased Inflammatory Marker Expression in Interleukin-1β-Stimulated Primary Human Chondrocytes In Vitro Culture
by Louis Pruvost, Maureen Gerlei, Cédric Paris, Émilie Velot, Cyril J.-F. Kahn, Arnaud Bianchi and Michel Linder
Mar. Drugs 2024, 22(12), 571; https://doi.org/10.3390/md22120571 - 20 Dec 2024
Viewed by 591
Abstract
Chondroitin sulfate (CS), a glycosaminoglycan, supports health through various physiological functions, including tissue protection, bone growth, and skin aging prevention. It also contributes to anticoagulant or anti-inflammatory processes, with its primary clinical use being osteoarthritis treatment. This study presents the results of the [...] Read more.
Chondroitin sulfate (CS), a glycosaminoglycan, supports health through various physiological functions, including tissue protection, bone growth, and skin aging prevention. It also contributes to anticoagulant or anti-inflammatory processes, with its primary clinical use being osteoarthritis treatment. This study presents the results of the valorization of lipids and CS, both extracted from salmon co-products through enzymatic processes. The polar lipids, naturally rich in long-chain fatty acids (docosahexaenoic acid DHA C22:6 n-3 and eicosapentaenoic acid EPA C20:5 n-3), and the CS, primarily located in the nasal cartilage, were separated and concentrated before being characterized using various techniques to determine functional and lipid composition. These compounds were then used to formulate liposomes of 63 to 95 nm in size composed of 19.38% of DHA and 7.44% of EPA and encapsulating CS extract with a Δdi-4S/Δdi-6S ratio of 0.53 at 2 weight masses (10–30 kDa and >30 kDa) or CS standard all at two different concentrations. Liposomes were tested on human chondrocytes in inflamed conditions. Thus, compatibility tests, the expression of various inflammation markers at transcriptional and molecular levels, nitrites, and the amount of collagenase produced were analyzed. The results showed that CS, in synergy with the liposomes, played a positive role in combating chondrocyte inflammation even at a low concentration. Full article
(This article belongs to the Special Issue Marine Anti-Inflammatory and Antioxidant Agents, 4th Edition)
Show Figures

Graphical abstract

15 pages, 5680 KiB  
Article
Enhanced Eicosapentaenoic Acid Production via Synthetic Biological Strategy in Nannochloropsis oceanica
by Congcong Miao, Mingting Du, Hongchao Du, Tao Xu, Shan Wu, Xingwei Huang, Xitao Chen, Suxiang Lei and Yi Xin
Mar. Drugs 2024, 22(12), 570; https://doi.org/10.3390/md22120570 - 19 Dec 2024
Viewed by 663
Abstract
The rational dietary ratio of docosahexaenoic acid (DHA) to eicosapentaenoic acid (EPA) can exert neurotrophic and cardiotrophic effects on the human body. The marine microalga Nannochloropsis oceanica produces EPA yet no DHA, and thus, it is considered an ideal EPA-only model to pursue [...] Read more.
The rational dietary ratio of docosahexaenoic acid (DHA) to eicosapentaenoic acid (EPA) can exert neurotrophic and cardiotrophic effects on the human body. The marine microalga Nannochloropsis oceanica produces EPA yet no DHA, and thus, it is considered an ideal EPA-only model to pursue a rational DHA/EPA ratio. In this study, synthetic biological strategy was applied to improve EPA production in N. oceanica. Firstly, to identify promoters and terminators, fifteen genes from N. oceanica were isolated using a transcriptomic approach. Compared to α-tubulin, NO08G03500, NO03G03480 and NO22G01450 exhibited 1.2~1.3-fold increases in transcription levels. Secondly, to identify EPA-synthesizing modules, putative desaturases (NoFADs) and elongases (NoFAEs) were overexpressed by the NO08G03500 and NO03G03480 promoters/terminators in N. oceanica. Compared to the wild type (WT), NoFAD1770 and NoFAE0510 overexpression resulted in 47.7% and 40.6% increases in EPA yields, respectively. Thirdly, to store EPA in triacylglycerol (TAG), NoDGAT2K was overexpressed using the NO22G01450 promoter/terminator, along with NoFAD1770NoFAE0510 stacking, forming transgenic line XS521. Compared to WT, TAG-EPA content increased by 154.8% in XS521. Finally, to inhibit TAG-EPA degradation, a TAG lipase-encoding gene NoTGL1990 was knocked out in XS521, leading to a 49.2–65.3% increase in TAG-EPA content. Our work expands upon EPA-enhancing approaches through synthetic biology in microalgae and potentially crops. Full article
(This article belongs to the Special Issue Synthetic Biology in Marine Microalgae)
Show Figures

Figure 1

23 pages, 10192 KiB  
Article
Genome Analysis of a Polysaccharide-Degrading Bacterium Microbulbifer sp. HZ11 and Degradation of Alginate
by Xiao Liu, Wentao Zhao, Yan Li, Zhongliang Sun, Chang Lu and Liqin Sun
Mar. Drugs 2024, 22(12), 569; https://doi.org/10.3390/md22120569 - 18 Dec 2024
Viewed by 570
Abstract
Marine bacteria are crucial sources of alginate lyases, which play an essential role in alginate oligosaccharide (AOS) production. This study reports the biochemical characteristics of a new species of the Microbulbifer genus, Microbulbifer sp. HZ11. The strain HZ11 is Gram-negative, aerobic, flagellate-free, and [...] Read more.
Marine bacteria are crucial sources of alginate lyases, which play an essential role in alginate oligosaccharide (AOS) production. This study reports the biochemical characteristics of a new species of the Microbulbifer genus, Microbulbifer sp. HZ11. The strain HZ11 is Gram-negative, aerobic, flagellate-free, and rod-shaped. The genome of strain HZ11 is a 4,248,867 bp circular chromosome with an average GC content of 56.68%. HZ11 can degrade alginate and other polysaccharides. The carbohydrate-active enzyme (CAZyme) genes account for 4.57% of the total protein-coding genes of HZ11. Its alginate metabolism process is consistent with the characteristics of the polysaccharide utilization locus (PUL) system. The alginate lyase produced by strain HZ11 showed the highest activity at 50 °C, pH 8.5, and 0.1 M NaCl. The substrate preference was as follows: sodium alginate > poly mannuronic acid > poly guluronic acid. The thin layer chromatography (TLC) results revealed that the main enzymatic degradation products were monosaccharides or AOSs with a degree of polymerization (DP) of 2–3. These results help clarify the metabolism and utilization mechanism of alginate by marine bacteria and provide a theoretical reference for its application in the degradation of alginate and other polysaccharides. Full article
Show Figures

