Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,070)

Search Parameters:
Keywords = thickness standard

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 15569 KiB  
Article
Studies on the Chemical Etching and Corrosion Resistance of Ultrathin Laminated Alumina/Titania Coatings
by Ivan Netšipailo, Lauri Aarik, Jekaterina Kozlova, Aivar Tarre, Maido Merisalu, Kaisa Aab, Hugo Mändar, Peeter Ritslaid and Väino Sammelselg
Corros. Mater. Degrad. 2025, 6(3), 36; https://doi.org/10.3390/cmd6030036 (registering DOI) - 2 Aug 2025
Abstract
We investigated the protective properties of ultrathin laminated coatings, comprising three pairs of Al2O3 and TiO2 sublayers with coating thicknesses < 150 nm, deposited on AISI 310 stainless steel (SS) and Si (100) substrates at 80–500 °C by atomic [...] Read more.
We investigated the protective properties of ultrathin laminated coatings, comprising three pairs of Al2O3 and TiO2 sublayers with coating thicknesses < 150 nm, deposited on AISI 310 stainless steel (SS) and Si (100) substrates at 80–500 °C by atomic layer deposition. The coatings were chemically etched and subjected to corrosion, ultrasound, and thermal shock tests. The coating etching resistance efficiency (Re) was determined by measuring via XRF the change in the coating sublayer mass thickness after etching in hot 80% H2SO4. The maximum Re values of ≥98% for both alumina and titania sublayers were obtained for the laminates deposited at 250–400 °C on both substrates. In these coatings, the titania sublayers were crystalline. The lowest Re values of 15% and 50% for the alumina and titania sublayers, respectively, were measured for laminate grown at 80 °C on silicon. The coatings deposited at 160–200 °C demonstrated a delay in the increase of Re values, attributed to the changes in the titania sublayers before full crystallization. Coatings grown at higher temperatures were also more resistant to ultrasound and liquid nitrogen treatments. In contrast, coatings deposited at 125 °C on SS had better corrosion protection, as demonstrated via electrochemical impedance spectroscopy and a standard immersion test in FeCl3 solution. Full article
Show Figures

Figure 1

16 pages, 2578 KiB  
Article
Experimental Comparison Between Two-Course Masonry Specimens and Three-Course Extracted Masonry Specimens in Clay Masonry Structures
by Bernardo Tutikian and Felipe Schneider
Processes 2025, 13(8), 2446; https://doi.org/10.3390/pr13082446 (registering DOI) - 1 Aug 2025
Abstract
This study investigates the relationship between the compressive strength of two-course masonry specimens and three-course masonry specimens extracted from previously constructed walls, to correlate the execution control specimens with the retest specimens. Compressive strength tests were performed on clay masonry units, laboratory-built two-course [...] Read more.
This study investigates the relationship between the compressive strength of two-course masonry specimens and three-course masonry specimens extracted from previously constructed walls, to correlate the execution control specimens with the retest specimens. Compressive strength tests were performed on clay masonry units, laboratory-built two-course masonry specimens, and three-course masonry specimens extracted from constructed walls, following the prescriptions of NBR 15270 and NBR 16868-3. The results demonstrate that three-course masonry specimens exhibit lower compressive strength (characteristic and average, 44.83% and 40.29%, respectively) compared to two-course masonry specimens. Additionally, it was found that the dispersion of results is greater in three-course masonry specimens. Given that three-course specimens are typically used when it becomes necessary to verify the structural compliance of executed masonry—usually following unsatisfactory results from execution control using two-course specimens—more data are needed to compare such results. Factors such as increased height-to-thickness ratio, the presence of head joints, and the influence of execution conditions at the construction site seem to influence the difference between two and three-course specimens, as well as the dispersion of the results. Therefore, it is essential that technical standards provide supporting criteria to enable a reliable comparison between two-course specimens used for execution control and three-course specimens used as retest elements. Full article
(This article belongs to the Special Issue Composite Materials Processing, Modeling and Simulation)
Show Figures

