Commemorating the Launch of the Section “Marine Biotechnology Related to Drug Discovery or Production”

A special issue of Marine Drugs (ISSN 1660-3397). This special issue belongs to the section "Marine Biotechnology Related to Drug Discovery or Production".

Deadline for manuscript submissions: closed (31 December 2024) | Viewed by 7883

Special Issue Editor


E-Mail Website
Guest Editor
School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
Interests: microbial ecology and diversity; microbial systematics; biodiscovery; microbial biotechnology applied; environmental and industrial microbiology; marine microbiology; biological control; actinomycetology; bacteriophages
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

A new section of Marine Drugs (ISSN 1660-3397), “Marine Biotechnology Related to Drug Discovery or Production”, has been launched. The section aims to collect papers that report on the application of advanced technologies to marine organisms in terms of drug discovery and production.

We are pleased to announce a Special Issue to commemorate the launch of this section. We invite scientists to submit reviews or original research articles studying bioinformatics, culturing techniques, multi-omics, therapeutic biotechnology (gene therapy, peptide inhibitors, enzymes), nanobiotechnology, etc., to further the knowledge regarding marine drug discovery and development.

Kind regards,

Dr. Ipek Kurtboke
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Marine Drugs is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • cultivation
  • bioinformatics
  • sequencing
  • bioconversion
  • enzymes
  • fermentation
  • omics
  • process technologies
  • marine biodiscovery
  • marine microorganisms
  • marine biotechnology

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 3077 KiB  
Article
Effects of Acute Salinity Stress on the Histological and Bacterial Community Structure and Function in Intestine of Stichopus monotuberculatus
by Lianghua Huang, Hui Wang, Chuanyan Pan, Xueming Yang, Guoqing Deng, Yaowen Meng, Yongxiang Yu, Xiuli Chen and Shengping Zhong
Mar. Drugs 2024, 22(12), 576; https://doi.org/10.3390/md22120576 - 23 Dec 2024
Viewed by 820
Abstract
This study focused on Stichopus monotuberculatus and conducted stress experiments at salinity levels of 20‰ and 40‰. Intestinal histological changes and the structural characteristics of the intestinal flora of S. monotuberculatus under salinity stress were analyzed. The results show that acute salinity stress [...] Read more.
This study focused on Stichopus monotuberculatus and conducted stress experiments at salinity levels of 20‰ and 40‰. Intestinal histological changes and the structural characteristics of the intestinal flora of S. monotuberculatus under salinity stress were analyzed. The results show that acute salinity stress inflicts varying degrees of damage to the intestinal tissues of S. monotuberculatus. Salinity stress enhances the species diversity of intestinal flora in S. monotuberculatus. Eight phyla of bacteria are detected in the intestine of S. monotuberculatus. Dominant phyla include Proteobacteria, Firmicutes, and Actinobacteria. Furthermore, functional prediction reveals that acute salinity stress can significantly modify the abundance of pathways associated with nutrient and energy metabolism mediated by the intestinal flora of S. monotuberculatus. These results indicate that acute salinity stress induces pathological damage to the intestinal tissues of S. monotuberculatus, compromising the microbial habitat and leading to alterations in the intestinal flora composition. Additionally, S. monotuberculatus can mitigate salinity stress by adjusting the composition of its intestinal flora and the corresponding functional pathways. Full article
Show Figures

Figure 1

16 pages, 17017 KiB  
Article
Novel Approach for Obtaining Variable Domain of New Antigen Receptor with Different Physicochemical Properties from Japanese Topeshark (Hemitriakis japanica)
by Tomofumi Nakada-Masuta, Hiroyuki Takeda and Kazuhisa Uchida
Mar. Drugs 2023, 21(11), 550; https://doi.org/10.3390/md21110550 - 24 Oct 2023
Cited by 2 | Viewed by 1967
Abstract
Diverse candidate antibodies are needed to successfully identify therapeutic and diagnostic applications. The variable domain of IgNAR (VNAR), a shark single-domain antibody, has attracted attention owing to its favorable physicochemical properties. The phage display method used to screen for optimal VNARs loses sequence [...] Read more.
Diverse candidate antibodies are needed to successfully identify therapeutic and diagnostic applications. The variable domain of IgNAR (VNAR), a shark single-domain antibody, has attracted attention owing to its favorable physicochemical properties. The phage display method used to screen for optimal VNARs loses sequence diversity because of the bias caused by the differential ease of protein expression in Escherichia coli. Here, we investigated a VNAR selection method that combined panning with various selection pressures and next-generation sequencing (NGS) analyses to obtain additional candidates. Drawing inspiration from the physiological conditions of sharks and the physicochemical properties of VNARs, we examined the effects of NaCl and urea concentrations, low temperature, and preheating at the binding step of panning. VNAR phage libraries generated from Japanese topeshark (Hemitriakis japanica) were enriched under these conditions. We then performed NGS analysis and attempted to select clones that were specifically enriched under each panning condition. The identified VNARs exhibited higher reactivity than those obtained by panning without selection pressure. Additionally, they possess physicochemical properties that reflect their respective selection pressures. These results can greatly enhance our understanding of VNAR properties and offer guidance for the screening of high-quality VNAR clones that are present at low frequencies. Full article
Show Figures