Figure 1

15 pages, 1810 KiB  
Article
Antioxidant Activity and DPP-IV Inhibitory Effect of Fish Protein Hydrolysates Obtained from High-Pressure Pretreated Mixture of Rainbow Trout (Oncorhynchus mykiss) and Atlantic Salmon (Salmo salar) Rest Raw Material
by Elissavet Kotsoni, Egidijus Daukšas, Grete Hansen Aas, Turid Rustad, Brijesh K. Tiwari, Carmen Lammi, Carlotta Bollati, Melissa Fanzaga, Lorenza d’Adduzio, Janne Kristin Stangeland and Janna Cropotova
Mar. Drugs 2024, 22(12), 568; https://doi.org/10.3390/md22120568 - 18 Dec 2024
Viewed by 667
Abstract
The use of fish rest raw material for the production of fish protein hydrolysates (FPH) through enzymatic hydrolysis has received significant interest in recent decades. Peptides derived from fish proteins are known for their enhanced bioactivity which is mainly influenced by their molecular [...] Read more.
The use of fish rest raw material for the production of fish protein hydrolysates (FPH) through enzymatic hydrolysis has received significant interest in recent decades. Peptides derived from fish proteins are known for their enhanced bioactivity which is mainly influenced by their molecular weight. Studies have shown that novel technologies, such as high-pressure processing (HPP), can effectively modify protein structures leading to increased biological activity. This study investigated the effect of various HPP conditions on the molecular weight distribution, antioxidant activity, and dipeptidyl-peptidase IV (DPP-IV) inhibitory effect of FPH derived from a mixture of rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar) rest raw material. Six different treatments were applied to the samples before enzymatic hydrolysis; 200 MPa × 4 min, 200 MPa × 8 min, 400 MPa × 4 min, 400 MPa × 8 min, 600 MPa × 4 min, and 600 MPa × 8 min. The antioxidant and DPP-IV inhibitory effects of the extracted FPH were measured both in vitro and at cellular level utilizing human intestinal Caco-2 cells. The results indicated that low and moderate pressures (200 and 400 MPa) increased the proportion of larger peptides (2–5 kDa) in the obtained FPH, while treatment at 600 MPa × 4 min resulted in a higher proportion of smaller peptides (1–2 kDa). Furthermore, HPP led to the formation of peptides that demonstrated increased antioxidant activity in Caco-2 cells compared to the control, whereas their potential antidiabetic activity remained unaffected. Full article
(This article belongs to the Special Issue Marine-Derived Ingredients for Functional Foods)
Show Figures

Figure 1

15 pages, 2194 KiB  
Article
Comparative Analysis of the Biochemical and Molecular Responses of Nannochloropsis gaditana to Nitrogen and Phosphorus Limitation: Phosphorus Limitation Enhances Carotenogenesis
by Sun Young Kim, Hanbi Moon, Yong Min Kwon, Kyung Woo Kim and Jaoon Young Hwan Kim
Mar. Drugs 2024, 22(12), 567; https://doi.org/10.3390/md22120567 - 18 Dec 2024
Viewed by 836
Abstract
Nannochloropsis gaditana is well known for its potential for biofuel production due to its high lipid content. Numerous omics and biochemical studies have explored the overall molecular mechanisms underlying the responses of Nannochloropsis sp. to nutrient availability, primarily focusing on lipid metabolism. However, [...] Read more.
Nannochloropsis gaditana is well known for its potential for biofuel production due to its high lipid content. Numerous omics and biochemical studies have explored the overall molecular mechanisms underlying the responses of Nannochloropsis sp. to nutrient availability, primarily focusing on lipid metabolism. However, N. gaditana is able to synthesize other valuable products such as carotenoids, including violaxanthin, which has various biological functions and applications. In this study, we comparatively investigated the physiological, biochemical, and molecular responses of N. gaditana to nitrogen and phosphorus limitation, examining biomass production, photosynthetic activity, lipid, chlorophyll, and carotenoids content, and RNA-seq data. Nitrogen limitation decreased photosynthetic activity, chlorophyll content, and biomass production but increased lipid content. Phosphorus limitation substantially increased carotenoids content, with violaxanthin productivity of 10.24 mg/L, 3.38-fold greater than under the control condition, with little effect on biomass production or photosynthetic function. These results were generally consistent with the gene expression pattern observed in transcriptomic analysis. This integrated analysis shows that phosphorus limitation can be an economically competitive solution by enhancing valuable carotenoids while maintaining lipid and biomass production in N. gaditana. Full article
(This article belongs to the Special Issue High-Value Algae Products)
Show Figures

Figure 1

29 pages, 385 KiB  
Review
The Beneficial Roles of Seaweed in Atopic Dermatitis
by Ah-Reum Kim, Myeong-Jin Kim, Jaeseong Seo, Kyoung Mi Moon and Bonggi Lee
Mar. Drugs 2024, 22(12), 566; https://doi.org/10.3390/md22120566 - 17 Dec 2024
Viewed by 635
Abstract
Atopic dermatitis (AD) is a chronic, inflammatory skin condition characterized by severe pruritus and recurrent flare-ups, significantly impacting patients’ quality of life. Current treatments, such as corticosteroids and immunomodulators, often provide symptomatic relief but can lead to adverse effects with prolonged use. Seaweed, [...] Read more.
Atopic dermatitis (AD) is a chronic, inflammatory skin condition characterized by severe pruritus and recurrent flare-ups, significantly impacting patients’ quality of life. Current treatments, such as corticosteroids and immunomodulators, often provide symptomatic relief but can lead to adverse effects with prolonged use. Seaweed, a sustainable and nutrient-dense resource, has emerged as a promising alternative due to its rich bioactive compounds—polysaccharides, phlorotannins, polyphenols, and chlorophyll—that offer anti-inflammatory, antioxidant, and immunomodulatory properties. This review explores the therapeutic potential of brown, red, and green algae in alleviating AD symptoms, highlighting the effects of specific species, including Undaria pinnatifida, Laminaria japonica, Chlorella vulgaris, and Sargassum horneri. These seaweeds modulate immune responses, reduce epidermal thickness, and restore skin barrier function, presenting a novel, safe, and effective approach to AD management. Further clinical studies are needed to confirm their efficacy and establish dosing strategies, paving the way for seaweed-derived therapies as natural alternatives in AD treatment. Full article
(This article belongs to the Special Issue Immunomodulatory Activities of Marine Products)
18 pages, 4279 KiB  
Article
Chemical Composition, Free Radicals and Pathogenic Microbes in the Extract Derived from Dictyota dichotoma: In Silico and In Vitro Approaches
by Fouad Oumassi, Khalid Chebbac, Naouar Ben Ali, Soundouss Kaabi, Zineb Nejjar El Ansari, Amira Metouekel, Azeddin El Barnossi, Abdelfattah El Moussaoui, Mohamed Chebaibi, Loubna Bounab, Ibrahim Mssillou, Abdelaaty Abdelaziz Shahat, Brahim El Bouzdoudi and Mohammed L’bachir El Kbiach
Mar. Drugs 2024, 22(12), 565; https://doi.org/10.3390/md22120565 - 17 Dec 2024
Viewed by 656
Abstract
Marine algae are renowned for their health benefits due to the presence of functional bioactive compounds. In this context, this study aims to valorize the extract of a seaweed, Dictyota dichotoma (D. dichotoma), through phytochemical characterization using liquid chromatography–mass spectrometry (HPLC-MS), [...] Read more.
Marine algae are renowned for their health benefits due to the presence of functional bioactive compounds. In this context, this study aims to valorize the extract of a seaweed, Dictyota dichotoma (D. dichotoma), through phytochemical characterization using liquid chromatography–mass spectrometry (HPLC-MS), as well as in vitro and in silico evaluation of its biological activities (antioxidant and antimicrobial). Phytochemical characterization revealed that the ethanolic extract of Dictyota dichotoma (DdEx) is rich in phenolic compounds, with a total of 22 phycocompounds identified. Antioxidant activity, measured by various methods, showed an IC50 of 120 µg/mL for the DPPH assay, an EC50 of 120.53 µg/mL for the FRAP assay, and a total antioxidant power of 685.26 µg AAE/mg according to the phosphomolybdate (TAC) method. Evaluation of antibacterial activity showed a zone of inhibition diameter ranging from 11.93 to 22.58 mm, with the largest zone observed for the Escherichia coli (E. coli) strain. For antifungal activity, inhibition zone diameters ranged from 22.38 to 23.52 mm, with the largest recorded for the Saccharomyces cerevisiae (S. cerevisiae) strain. The in silico study identified tetragalloyl-glucose, apigenin-7-O-glucoside, and pentagalloyl-glucose as the most active compounds against NADPH oxidase, with docking scores of −7.723, −7.424, and −6.402 kcal/mol, respectively. Regarding antibacterial activity, apigenin-7-O-glucoside, pelargonidin-3-O-glucoside, and secoisolariciresinol demonstrated high affinity for E. coli beta-ketoacyl-[acyl carrier protein] synthase, with docking scores of −7.276, −6.811, and −6.594 kcal/mol, respectively. These in vitro and in silico evaluations showed that D. dichotoma extract possesses antioxidant and antimicrobial properties, due to its richness in bioactive compounds identified by HPLC. Full article
(This article belongs to the Special Issue Therapeutic Potential of Marine Algae)
Show Figures