Figure 1

12 pages, 441 KiB  
Article
Diagnostic Value of Point-of-Care Ultrasound for Sarcopenia in Geriatric Patients Hospitalized for Hip Fracture
by Laure Mondo, Chloé Louis, Hinda Saboul, Laetitia Beernaert and Sandra De Breucker
J. Clin. Med. 2025, 14(15), 5424; https://doi.org/10.3390/jcm14155424 (registering DOI) - 1 Aug 2025
Abstract
Introduction: Sarcopenia is a systemic condition linked to increased morbidity and mortality in older adults. Point-of-Care Ultrasound (POCUS) offers a rapid, bedside method to assess muscle mass. This study evaluates the diagnostic accuracy of POCUS compared to Dual-energy X-ray Absorptiometry (DXA), the [...] Read more.
Introduction: Sarcopenia is a systemic condition linked to increased morbidity and mortality in older adults. Point-of-Care Ultrasound (POCUS) offers a rapid, bedside method to assess muscle mass. This study evaluates the diagnostic accuracy of POCUS compared to Dual-energy X-ray Absorptiometry (DXA), the gold standard method, and explores its prognostic value in old patients undergoing surgery for hip fractures. Patients and Methods: In this prospective, single-center study, 126 patients aged ≥ 70 years and hospitalized with hip fractures were included. Sarcopenia was defined according to the revised 2018 EWGSOP2 criteria. Muscle mass was assessed by the Appendicular Skeletal Muscle Mass Index (ASMI) using DXA and by the thickness of the rectus femoris (RF) muscle using POCUS. Results: Of the 126 included patients, 52 had both DXA and POCUS assessments, and 43% of them met the diagnostic criteria for sarcopenia or severe sarcopenia. RF muscle thickness measured by POCUS was significantly associated with ASMI (R2 = 0.30; p < 0.001). POCUS showed a fair diagnostic accuracy in women (AUC 0.652) and an excellent accuracy in men (AUC 0.905). Optimal diagnostic thresholds according to Youden’s index were 5.7 mm for women and 9.3 mm for men. Neither RF thickness, ASMI, nor sarcopenia status predicted mortality or major postoperative complications. Conclusions: POCUS is a promising, accessible tool for diagnosing sarcopenia in old adults with hip fractures. Nonetheless, its prognostic utility remains uncertain and should be further evaluated in long-term studies. Full article
(This article belongs to the Special Issue The “Orthogeriatric Fracture Syndrome”—Issues and Perspectives)
Show Figures

Figure 1

19 pages, 1760 KiB  
Review
An Insight into Current and Novel Treatment Practices for Refractory Full-Thickness Macular Hole
by Chin Sheng Teoh
J. Clin. Transl. Ophthalmol. 2025, 3(3), 15; https://doi.org/10.3390/jcto3030015 - 1 Aug 2025
Abstract
Refractory full-thickness macular holes (rFTMHs) present a significant challenge in vitreoretinal surgery, with reported incidence rates of 4.2–11.2% following standard vitrectomy with internal limiting membrane (ILM) peeling and gas tamponade. Risk factors include large hole size (>400 µm), chronicity (>6 months), high myopia, [...] Read more.
Refractory full-thickness macular holes (rFTMHs) present a significant challenge in vitreoretinal surgery, with reported incidence rates of 4.2–11.2% following standard vitrectomy with internal limiting membrane (ILM) peeling and gas tamponade. Risk factors include large hole size (>400 µm), chronicity (>6 months), high myopia, incomplete ILM peeling, and post-operative noncompliance. Multiple surgical techniques exist, though comparative evidence remains limited. Current options include the inverted ILM flap technique, autologous ILM transplantation (free flap or plug), lens capsular flap transplantation (autologous or allogenic), preserved human amniotic membrane transplantation, macular subretinal fluid injection, macular fibrin plug with autologous platelet concentrates, and autologous retinal transplantation. Closure rates range from 57.1% to 100%, with selection depending on hole size, residual ILM, patient posturing ability, etc. For non-posturing patients, fibrin plugs are preferred. Residual ILM cases may benefit from extended peeling or flap techniques, while large holes often require scaffold-based (lens capsule, amniotic membrane) or fibrin plug approaches. Pseudophakic patients should avoid posterior capsular flaps due to lower success rates. Despite promising outcomes, the lack of randomized trials necessitates further research to establish evidence-based guidelines. Personalized surgical planning, considering anatomical and functional goals, remains crucial in optimizing visual recovery in rFTMHs. Full article
Show Figures