Figure 1

Review

Jump to: Research

26 pages, 4179 KiB  
Review
Actinomycete-Derived Pigments: A Path Toward Sustainable Industrial Colorants
by Blanca Hey Díez, Cristiana A. V. Torres and Susana P. Gaudêncio
Mar. Drugs 2025, 23(1), 39; https://doi.org/10.3390/md23010039 - 13 Jan 2025
Cited by 2 | Viewed by 2141
Abstract
Pigment production has a substantial negative impact on the environment, since mining for natural pigments causes ecosystem degradation, while synthetic pigments, derived from petrochemicals, generate toxic by-products that accumulate and persist in aquatic systems due to their resistance to biodegradation. Despite these challenges, [...] Read more.
Pigment production has a substantial negative impact on the environment, since mining for natural pigments causes ecosystem degradation, while synthetic pigments, derived from petrochemicals, generate toxic by-products that accumulate and persist in aquatic systems due to their resistance to biodegradation. Despite these challenges, pigments remain essential across numerous industries, including the cosmetic, textile, food, automotive, paints and coatings, plastics, and packaging industries. In response to growing consumer demand for sustainable options, there is increasing interest in eco-friendly alternatives, particularly bio-based pigments derived from algae, fungi, and actinomycetes. This shift is largely driven by consumer demand for sustainable options. For bio-pigments, actinomycetes, particularly from the Streptomyces genus, have emerged as a promising green source, aligning with global sustainability goals due to their renewability and biodegradability. Scale-up of production and yield optimization challenges have been circumvented with the aid of biotechnology advancements, including genetic engineering and innovative fermentation and extraction methods, which have enhanced these bio-pigments’ viability and cost-competitiveness. Actinomycete-derived pigments have successfully transitioned from laboratory research to commercialization, showcasing their potential as sustainable and eco-friendly alternatives to synthetic dyes. With the global pigment market valued at approximately USD 24.28 billion in 2023, which is projected to reach USD 36.58 billion by 2030, the economic potential for actinomycete pigments is extensive. This review explores the environmental advantages of actinomycete pigments, their role in modern industry, and the regulatory and commercialization challenges they face, highlighting the importance of these pigments as promising solutions to reduce our reliance on conventional toxic pigments. The successful commercialization of actinomycete pigments can drive an industry-wide transition to environmentally responsible alternatives, offering substantial benefits for human health, safety, and environmental sustainability. Full article
Show Figures

Graphical abstract

20 pages, 1086 KiB  
Review
Exploring the Structural Diversity and Biotechnological Potential of the Rhodophyte Phycolectome
by Éllen F. Rodrigues, Flavia Alves Verza, Felipe Garcia Nishimura, Renê Oliveira Beleboni, Cedric Hermans, Kaat Janssens, Maarten Lieven De Mol, Paco Hulpiau and Mozart Marins
Mar. Drugs 2025, 23(1), 8; https://doi.org/10.3390/md23010008 - 26 Dec 2024
Viewed by 1070
Abstract
Lectins are non-covalent glycan-binding proteins found in all living organisms, binding specifically to carbohydrates through glycan-binding domains. Lectins have various biological functions, including cell signaling, molecular recognition, and innate immune responses, which play multiple roles in the physiological and developmental processes of organisms. [...] Read more.
Lectins are non-covalent glycan-binding proteins found in all living organisms, binding specifically to carbohydrates through glycan-binding domains. Lectins have various biological functions, including cell signaling, molecular recognition, and innate immune responses, which play multiple roles in the physiological and developmental processes of organisms. Moreover, their diversity enables biotechnological exploration as biomarkers, biosensors, drug-delivery platforms, and lead molecules for anticancer, antidiabetic, and antimicrobial drugs. Lectins from Rhodophytes (red seaweed) have been extensively reported and characterized for their unique molecular structures, carbohydrate-binding specificities, and important biological activities. The increasing number of sequenced Rhodophyte genomes offers the opportunity to further study this rich source of lectins, potentially uncovering new ones with properties significantly different from their terrestrial plant counterparts, thus opening new biotechnological applications. We compiled literature data and conducted an in-depth analysis of the phycolectomes from all Rhodophyta genomes available in NCBI datasets. Using Hidden Markov Models capable of identifying lectin-type domains, we found at least six different types of lectin domains present in Rhodophytes, demonstrating their potential in identifying new lectins. This review integrates a computational analysis of the Rhodophyte phycolectome with existing information on red algae lectins and their biotechnological potential. Full article
Show Figures

Figure 1

Back to TopTop