Figure 1

20 pages, 8399 KiB  
Article
Butyrolactone-I from Marine Fungal Metabolites Mitigates Heat-Stress-Induced Apoptosis in IPEC-J2 Cells and Mice Through the ROS/PERK/CHOP Signaling Pathway
by Xueting Niu, Shengwei Chen, Xinchen Wang, Jiaying Wen, Xiaoxi Liu, Yanhong Yong, Zhichao Yu, Xingbing Ma, A. M. Abd El-Aty and Xianghong Ju
Mar. Drugs 2024, 22(12), 564; https://doi.org/10.3390/md22120564 - 17 Dec 2024
Viewed by 640
Abstract
Heat stress poses a significant challenge to animal husbandry, contributing to oxidative stress, intestinal mucosal injury, and apoptosis, which severely impact animal health, growth, and production efficiency. The development of safe, sustainable, and naturally derived solutions to mitigate these effects is critical for [...] Read more.
Heat stress poses a significant challenge to animal husbandry, contributing to oxidative stress, intestinal mucosal injury, and apoptosis, which severely impact animal health, growth, and production efficiency. The development of safe, sustainable, and naturally derived solutions to mitigate these effects is critical for advancing sustainable agricultural practices. Butyrolactone-I (BTL-I), a bioactive compound derived from deep-sea fungi (Aspergillus), shows promise as a functional feed additive to combat heat stress in animals. This study explored the protective effects of BTL-I against heat-stress-induced oxidative stress and apoptosis in IPEC-J2 cells and mice. Our findings demonstrated that BTL-I effectively inhibited the heat-stress-induced upregulation of HSP70 and HSP90, alleviating intestinal heat stress. Both in vitro and in vivo experiments revealed that heat stress increased intestinal cell apoptosis, with a significant upregulation of Bax/Bcl-2 expression, while BTL-I pretreatment significantly reduced apoptosis-related protein levels, showcasing its protective effects. Furthermore, BTL-I suppressed oxidative stress markers (ROS and MDA) while enhancing antioxidant activity (SOD levels). BTL-I also reduced the expression of p-PERK, p-eIF2α, ATF4, and CHOP, mitigating oxidative and endoplasmic reticulum stress in intestinal cells. In conclusion, BTL-I demonstrates the potential to improve animal resilience to heat stress, supporting sustainable livestock production systems. Its application as a natural, eco-friendly feed additive will contribute to the development of sustainable agricultural practices. Full article
(This article belongs to the Special Issue Marine Anti-Inflammatory and Antioxidant Agents, 4th Edition)
Show Figures

Graphical abstract

2 pages, 1808 KiB  
Correction
Correction: Zhang et al. Astaxanthin Alleviates Early Brain Injury Following Subarachnoid Hemorrhage in Rats: Possible Involvement of Akt/Bad Signaling. Mar. Drugs 2014, 8, 4291
by Xiang-Sheng Zhang, Xin Zhang, Qi Wu, Wei Li, Qing-Rong Zhang, Chun-Xi Wang, Xiao-Ming Zhou, Hua Li, Ji-Xin Shi and Meng-Liang Zhou
Mar. Drugs 2024, 22(12), 563; https://doi.org/10.3390/md22120563 - 17 Dec 2024
Viewed by 373
Abstract
Errors in Figures [...] Full article
Show Figures

Figure 1

13 pages, 1865 KiB  
Article
Optimization of Collagen Extraction from Fish Scales Using Tris-Glycine Buffer: A Taguchi Methodological Approach
by Mokgadi Ursula Makgobole, Stanley Chibuzor Onwubu, Abayomi Baruwa, Nomakhosi Mpofana, Zodidi Obiechefu, Deneshree Naidoo, Andile Khathi and Blessing Mkhwanazi
Mar. Drugs 2024, 22(12), 562; https://doi.org/10.3390/md22120562 - 17 Dec 2024
Viewed by 582
Abstract
Collagen, a critical biomaterial with wide applications in pharmaceuticals, cosmetics, and medical industries, can be sourced sustainably from fish scales. This study optimizes the extraction of collagen using Tris-Glycine buffer from fish scales via the Taguchi method. Various extraction parameters—buffer concentration, temperature, pH, [...] Read more.
Collagen, a critical biomaterial with wide applications in pharmaceuticals, cosmetics, and medical industries, can be sourced sustainably from fish scales. This study optimizes the extraction of collagen using Tris-Glycine buffer from fish scales via the Taguchi method. Various extraction parameters—buffer concentration, temperature, pH, and time—were evaluated to identify optimal conditions. Under optimal conditions (0.5 M of acetic acids, volume of acids of 100 mL, soaking time of 120 min, and Tris-Glycine buffer of 10 mL), the results demonstrate that temperature and buffer concentration significantly influence collagen yield, with a collagen purity of 17.14 ± 0.05 mg/g. R2 value of 73.84% was obtained for the mathematical model). FTIR analysis confirmed the presence of characteristic collagen peaks at 1611 cm−1 (amide I), 1523 cm−1 (amide II), and 1300 cm−1 (amide III), indicating the successful extraction of type I collagen. SDS-PAGE analysis revealed a protein banding pattern consistent with the molecular weight of collagen, and amino acid analysis shows high percentages of glycine (20.98%), proline (15.43%), and hydroxyproline (11.51%), implying fibrous collagen structures. The finding suggests that the Taguchi method offers an efficient and sustainable approach for collagen extraction, reducing waste from fish processing industries. Nevertheless, there is a need for further experimental validation to align with mathematical modeling on the optimized conditions. Full article
(This article belongs to the Special Issue Fishery Discards, Processing Waste and Marine By-Products)
Show Figures