Figure 1

15 pages, 5631 KiB  
Article
Design and Evaluation of a Capacitive Micromachined Ultrasonic Transducer(CMUT) Linear Array System for Thickness Measurement of Marine Structures Under Varying Environmental Conditions
by Changde He, Mengke Luo, Hanchi Chai, Hongliang Wang, Guojun Zhang, Renxin Wang, Jiangong Cui, Yuhua Yang, Wendong Zhang and Licheng Jia
Micromachines 2025, 16(8), 898; https://doi.org/10.3390/mi16080898 (registering DOI) - 31 Jul 2025
Abstract
This paper presents the design, fabrication, and experimental evaluation of a capacitive micromachined ultrasonic transducer (CMUT) linear array for non-contact thickness measurement of marine engineering structures. A 16-element CMUT array was fabricated using a silicon–silicon wafer bonding process, and encapsulated in polyurethane to [...] Read more.
This paper presents the design, fabrication, and experimental evaluation of a capacitive micromachined ultrasonic transducer (CMUT) linear array for non-contact thickness measurement of marine engineering structures. A 16-element CMUT array was fabricated using a silicon–silicon wafer bonding process, and encapsulated in polyurethane to ensure acoustic impedance matching and environmental protection in underwater conditions. The acoustic performance of the encapsulated CMUT was characterized using standard piezoelectric transducers as reference. The array achieved a transmitting sensitivity of 146.82 dB and a receiving sensitivity of −229.55 dB at 1 MHz. A complete thickness detection system was developed by integrating the CMUT array with a custom transceiver circuit and implementing a time-of-flight (ToF) measurement algorithm. To evaluate environmental robustness, systematic experiments were conducted under varying water temperatures and salinity levels. The results demonstrate that the absolute thickness measurement error remains within ±0.1 mm under all tested conditions, satisfying the accuracy requirements for marine structural health monitoring. The results validate the feasibility of CMUT-based systems for precise and stable thickness measurement in underwater environments, and support their application in non-destructive evaluation of marine infrastructure. Full article
(This article belongs to the Special Issue MEMS/NEMS Devices and Applications, 3rd Edition)
Show Figures