Figure 1

19 pages, 6914 KiB  
Article
Interaction of Liposomes Containing the Carrageenan/Echinochrome Complex with Human HaCaT Keratinocytes In Vitro
by Ekaterina S. Menchinskaya, Vladimir I. Gorbach, Evgeny A. Pislyagin, Tatiana Y. Gorpenchenko, Evgeniya A. Pimenova, Irina V. Guzhova, Dmitry L. Aminin and Irina M. Yermak
Mar. Drugs 2024, 22(12), 561; https://doi.org/10.3390/md22120561 - 16 Dec 2024
Viewed by 669
Abstract
Liposomal drug delivery systems are successfully used in various fields of medicine for external and systemic applications. Marine organisms contain biologically active substances that have a unique structure and exhibit a wide range of biological activities. Polysaccharide of red seaweed (carrageenan (CRG)), and [...] Read more.
Liposomal drug delivery systems are successfully used in various fields of medicine for external and systemic applications. Marine organisms contain biologically active substances that have a unique structure and exhibit a wide range of biological activities. Polysaccharide of red seaweed (carrageenan (CRG)), and water-insoluble sea urchin pigment (echinochrome (Ech)) interact with each other and form a stable complex. We included the CRG/Ech complex in liposomes for better permeability into cells. In our research, tetramethylrhodamine isothiocyanate TRITC-labeled CRG was synthesized to study the interaction of the complex encapsulated in liposomes with human epidermal keratinocytes (HaCaTs) widely used to expose the skin to a variety of substances. Using confocal microscopy, we found that liposomes were able to penetrate HaCaT cells with maximum efficiency within 24 h, and pre-incubation of keratinocytes with liposomes resulted in the delivery of the CRG/Ech complex into the cytoplasm. We investigated the anti-inflammatory effects of liposomes, including the lysosomal regulation, increased intracellular ROS levels, and increased NO synthesis in lipopolysaccharide (LPS)- or Escherichia coli (E. coli)-induced inflamed skin cells. Liposomes containing the CRG/Ech complex significantly reduced lysosomal activity by 26% in LPS-treated keratinocytes and decreased ROS levels in cells by 23% after LPS exposure. It was found that liposomes with the complex improved the migration of HaCaT keratinocytes incubated with high-dose LPS by 47%. The results of the work, taking into account the good permeability of liposomes into keratinocytes, as well as the anti-inflammatory effect on cells treated with LPS or E. coli, show the prospects of using liposomes containing the CRG/Ech complex as an anti-inflammatory agent in the fight against skin infections. Full article
(This article belongs to the Special Issue Marine Polysaccharide-Based Biomaterials)
Show Figures

Graphical abstract

28 pages, 2112 KiB  
Article
Composition of Triterpene Glycosides of the Far Eastern Sea Cucumber Cucumaria conicospermium Levin et Stepanov; Structure Elucidation of Five Minor Conicospermiumosides A3-1, A3-2, A3-3, A7-1, and A7-2; Cytotoxicity of the Glycosides Against Human Breast Cancer Cell Lines; Structure–Activity Relationships
by Alexandra S. Silchenko, Ekaterina A. Chingizova, Ekaterina S. Menchinskaya, Elena A. Zelepuga, Anatoly I. Kalinovsky, Sergey A. Avilov, Kseniya M. Tabakmakher, Roman S. Popov, Pavel. S. Dmitrenok, Salim Sh. Dautov and Vladimir I. Kalinin
Mar. Drugs 2024, 22(12), 560; https://doi.org/10.3390/md22120560 - 16 Dec 2024
Viewed by 697
Abstract
Five new non-holostane di- and trisulfated triterpene pentaosides, conicospermiumosides A3-1 (1), A3-2 (2), A3-3 (3), A7-1 (4), and A7-2 (5) were isolated from [...] Read more.
Five new non-holostane di- and trisulfated triterpene pentaosides, conicospermiumosides A3-1 (1), A3-2 (2), A3-3 (3), A7-1 (4), and A7-2 (5) were isolated from the Far Eastern sea cucumber Cucumaria conicospermium Levin et Stepanov (Cucumariidae, Dendrochirotida). Twelve known glycosides found earlier in other Cucumaria species were also obtained and identified. The structures of new compounds were established on the basis of extensive analysis of the 1D and 2D NMR spectra, as well as by the HR-ESI-MS data. The aglycones of 15 differed by side chains structures. Additionally, conicospermiumoside A7-1 (4) had a 9(11)-double bond in the aglycone, while the remaining glycosides contained a 7(8)-intranuclear double bond. Eight types of carbohydrate chains known earlier from the glycosides of the sea cucumbers of the Cucumaria genus were found as part of the glycosides of C. conicospermium. The set of sugar chains of the glycosides from C. conicospermium was similar to that from C. okhotensis. The raw biogenetic series of aglycones, leading to the formation of hexa-nor-lanostane derivatives in the process of biosynthesis and a sort of functionally-structural division that was realized due to separation of biosynthetic pathways of holostane and lanostane derivatives, can be traced when the structures of the glycosides isolated from C. conicospermium are compared. The cytotoxic action against three human breast cancer cell lines (MCF-7, T-47D, MDA-MB-231), and non-tumor MCF-10A and hemolytic activity of compounds 15, as well as seven known glycosides were tested. Conicospermiumosides A3-3 (3) and A7-1 (4), having a 22-oxo-23(24)-en fragment, were strongly hemolytic despite lacking a lactone in their aglycones. Moreover, both compounds demonstrated a promising suppressing action against triple negative breast cancer cells. The cells of the MDA-MB-231 line were most sensitive to the cytotoxic action of the glycosides, while the MCF-7 cell line was most sustainable. Six glycosides were selected for further study of some aspects of anticancer action against MDA-MB-231. The selective action of the compounds 4 and 8 on the MDA-MB-231 cells without significant toxicity against the MCF-10A cells was noticeable. More importantly, the selectivity of the compounds was changed over time and maximal selectivity to cancer cells was demonstrated by glycoside 1 at 48 h of exposition. The glycosides 1, 3 and the desulfated derivative 7a strongly inhibited colony formation and growth of the TNBC cells until the process stops completely. Okhotoside B1 (8), DS-okhotoside A1-1 (7a), and conicospermiumoside A3-3 (3) showed a potent cell migration-inhibiting capacity. Quantitative structure–activity relationships (QSARs) calculated on the basis of a correlational analysis of the physicochemical properties and structural features of the glycosides and their cytotoxic activity against different cell lines showed some structural features influenced differently, sometimes even in opposite ways, on the activity of glycosides toward diverse cells (erythrocytes, MCF-10A, and TNBC MDA-MB-231 cells). This observation indicated that glycosides obviously target different membrane components, such as lipids of erythrocytes and some receptors on the surface of mammary normal or tumor cells. Full article
(This article belongs to the Special Issue Novel Biomaterials and Active Compounds from Sea Cucumbers)
Show Figures