Figure 1

15 pages, 2263 KiB  
Article
Comparison of the Trueness of Complete Dentures Fabricated Using Liquid Crystal Display 3D Printing According to Build Angle and Natural Light Exposure
by Haeri Kim, KeunBaDa Son, So-Yeun Kim and Kyu-Bok Lee
J. Funct. Biomater. 2025, 16(8), 277; https://doi.org/10.3390/jfb16080277 - 30 Jul 2025
Viewed by 165
Abstract
The dimensional accuracy of the intaglio surface of complete dentures fabricated using liquid crystal display (LCD) three-dimensional (3D) printing might be influenced by the build angle and post-processing storage conditions. This study evaluated the effect of build angle and natural light exposure duration [...] Read more.
The dimensional accuracy of the intaglio surface of complete dentures fabricated using liquid crystal display (LCD) three-dimensional (3D) printing might be influenced by the build angle and post-processing storage conditions. This study evaluated the effect of build angle and natural light exposure duration on the intaglio surface trueness of maxillary complete denture bases. Standardized denture base designs (2 mm uniform thickness) were fabricated using an LCD 3D printer (Lilivis Print; Huvitz, Seoul, Republic of Korea) at build angles of 0°, 45°, and 90° (n = 7 per group). All specimens were printed using the same photopolymer resin (Tera Harz Denture; Graphy, Seoul, Republic of Korea) and identical printing parameters, followed by ultrasonic cleaning and ultraviolet post-curing. Specimens were stored under controlled light-emitting diode lighting and exposed to natural light (400–800 lux) for 0, 14, or 30 days. The intaglio surfaces were scanned and superimposed on the original design data, following the International Organization for Standardization 12836. Quantitative assessment included root mean square deviation, mean deviation, and tolerance percentage. Statistical analyses were performed using one-way analysis of variance and paired t-tests (α = 0.05). Build angle and light exposure duration significantly affected surface trueness (p < 0.05). The 90° build angle group exhibited the highest accuracy and dimensional stability, while the 0° group showed the greatest deviations (p < 0.05). These findings underscore the importance of optimizing build orientation and storage conditions in denture 3D printing. Full article
(This article belongs to the Special Issue Bio-Additive Manufacturing in Materials Science)
Show Figures

Figure 1

16 pages, 1480 KiB  
Systematic Review
Comparison of Dentoalveolar Changes with Miniscrew-Assisted Versus Conventional Rapid Palatal Expansion in Growing Patients: A Systematic Review and Meta-Analysis
by Hwang bin Lee, Jong-Moon Chae, Jae Hyun Park, Na Jin Kim and Sung-Hoon Han
Appl. Sci. 2025, 15(15), 8326; https://doi.org/10.3390/app15158326 - 26 Jul 2025
Viewed by 151
Abstract
Background: This meta-analysis aimed to evaluate the dentoalveolar changes of miniscrew-assisted rapid palatal expansion (MARPE) compared with conventional rapid palatal expansion (CRPE) in growing patients (≤16 years). Methods: A systematic and comprehensive literature search was carried out independently by two reviewers using both [...] Read more.
Background: This meta-analysis aimed to evaluate the dentoalveolar changes of miniscrew-assisted rapid palatal expansion (MARPE) compared with conventional rapid palatal expansion (CRPE) in growing patients (≤16 years). Methods: A systematic and comprehensive literature search was carried out independently by two reviewers using both MeSH terms and free-text keywords across PubMed, the Cochrane Library, and Embase, with studies published through February 2025 included. The risk of bias was assessed using the Cochrane ROB 2.0 tool. The GRADE system was employed to determine evidence quality. Results: Of the 462 initially screened articles, 6 met the inclusion criteria and were selected for quantitative synthesis. Most studies had a low risk of bias with some concerns in reporting. The pooled standardized mean difference (SMD) for tooth inclination changes in CRPE compared with MARPE was 0.98 (95% confidence interval (CI), 0.54 to 1.42; p < 0.01). The test for overall effect was significant (p < 0.01), but no significant differences were found between the subgroups. The pooled SMD for buccal bone thickness changes in CRPE compared with MARPE was 0.69 (95% CI, 0.37 to 1.00; p < 0.01). The test for overall effect was significant (p < 0.01), and there were substantial differences between the subgroups. The supporting evidence ranged in certainty from moderate to low. Conclusions: MARPE was more effective than CRPE in minimizing the buccal tipping and buccal bone loss of the maxillary first premolars and first molars. However, to further confirm these outcomes and guide evidence-based clinical practice, well-designed randomized controlled trials with long-term follow-up are necessary. Full article
(This article belongs to the Special Issue Trends and Prospects of Orthodontic Treatment, 2nd Edition)
Show Figures