Figure 1

10 pages, 1989 KiB  
Article
Three New Dipeptide and Two New Polyketide Derivatives from the Mangrove-Derived Fungus Talaromyces sp.: Antioxidant Activity of Two Isolated Substances
by Zhihao Zeng, Jian Cai, Yi Chen, Xinlong Li, Chunmei Chen, Yonghong Liu, Lalith Jayasinghe and Xuefeng Zhou
Mar. Drugs 2024, 22(12), 559; https://doi.org/10.3390/md22120559 - 14 Dec 2024
Viewed by 730
Abstract
Five new metabolites, including three cyclic dipeptide derivatives (13) and two new polyketides (1011), together with nine known ones (49 and 1215), were isolated from the mangrove-sediments-derived fungus Talaromyces [...] Read more.
Five new metabolites, including three cyclic dipeptide derivatives (13) and two new polyketides (1011), together with nine known ones (49 and 1215), were isolated from the mangrove-sediments-derived fungus Talaromyces sp. SCSIO 41431. Their structures were determined using detailed NMR, MS spectroscopic analyses, and quantum chemical calculations. X-ray single-crystal diffraction analysis of 1 was described. Compounds 1315 demonstrated activity against Staphylococcus aureus, with MIC values ranging from 25 to 50 µg/mL. Compound 9 showed activity against Escherichia coli, Streptococcus suis, and Erysipelothrix rhusiopathiae, with an MIC value of 100 µg/mL. In addition, compounds 1 and 12 showed DPPH radical scavenging activity, with the EC50 of 27.62 and 29.34 µg/mL, compared to the positive control (ascorbic acid, EC50, 12.74 µg/mL). Full article
Show Figures

Graphical abstract

11 pages, 2492 KiB  
Article
Lichenase and Cellobiohydrolase Activities of a Novel Bi-Functional β-Glucanase from the Marine Bacterium Streptomyces sp. J103
by Youngdeuk Lee, Eunyoung Jo, Yeon-Ju Lee, Min Jin Kim, Navindu Dinara Gajanayaka, Mahanama De Zoysa, Gun-Hoo Park and Chulhong Oh
Mar. Drugs 2024, 22(12), 558; https://doi.org/10.3390/md22120558 - 13 Dec 2024
Viewed by 801
Abstract
In this study, we report the molecular and enzymatic characterisation of Spg103, a novel bifunctional β-glucanase from the marine bacterium Streptomyces sp. J103. Recombinant Spg103 (rSpg103) functioned optimally at 60 °C and pH 6. Notably, Spg103 exhibited distinct stability properties, with increased activity [...] Read more.
In this study, we report the molecular and enzymatic characterisation of Spg103, a novel bifunctional β-glucanase from the marine bacterium Streptomyces sp. J103. Recombinant Spg103 (rSpg103) functioned optimally at 60 °C and pH 6. Notably, Spg103 exhibited distinct stability properties, with increased activity in the presence of Na+ and EDTA. Spg103 displays both lichenase and cellobiohydrolase activity. Despite possessing a GH5 cellulase domain, FN3 and CBM3 domains characteristic of cellulases and CBHs, biochemical assays showed that rSpg103 exhibited higher activity towards mixed β-1,3-1,4-glucan such as barley β-glucan and lichenan than towards beta-1,4-linkages. The endolytic activity of the enzyme was confirmed by TLC and UPLC-MS analyses, which identified cellotriose as the main hydrolysis product. In addition, Spg103 exhibited an exo-type activity, selectively releasing cellobiose units from cellooligosaccharides, which is characteristic of cellobiohydrolases. These results demonstrate the potential of Spg103 for a variety of biotechnological applications, particularly those requiring tailor-made enzymatic degradation of mixed-linked β-glucans. This study provides a basis for further structural and functional investigations of the bifunctional enzyme and highlights Spg103 as a promising candidate for industrial applications. Full article
(This article belongs to the Special Issue Advances of Marine-Derived Enzymes)
Show Figures

Graphical abstract

13 pages, 2327 KiB  
Article
Fucosterol, a Phytosterol of Marine Algae, Attenuates Immobilization-Induced Skeletal Muscle Atrophy in C57BL/6J Mice
by Jieun Hwang, Mi-Bo Kim, Sanggil Lee and Jae-Kwan Hwang
Mar. Drugs 2024, 22(12), 557; https://doi.org/10.3390/md22120557 - 12 Dec 2024
Viewed by 689
Abstract
The objective of this study was to examine whether fucosterol, a phytosterol of marine algae, could ameliorate skeletal muscle atrophy in tumor necrosis factor-alpha (TNF-α)-treated C2C12 myotubes and in immobilization-induced C57BL/6J mice. Male C57BL6J mice were immobilized for 1 week to induce skeletal [...] Read more.
The objective of this study was to examine whether fucosterol, a phytosterol of marine algae, could ameliorate skeletal muscle atrophy in tumor necrosis factor-alpha (TNF-α)-treated C2C12 myotubes and in immobilization-induced C57BL/6J mice. Male C57BL6J mice were immobilized for 1 week to induce skeletal muscle atrophy. Following immobilization, the mice were administrated orally with saline or fucosterol (10 or 30 mg/kg/day) for 1 week. Fucosterol significantly attenuated immobilization-induced muscle atrophy by enhancing muscle strength, with a concomitant increase in muscle volume, mass, and myofiber cross-sectional area in the tibialis anterior (TA) muscle in mice. In both the TNF-α-treated C2C12 myotubes and the TA muscle of immobilized mice, fucosterol significantly prevented muscle protein degradation, which was attributed to a reduction in atrogin-1 and muscle ring finger 1 gene expression through an increase in forkhead box O3α (FoxO3α) phosphorylation. Continuously, fucosterol stimulated muscle protein synthesis by increasing the phosphorylation of the mammalian target of the rapamycin (mTOR), 70 kDa ribosomal protein S6 kinase, and 4E binding protein 1, which was mediated through the stimulation of the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Thus, fucosterol alleviated skeletal muscle atrophy in TNF-α-treated C2C12 myotubes and immobilized C57BL/6J mice through the regulation of the Akt/mTOR/FoxO3α signaling pathway. Full article
(This article belongs to the Special Issue High-Value Compounds from Marine Algae)
Show Figures