Figure 1

18 pages, 2786 KiB  
Article
Performance of Oriented Strand Boards Made with Jack Pine Strands Produced by an Innovative Strander-Canter
by Rosilei Garcia, Alain Cloutier, Irsan Alipraja, Roger E. Hernández and Ahmed Koubaa
Forests 2025, 16(8), 1227; https://doi.org/10.3390/f16081227 - 25 Jul 2025
Viewed by 130
Abstract
Canadian sawmills commonly use chipper-canters to process softwood logs into squared lumber and wood chips for pulp mills. However, the declining demand for newsprint and print paper has led to an oversupply of wood chips, resulting in economic losses and environmental concerns. To [...] Read more.
Canadian sawmills commonly use chipper-canters to process softwood logs into squared lumber and wood chips for pulp mills. However, the declining demand for newsprint and print paper has led to an oversupply of wood chips, resulting in economic losses and environmental concerns. To address this issue, a strander-canter capable of producing both softwood cants and strands for oriented strand board (OSB) presents a promising alternative. This study evaluates the feasibility of using jack pine strands generated by a novel strander-canter equipped with a cutterhead for OSB strand production. Strands were generated from frozen and unfrozen logs under varying cutting parameters and incorporated in the core layer of the panels. Industrial aspen strands were used for the surface layers. OSB panels were assessed for mechanical and physical properties following the CSA O325:21 standard. Strand size distribution and vertical density profiles were also analyzed. The results indicated that panels made from jack pine strands demonstrated bending and internal bond properties that were either comparable to or superior to those of the control panels. However, including jack pine strands in the core layer increased the thickness swelling of the panels. Full article
(This article belongs to the Special Issue Properties and Uses of Value-Added Wood-Based Products and Composites)
Show Figures

Graphical abstract

35 pages, 10845 KiB  
Article
Study on Axial Compression Performance of CFRP-Aluminum Alloy Laminated Short Tubes
by Xiaoqun Luo, Yanheng Li, Li Wang and Xiaonong Guo
Materials 2025, 18(15), 3480; https://doi.org/10.3390/ma18153480 - 24 Jul 2025
Viewed by 214
Abstract
CFRP possesses the advantages of lightweight and high strength, but its cost is relatively high, and its ductility is insufficient; aluminum alloys have a relatively low cost and good ductility. This paper develops a CFRP-aluminum alloy laminated tube (CFRP-AL tube), which combines the [...] Read more.
CFRP possesses the advantages of lightweight and high strength, but its cost is relatively high, and its ductility is insufficient; aluminum alloys have a relatively low cost and good ductility. This paper develops a CFRP-aluminum alloy laminated tube (CFRP-AL tube), which combines the advantages of CFRP and aluminum alloy. Such composite components have broad application prospects in the field of spatial structures. The CFRP-AL tubes were studied by experimental, numerical, and theoretical research on their axial compression performance in this paper. Firstly, the standard tensile test was carried out on 6061-T6 aluminum alloy. Combining the test results and references, the Johnson–Cook hardening model parameters of aluminum alloy were determined. The tensile test of CFRP was conducted to determine its material parameters. Based on composite material mechanics and fracture mechanics, a composite progressive damage model for the CFRP-AL tube was established. Secondly, axial compression tests were carried out on 27 CFRP-AL tubes and 3 aluminum alloy tubes with a small slenderness ratio. The test results show that the typical failure mode of CFRP-AL tubes with small slenderness ratios is strength failure, and the ultimate bearing capacity rises by 11~31% compared to aluminum alloy tubes. Thirdly, a user material subroutine capable of simulating CFRP failure was developed. Based on the user material subroutine, the effect of the initial imperfection, the fiber layer angle, the fiber layer thickness, the slenderness ratio, the diameter-thickness ratio and the CFRP volume ratio were discussed. And the failure mechanism and response of the CFRP-AL tubes under the axial compression were obtained. Finally, based on the strength theory, the formula predicting the bearing capacity of the strength failure was established, and the results of the formula were in a good agreement with the experimental and numerical results. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

13 pages, 1301 KiB  
Article
Translational Pitfalls in SCI Bladder Research: The Hidden Role of Urinary Drainage Techniques in the Rat Model
by Sophina Bauer, Michael Kleindorfer, Karin Roider, Evelyn Beyerer, Martha Georgina Brandtner, Peter Törzsök, Lukas Lusuardi, Ludwig Aigner and Elena Esra Keller
Biology 2025, 14(8), 928; https://doi.org/10.3390/biology14080928 - 23 Jul 2025
Viewed by 260
Abstract
Spinal cord injury (SCI) frequently leads to neurogenic lower urinary tract dysfunction, for which appropriate bladder management is essential. While clinical care relies on continuous low-pressure drainage in the acute phase, rat models commonly use twice-daily manual bladder expression—a method known to generate [...] Read more.
Spinal cord injury (SCI) frequently leads to neurogenic lower urinary tract dysfunction, for which appropriate bladder management is essential. While clinical care relies on continuous low-pressure drainage in the acute phase, rat models commonly use twice-daily manual bladder expression—a method known to generate high intravesical pressures and retention. This study evaluated the impact of this standard practice on bladder tissue remodeling by comparing it to continuous drainage via high vesicostomy in a rat SCI model. 32 female Lewis rats underwent thoracic contusion SCI and were assigned to either manual expression or vesicostomy-based bladder management. Over eight weeks, locomotor recovery, wound healing, and bladder histology were assessed. Vesicostomy proved technically simple but required tailored wound care and calibration. Results showed significantly greater bladder wall thickness, detrusor muscle hypertrophy, urothelial thickening, collagen deposition, and mast cell infiltration in the manual expression group compared to both vesicostomy and controls. In contrast, vesicostomy animals exhibited near-control levels across most parameters. These findings highlight that commonly used bladder emptying protocols in rat SCI models may overestimate structural bladder changes and inflammatory responses. Refined drainage strategies such as vesicostomy can minimize secondary damage and improve the translational relevance of preclinical SCI research. Full article
(This article belongs to the Special Issue Advances in the Fields of Neurotrauma and Neuroregeneration)
Show Figures

Figure 1

21 pages, 7007 KiB  
Article
Analysis of Woven Fabric Mechanical Properties in the Context of Sustainable Clothing Development Process
by Maja Mahnić Naglić, Slavenka Petrak and Antoneta Tomljenović
Polymers 2025, 17(15), 2013; https://doi.org/10.3390/polym17152013 - 23 Jul 2025
Viewed by 229
Abstract
This paper presents research in the field of computer-aided 3D clothing design, focusing on an investigation of three methods for determining the mechanical properties of woven fabrics and their impact on 3D clothing simulations in the context of sustainable apparel development. Five mechanical [...] Read more.
This paper presents research in the field of computer-aided 3D clothing design, focusing on an investigation of three methods for determining the mechanical properties of woven fabrics and their impact on 3D clothing simulations in the context of sustainable apparel development. Five mechanical parameters were analyzed: tensile elongation in the warp and weft directions, shear stiffness, bending stiffness, specific weight, and fabric thickness. These parameters were integrated into the CLO3D CAD software v.2025.0.408, using data obtained via the KES-FB system, the Fabric Kit protocol, and the AI-based tool, SEDDI Textura 2024. Simulations of women’s blouse and trousers were evaluated using dynamic tests and validated by real prototypes measured with the ARAMIS optical 3D system. Results show average differences between digital and real prototype deformation data up to 6% with an 8% standard deviation, confirming the high accuracy of 3D simulations based on the determined mechanical parameters of the real fabric sample. Notably, the AI-based method demonstrated excellent simulation results compared with real garments, highlighting its potential for accessible, sustainable, and scalable fabric digitization. Presented research is entirely in line with the current trends of digitization and sustainability in the textile industry. It contributes to the advancement of efficient digital prototyping workflows and emphasizes the importance of reliable mechanical characterization for predictive garment modeling. Full article
(This article belongs to the Special Issue Environmentally Friendly Textiles, Fibers and Their Composites)
Show Figures