Graphical abstract

24 pages, 1964 KiB  
Article
Detection of the Cyclic Imines Pinnatoxin G, 13-Desmethyl Spirolide C and 20-Methyl Spirolide G in Bivalve Molluscs from Great Britain
by Ryan P. Alexander, Alison O’Neill, Karl J. Dean, Andrew D. Turner and Benjamin H. Maskrey
Mar. Drugs 2024, 22(12), 556; https://doi.org/10.3390/md22120556 - 12 Dec 2024
Viewed by 714
Abstract
Harmful algal biotoxins in the marine environment are a threat to human food safety due to their bioaccumulation in bivalve shellfish. Whilst official control monitoring provides ongoing risk management for regulated toxins in live bivalve molluscs, no routine monitoring system is currently in [...] Read more.
Harmful algal biotoxins in the marine environment are a threat to human food safety due to their bioaccumulation in bivalve shellfish. Whilst official control monitoring provides ongoing risk management for regulated toxins in live bivalve molluscs, no routine monitoring system is currently in operation in the UK for other non-regulated toxins. To assess the potential presence of such compounds, a systematic screen of bivalve shellfish was conducted throughout Great Britain. A rapid dispersive methanolic extraction was used with UHPLC-MS/MS analysis to test for fifteen cyclic imines and seven brevetoxins in 2671 shellfish samples taken from designated shellfish harvesting areas around Great Britain during 2018. Out of the 22 toxins incorporated into the method, only pinnatoxin G, 13-desmethyl spirolide C and 20-methyl spirolide G were detected, with maximum concentrations of 85.4 µg/kg, 13.4 µg/kg and 51.4 µg/kg, respectively. A follow up study of pinnatoxin G-positive samples examined its potential esterification to fatty acids and concluded that following hydrolysis, pinnatoxin G concentration increased by an average of 8.6%, with the tentative identification of these esters determined by LC-HRMS. This study highlights the requirement for ongoing monitoring of emerging threats and the requirement for toxicological and risk assessment studies. Full article
(This article belongs to the Special Issue Marine Biotoxins 3.0)
Show Figures

Figure 1

18 pages, 4799 KiB  
Article
Transgenic Schizochytrium as a Promising Oral Vaccine Carrier: Potential Application in the Aquaculture Industry
by Ke Ma, Lei Deng, Yuanjie Wu, Yuan Gao, Jianhua Fan and Haizhen Wu
Mar. Drugs 2024, 22(12), 555; https://doi.org/10.3390/md22120555 - 12 Dec 2024
Viewed by 985
Abstract
Schizochytrium limacinum SR21, a kind of eukaryotic heterotrophic organism rich in unsaturated fatty acids, is an emerging microbial alternative to fish oil. The dietary inclusion of 15% SR21 was optimal for the growth performance of zebrafish. Previous studies demonstrated that fructose-1,6-bisphosphate aldolase (FBA) [...] Read more.
Schizochytrium limacinum SR21, a kind of eukaryotic heterotrophic organism rich in unsaturated fatty acids, is an emerging microbial alternative to fish oil. The dietary inclusion of 15% SR21 was optimal for the growth performance of zebrafish. Previous studies demonstrated that fructose-1,6-bisphosphate aldolase (FBA) of Edwardsiella tarda is a valuable broad-spectrum antigen against various pathogens in aquaculture (e.g., Aeromonas hydrophila, Vibro anguillarum, Vibro harveyi, Vibro alginolyticus). We pioneered the development of stable S. limacinum SR21 transformants expressing the antigen protein FBA, exploring their potential as a novel oral vaccine for the aquaculture industry. The model animal zebrafish (Danio rerio) and ornamental fish koi carp (Cyprinus carpio koi) were harnessed to assess the immunoprotective effect, respectively. According to the quantitative expression analysis, zebrafish fed with recombinant Schizochytrium expressing FBA exhibited specific immune responses in the intestine. The expression levels of MHC-I and MHC-II, involved in cell-mediated adaptive immune responses, were significantly upregulated on the 14th and 28th days post-immunization. Additionally, the expression of highly specialized antibody genes IgZ1 and IgZ2 in mucosal immunity were significantly triggered on the 14th day post-immunization. Feeding koi carp with recombinant S. limacinum SR21-FBA increased the production of myeloperoxidase and FBA-specific antibodies in the sera. Furthermore, the sera of koi fed with recombinant S. limacinum SR21-FBA exhibited significant bactericidal activities against pathogen E. tarda. Thus, S. limacinum SR21 is a natural and highly promising oral vaccine carrier that not only provides essential nutrients as a functional feed ingredient but also offers specific immune protection to aquatic animals. This dual application is vital for promoting the sustainable development of the aquaculture industry. Full article
(This article belongs to the Section Marine Pharmacology)
Show Figures

Graphical abstract

44 pages, 2640 KiB  
Review
Shrimp Lipid Bioactives with Anti-Inflammatory, Antithrombotic, and Antioxidant Health-Promoting Properties for Cardio-Protection
by Paschalis Cholidis, Dimitrios Kranas, Aggeliki Chira, Evangelia Aikaterini Galouni, Theodora Adamantidi, Chryssa Anastasiadou and Alexandros Tsoupras
Mar. Drugs 2024, 22(12), 554; https://doi.org/10.3390/md22120554 - 11 Dec 2024
Viewed by 1249
Abstract
Marine animals, especially shrimp species, have gained interest in research, due to the fact that they contain a plethora of biomolecules, specifically lipids, which have been proven to possess many health benefits in various diseases linked to chronic inflammation or other exogenous factors. [...] Read more.
Marine animals, especially shrimp species, have gained interest in research, due to the fact that they contain a plethora of biomolecules, specifically lipids, which have been proven to possess many health benefits in various diseases linked to chronic inflammation or other exogenous factors. This review refers to the lipid composition of a large number of shrimp species, as well as the effects that can alternate the lipid content of these crustaceans. Emphasis is given to the potent anti-inflammatory, antioxidant, and antithrombotic properties of shrimp bioactives, as well as the effects that these bioactives hold in other diseases, such as cancer, diabetes, neurodegenerative disorders, and more. The various health-promoting effects deriving from the consumption of shrimp lipid bioactives and the usage of products containing shrimp lipid extracts are also addressed in this study, through the exploration of several mechanisms of action and the interference of shrimp lipids in these biochemical pathways. Nevertheless, further research on this cultivatable edible species is needed, due to their existing limitations and future prospects which are discussed in this paper. Full article
(This article belongs to the Special Issue Marine-Derived Compounds Applied in Cardiovascular Disease)
Show Figures