Figure 1

19 pages, 3654 KiB  
Article
Brazilian Potential of Eucalyptus benthamii Maiden & Cambage for Cross-Laminated Timber Panels: Structural Analysis and Comparison with Pinus spp. and European Standards
by Matheus Zanghelini Teixeira, Rodrigo Figueiredo Terezo, Camila Alves Corrêa, Samuel da Silva Santos, Helena Cristina Vieira and Alexsandro Bayestorff da Cunha
Buildings 2025, 15(15), 2606; https://doi.org/10.3390/buildings15152606 - 23 Jul 2025
Viewed by 242
Abstract
This study investigates the potential of Eucalyptus benthamii wood from planted forests in southern Brazil for the production of cross-laminated timber (CLT) panels. The performance of E. benthamii CLT panels is compared to that of Pinus spp. panels and European commercial panels (KLH [...] Read more.
This study investigates the potential of Eucalyptus benthamii wood from planted forests in southern Brazil for the production of cross-laminated timber (CLT) panels. The performance of E. benthamii CLT panels is compared to that of Pinus spp. panels and European commercial panels (KLH®), using the finite element method applied to a two-story building model. Class 2 of the Brazilian standard ABNT NBR 7190-2 was adopted as the reference for the physical and mechanical properties of Pinus spp., while the European commercial specifications from KLH® were used to represent European reference panels. The results indicate that E. benthamii wood exhibits superior mechanical properties, enabling reductions of 12.5% to 27.3% in panel thickness and a 20.7% decrease in wood volume when compared to Pinus spp., without compromising structural safety. Relative to the KLH® and ETA 06/0138 standards, E. benthamii wood demonstrates higher stiffness (modulus of elasticity of 15,325 MPa vs. 12,000 MPa) and greater flexural strength (109.11 MPa vs. 24 MPa), allowing for the use of thinner panels. Stress and displacement analyses confirm that E. benthamii CLT slabs can withstand critical loads (wind and vertical) within normative limits, with maximum displacements of 18.5 mm. The reduction in material volume (22.8 m3 versus 28.7 m3 for Pinus spp.) suggests potential benefits in terms of environmental impact and logistical efficiency. It can be concluded that E. benthamii represents a sustainable and efficient alternative for CLT panels, combining high structural performance with resource optimization and contributing to the decarbonization of the construction industry. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 8370 KiB  
Article
High-Fructose High-Fat Diet Renders the Retina More Susceptible to Blue Light Photodamage in Mice
by Meng-Wei Kao, Wan-Ju Yeh, Hsin-Yi Yang and Chi-Hao Wu
Antioxidants 2025, 14(8), 898; https://doi.org/10.3390/antiox14080898 - 22 Jul 2025
Viewed by 323
Abstract
Retinal degeneration is associated with dietary factors and environmental light exposure. This study investigated the effects of a high-fructose high-fat (HFHF) diet on susceptibility to blue light (BL)-induced retinal damage. Male ICR mice were randomized into three groups: control, BL alone, and BL [...] Read more.
Retinal degeneration is associated with dietary factors and environmental light exposure. This study investigated the effects of a high-fructose high-fat (HFHF) diet on susceptibility to blue light (BL)-induced retinal damage. Male ICR mice were randomized into three groups: control, BL alone, and BL plus HFHF diet (BL + HFHF). The BL + HFHF group consumed the HFHF diet for 40 weeks, followed by 8 weeks of low-intensity BL exposure (465 nm, 37.7 lux, 0.8 μW/cm2) for 6 h daily. The BL group underwent the same BL exposure while kept on a standard diet. Histopathological analysis showed that, under BL exposure, the HFHF diet significantly reduced the number of photoreceptor nuclei and the thickness of the outer nuclear layer and inner/outer segments compared to the BL group (p < 0.05). While BL exposure alone caused oxidative DNA damage, rhodopsin loss, and Müller cell activation, the combination with an HFHF diet significantly amplified the oxidative DNA damage and Müller cell activation. Moreover, the HFHF diet increased blood–retinal barrier permeability and triggered apoptosis under BL exposure. Mechanistically, the BL + HFHF group exhibited increased retinal advanced glycated end product (AGE) deposition, accompanied by the activation of the receptor for AGE (RAGE), NFκB, and the NLRP3 inflammasome-dependent IL-1β pathway. In conclusion, this study underscores that unhealthy dietary factors, particularly those high in fructose and fat, may intensify the hazard of BL and adversely impact visual health. Full article
(This article belongs to the Special Issue Oxidative Stress in Eye Diseases)
Show Figures

Graphical abstract

37 pages, 21436 KiB  
Review
An Overview of the Working Conditions of Laser–Arc Hybrid Processes and Their Effects on Steel Plate Welding
by Girolamo Costanza, Fabio Giudice, Severino Missori, Cristina Scolaro, Andrea Sili and Maria Elisa Tata
J. Manuf. Mater. Process. 2025, 9(8), 248; https://doi.org/10.3390/jmmp9080248 - 22 Jul 2025
Viewed by 336
Abstract
Over the past 20 years, laser beam–electric arc hybrid welding has gained popularity, enabling high quality and efficiency standards needed for steel welds in structures subjected to severe working conditions. This process enables single-pass welding of thick components, overcoming issues concerning the individual [...] Read more.
Over the past 20 years, laser beam–electric arc hybrid welding has gained popularity, enabling high quality and efficiency standards needed for steel welds in structures subjected to severe working conditions. This process enables single-pass welding of thick components, overcoming issues concerning the individual use of traditional processes based on an electric arc or laser beam. Therefore, thorough knowledge of both processes is necessary to combine them optimally in terms of efficiency, reduced presence of defects, corrosion resistance, and mechanical and metallurgical features of the welds. This article aims to review the technical and metallurgical aspects of hybrid welding reported in the scientific literature mainly of the last decade, outlining possible choices for system configuration, the inter-distance between the two heat sources, as well as the key process parameters, considering their effects on the weld characteristics and also taking into account the consequences for solidification modes and weld composition. Finally, a specific section has been reserved for hybrid welding of clad steel plates. Full article
Show Figures

Figure 1

14 pages, 3123 KiB  
Article
Effect of Surface Modification for Efficient Electroplating of 3D-Printed Components
by Dagmar Klichová, Hana Krupová, Jakub Měsíček, František Botko and Světlana Radchenko
Machines 2025, 13(7), 630; https://doi.org/10.3390/machines13070630 - 21 Jul 2025
Viewed by 181
Abstract
This article explores the issue of surface modification through tumbling and vaporisation of 3D-printed materials, and its impact on the electrolytic deposition of metal coatings on previously non-conductive materials. Plastic materials represent an affordable alternative, but their surface treatment, in the form of [...] Read more.
This article explores the issue of surface modification through tumbling and vaporisation of 3D-printed materials, and its impact on the electrolytic deposition of metal coatings on previously non-conductive materials. Plastic materials represent an affordable alternative, but their surface treatment, in the form of post-coating, achieves properties comparable to those of metal parts while saving expensive metal material. Samples prepared by selective laser sintering (SLS) with different surface treatments were used. Polyamide 12 (PA12) was chosen as the base material and copper (Cu) as the metallic coating. Graphite was sprayed on the samples to ensure conductivity. The Cu coating was electrodeposited from an acidic copper electrolyte. The quantitative analysis of the surface was carried out using standard ISO parameters. The thickness of the deposited copper layer was determined using destructive measurements on a digital microscope. The results show that surface modification has a significant effect on the functional properties of the surface quality and the thickness of the deposited copper layer. Full article
(This article belongs to the Special Issue Surface Engineering Techniques in Advanced Manufacturing)
Show Figures

Figure 1

Back to TopTop