Figure 1

13 pages, 3180 KiB  
Article
Two New Diterpenoids Formed by Transannular Diels–Alder Cycloaddition from the Soft Coral Sarcophyton tortuosum, and Their Antibacterial and PPAR-β Agonist Activities
by Min Sun, Songwei Li, Jianang Zeng, Yuewei Guo, Changyun Wang and Mingzhi Su
Mar. Drugs 2024, 22(12), 553; https://doi.org/10.3390/md22120553 - 10 Dec 2024
Viewed by 790
Abstract
Two new cembrane-derived tricyclic diterpenes belonging to the sarcophytin family, namely 4a-hydroxy-chatancin (1) and sarcotoroid (2), together with two known related ones (3 and 4), were isolated from the soft coral Sarcophyton tortuosum collected off [...] Read more.
Two new cembrane-derived tricyclic diterpenes belonging to the sarcophytin family, namely 4a-hydroxy-chatancin (1) and sarcotoroid (2), together with two known related ones (3 and 4), were isolated from the soft coral Sarcophyton tortuosum collected off Ximao Island in the South China Sea. The structures of the new compounds were elucidated by extensive spectroscopic analysis, a quantum mechanical nuclear magnetic resonance (QM-NMR) method, a time-dependent density functional theory electronic circular dichroism (TDDFT-ECD) calculation, X-ray diffraction analysis, and comparison with the reported data in the literature. A plausible biosynthetic pathway of compounds 14 was proposed, involving undergoing a transannular Diels–Alder cycloaddition. In the bioassay, the new compound 1 displayed significant inhibitory activities against the fish pathogens Streptococcus parauberis KSP28, oxytetracycline-resistant Streptococcus parauberis SPOF3K, and Photobacterium damselae FP2244, with MIC values of 9.1, 9.1, and 18.2 μg/mL, respectively. Furthermore, by conducting a luciferase reporter assay on rat liver Ac2F cells, compounds 1, 3, and 4 were evaluated for peroxisome proliferator-activated receptor (PPAR) transcriptional activity, and compound 3 showed selective PPAR-β agonist activity at a concentration of 10 μΜ. Full article
(This article belongs to the Special Issue Bioactive Compounds from Soft Corals and Their Derived Microorganisms)
Show Figures

Graphical abstract

19 pages, 4015 KiB  
Review
Asteroid Saponins: A Review of Their Bioactivity and Selective Cytotoxicity
by Stuart J. Smith, Tianfang Wang and Scott F. Cummins
Mar. Drugs 2024, 22(12), 552; https://doi.org/10.3390/md22120552 - 7 Dec 2024
Viewed by 876
Abstract
Saponins are a diverse class of secondary metabolites that are often reported to exhibit a variety of pharmacological applications. While research into the elucidation and application of plant and class Holothuroidea-derived saponins (i.e., sea cucumbers) is extensive, the class Asteroidea-derived saponins (i.e., seastars) [...] Read more.
Saponins are a diverse class of secondary metabolites that are often reported to exhibit a variety of pharmacological applications. While research into the elucidation and application of plant and class Holothuroidea-derived saponins (i.e., sea cucumbers) is extensive, the class Asteroidea-derived saponins (i.e., seastars) have been largely overlooked and primarily limited to elucidation. This review provides a comprehensive overview of the cytotoxic activities of asteroid-derived saponins against various cell cultures, for instance, mammalian erythrocytes, multiple microbial strains and cancer cell lines, including melanoma, breast, colon, and lung cancers. Highlighting the distinct structural variations in these saponins, this review examines their selective cytotoxicity and potency, with many demonstrating IC50 values in the low micromolar range. Specific compounds, such as asterosaponins and polyhydroxylated saponins, exhibit noteworthy effects, particularly against melanoma and lung carcinoma cells, while triterpenoid saponins were found to be highly cytotoxic to both erythrocytes and fungal cells. This review also addresses gaps in the research area, including the need for additional in vitro antimicrobial studies, in vivo studies, and further exploration of their mechanisms of action. By consolidating recent findings, we have shed light on the therapeutic potential of asteroid-derived steroidal saponins in developing novel antimicrobial and anticancer agents. Full article
(This article belongs to the Special Issue Biologically Active Compounds from Marine Invertebrates 2025)
11 pages, 1779 KiB  
Article
New Sesterterpenes from the Antarctic Sponge Suberites sp.
by Stine S. H. Olsen, Sydney K. Morrow, Julia L. Szabo, Michael N. Teng, Kim C. Tran, Charles D. Amsler, James B. McClintock and Bill. J. Baker
Mar. Drugs 2024, 22(12), 551; https://doi.org/10.3390/md22120551 - 6 Dec 2024
Viewed by 1121
Abstract
Chemical investigation of the Antarctic sponge Suberites sp. has previously led to the identification of new suberitane derivatives, some of which show bioactivity toward respiratory syncytial virus (RSV). Our ongoing NMR-guided investigation of new specimens of the sponge resulted in the isolation of [...] Read more.
Chemical investigation of the Antarctic sponge Suberites sp. has previously led to the identification of new suberitane derivatives, some of which show bioactivity toward respiratory syncytial virus (RSV). Our ongoing NMR-guided investigation of new specimens of the sponge resulted in the isolation of five new analogs (15), previously reported suberitenones A–D (69), and oxaspirosuberitenone (10). Suberitenone K (1) was characterized as the 8-keto derivative of 6, while three new phenols, suberitandiol (2), abeosuberitandiol (3), and furanosuberitandiol (4), and the degraded sesterterpene norsuberitenone B (5) were also found. Compound 3 displays a ring contraction while 4 has a new dihydrofuran ring. Structural characterization was achieved by a combination of NMR, HR-MS, and X-ray diffraction (XRD). Moderate activity towards RSV was reported for 9 and the new metabolite 1, with IC50 values of 15.0 μM and 39.8 μM, respectively. Full article
(This article belongs to the Section Synthesis and Medicinal Chemistry of Marine Natural Products)
Show Figures

Figure 1

28 pages, 3065 KiB  
Review
Biomarkers and Seaweed-Based Nutritional Interventions in Metabolic Syndrome: A Comprehensive Review
by Ana Valado, Margarida Cunha and Leonel Pereira
Mar. Drugs 2024, 22(12), 550; https://doi.org/10.3390/md22120550 - 4 Dec 2024
Viewed by 1492
Abstract
Metabolic Syndrome (MetS) is a complex, multifactorial condition characterized by risk factors such as abdominal obesity, insulin resistance, dyslipidemia and hypertension, which significantly contribute to the development of cardiovascular disease (CVD), the leading cause of death worldwide. Early identification and effective monitoring of [...] Read more.
Metabolic Syndrome (MetS) is a complex, multifactorial condition characterized by risk factors such as abdominal obesity, insulin resistance, dyslipidemia and hypertension, which significantly contribute to the development of cardiovascular disease (CVD), the leading cause of death worldwide. Early identification and effective monitoring of MetS is crucial for preventing serious cardiovascular complications. This article provides a comprehensive overview of various biomarkers associated with MetS, including lipid profile markers (triglyceride/high-density lipoprotein cholesterol (TG/HDL-C) ratio and apolipoprotein B/apolipoprotein A1 (ApoB/ApoA1) ratio), inflammatory markers (interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), plasminogen activator inhibitor type 1 (PAI-1), C-reactive protein (CRP), leptin/adiponectin ratio, omentin and fetuin-A/adiponectin ratio), oxidative stress markers (lipid peroxides, protein and nucleic acid oxidation, gamma-glutamyl transferase (GGT), uric acid) and microRNAs (miRNAs) such as miR-15a-5p, miR5-17-5p and miR-24-3p. Additionally, this review highlights the importance of biomarkers in MetS and the need for advancements in their identification and use for improving prevention and treatment. Seaweed therapy is also discussed as a significant intervention for MetS due to its rich content of fiber, antioxidants, minerals and bioactive compounds, which help improve cardiovascular health, reduce inflammation, increase insulin sensitivity and promote weight loss, making it a promising nutritional strategy for managing metabolic and cardiovascular health. Full article
(This article belongs to the Collection Marine Drugs in the Management of Metabolic Diseases)
Show Figures

Figure 1

24 pages, 3164 KiB  
Article
Cytotoxic Effects of ZnO and Ag Nanoparticles Synthesized in Microalgae Extracts on PC12 Cells
by Giacomo Fais, Agnieszka Sidorowicz, Giovanni Perra, Debora Dessì, Francesco Loy, Nicola Lai, Paolo Follesa, Roberto Orrù, Giacomo Cao and Alessandro Concas
Mar. Drugs 2024, 22(12), 549; https://doi.org/10.3390/md22120549 - 4 Dec 2024
Viewed by 908
Abstract
The green synthesis of silver (Ag) and zinc oxide (ZnO) nanoparticles (NPs), as well as Ag/Ag2O/ZnO nanocomposites (NCs), using polar and apolar extracts of Chlorella vulgaris, offers a sustainable method for producing nanomaterials with tunable properties. The impact of the [...] Read more.
The green synthesis of silver (Ag) and zinc oxide (ZnO) nanoparticles (NPs), as well as Ag/Ag2O/ZnO nanocomposites (NCs), using polar and apolar extracts of Chlorella vulgaris, offers a sustainable method for producing nanomaterials with tunable properties. The impact of the synthesis environment and the nanomaterials’ characteristics on cytotoxicity was evaluated by examining reactive species production and their effects on mitochondrial bioenergetic functions. Cytotoxicity assays on PC12 cells, a cell line originated from a rat pheochromocytoma, an adrenal medulla tumor, demonstrated that Ag/Ag2O NPs synthesized with apolar (Ag/Ag2O NPs A) and polar (Ag/Ag2O NPs P) extracts exhibited significant cytotoxic effects, primarily driven by Ag+ ion release and the disruption of mitochondrial function. However, it is more likely the organic content, rather than size, influenced anticancer activity, as commercial Ag NPs, despite smaller crystallite sizes, exhibit less effective activity. ZnO NPs P showed increased reactive oxygen species (ROS) generation, correlated with higher cytotoxicity, while ZnO NPs A produced lower ROS levels, resulting in diminished cytotoxic effects. A comparative analysis revealed significant differences in LD50 values and toxicity profiles. Differentiated PC12 cells showed higher resistance to ZnO, while AgNPs and Ag/Ag2O-based materials had similar effects on both cell types. This study emphasizes the crucial role of the synthesis environment and bioactive compounds from C. vulgaris in modulating nanoparticle surface chemistry, ROS generation, and cytotoxicity. The results provide valuable insights for designing safer and more effective nanomaterials for biomedical applications, especially for targeting tumor-like cells, by exploring the relationships between nanoparticle size, polarity, capping agents, and nanocomposite structures. Full article
(This article belongs to the Special Issue Discovery of Marine-Derived Anticancer Agents, 2nd Edition)
Show Figures

Graphical abstract

22 pages, 1965 KiB  
Article
Revealing the Potential of Fucus vesiculosus Linnaeus for Cosmetic Purposes: Chemical Profile and Biological Activities of Commercial and Wild Samples
by Marina Muñoz-Quintana, Carolina Padrón-Sanz, Marina Dolbeth, Francisco Arenas, Vitor Vasconcelos and Graciliana Lopes
Mar. Drugs 2024, 22(12), 548; https://doi.org/10.3390/md22120548 - 4 Dec 2024
Viewed by 962
Abstract
The natural products industry is gaining increasing interest, not only due to modern lifestyles becoming more aware of environmental and sustainability issues but also because of the loss of efficacy and undesirable side effects of synthetic ingredients. This pioneering study provides a comprehensive [...] Read more.
The natural products industry is gaining increasing interest, not only due to modern lifestyles becoming more aware of environmental and sustainability issues but also because of the loss of efficacy and undesirable side effects of synthetic ingredients. This pioneering study provides a comprehensive comparison between extracts obtained from wild and commercial samples of Fucus vesiculosus Linnaeus, highlighting their multifaceted benefits in cosmetic applications. The antiaging potential of acetone (70 and 90%) and ethanol 60% extracts from wild and commercial samples of F. vesiculosus, focusing on their application in cosmetics, was explored. The extracts were chemically characterized, their carotenoid profiles being established by HPLC, and the total phenolic content and phlorotannins by spectrophotometry. The extracts were evaluated for their antioxidant potential against the physiologic free radicals superoxide anion radical (O2•−) and nitric oxide (NO), for their ability to inhibit the enzymes hyaluronidase and tyrosinase, and for their anti-inflammatory potential in the macrophage cell model RAW 264.7. The acetone 70% extract of wild F. vesiculosus was the richest in fucoxanthin, which accounted for more than 67% of the total pigments identified, followed by the acetone 90% extract of the same sample, where both fucoxanthin and pheophytin-a represented 40% of the total pigments. The same behavior was observed for phenolic compounds, with the ethanol 60% presenting the lowest values. A chemical correlation could be established between the chemical composition and the biological activities, with acetone extracts from the wild F. vesiculosus, richer in fucoxanthin and phlorotannins, standing out as natural ingredients with anti-aging potential. Acetone 90% can be highlighted as the most effective extraction solvent, their extracts presenting the highest radicals scavenging capacity, ability to inhibit tyrosinase to a greater extent than the commercial ingredient kojic acid, and potential to slow down the inflammatory process. Full article
(This article belongs to the Special Issue Marine Natural Products with Anti-aging Activity)
Show Figures

Graphical abstract

Previous Issue
Next Issue
Back to TopTop