Brazilian Potential of Eucalyptus benthamii Maiden & Cambage for Cross-Laminated Timber Panels: Structural Analysis and Comparison with Pinus spp. and European Standards
Abstract
1. Introduction
2. Materials and Methods
2.1. Architectural Design of the Building
2.2. Characteristics and Physical–Mechanical Properties of the Panels
2.3. Structural Modeling of the Building
2.4. Definition and Application of Permanent, Variable, and Wind Loads
- Topographic factor (S1): 1.00 (flat terrain);
- Roughness factor (S2): 0.74 for the first floor (z = 3.00 m) and 0.81 for the upper floor (z = 6.00 m), where z represents the floor height, determined using the following expression:
- where b = 0.86, Fr = 1.00, and p = 0.12 (Category IV, Class A);
- Statistical factor (S3): 1.00 (residential building, Group 2).
3. Results
3.1. Optimization of CLT Panel Thicknesses
3.2. Maximum Stresses in CLT Panels
3.3. Maximum Displacements of CLT Panels
3.4. Volume and Weight of CLT Panels
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ABNT | Brazilian Association of Technical Standards |
CLBT | Cross-Laminated Bamboo Timber |
CLT | Cross-Laminated Timber |
ETA | European Technical Assessment |
FE | Finite Elements |
FEM | Finite Element Method |
NBR | Brazilian Standard |
Appendix A
Appendix A.1. Determination of In-Plane Shear Strength (fxy)
Layer thickness (mm) | fxy (MPa) |
19 | 8.4 |
34 | 5.5 |
45 | 3.9 |
Appendix B
Appendix B.1. Maximum Stresses in Eucalyptus benthamii CLT Buildings
CLT Set | Panel | σb,0 (MPa) | σb,0/Strength | σt/c,0 (MPa) | σt/c,0/Strength | σb,0+t/c,0 (MPa) | σb,0+t/c,0/Strength | Ɣy′z′ (MPa) | Ɣy′z′/Strength | Ɣx′z′ (MPa) | Ɣx′z′/Strength | Ɣx′y′ (MPa) | Ɣx′y′/Strength |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Y-axis Walls | 1 | −1.410 | 0.01 | −3.601 | 0.08 | −4.398 | 0.09 | 0.250 | 0.23 | 0.426 | 0.03 | −0.995 | 0.03 |
2 | −0.727 | 0.01 | 2.542 | 0.04 | 2.653 | 0.05 | −0.213 | 0.19 | 0.213 | 0.02 | 0.557 | 0.01 | |
3 | 2.439 | 0.02 | −3.800 | 0.09 | −4.885 | 0.10 | 0.221 | 0.20 | −0.714 | 0.05 | −1.414 | 0.04 | |
4 | −0.889 | 0.01 | −1.989 | 0.05 | −2.035 | 0.05 | −0.241 | 0.22 | 0.241 | 0.02 | 0.619 | 0.02 | |
12 | −1.309 | 0.01 | −2.705 | 0.06 | −3.025 | 0.05 | −0.082 | 0.07 | 0.143 | 0.01 | −1.041 | 0.03 | |
13 | −1.008 | 0.01 | −2.113 | 0.05 | −2.249 | 0.05 | −0.117 | 0.11 | −0.251 | 0.02 | −0.736 | 0.02 | |
14 | −3.014 | 0.03 | −4.475 | 0.10 | −5.783 | 0.11 | 0.180 | 0.16 | −0.868 | 0.07 | −1.742 | 0.04 | |
15 | −1.036 | 0.01 | −2.714 | 0.06 | −3.750 | 0.07 | −0.136 | 0.12 | 0.245 | 0.02 | 1.198 | 0.03 | |
X-axis Walls | 5 | 0.672 | 0.01 | −8.624 | 0.20 | −8.717 | 0.20 | −0.097 | 0.09 | 0.097 | 0.01 | −1.727 | 0.04 |
6 | −0.392 | 0.00 | 8.405 | 0.15 | 8.458 | 0.15 | 0.072 | 0.07 | −0.072 | 0.01 | 1.365 | 0.03 | |
7 | −1.269 | 0.01 | 9.233 | 0.16 | 9.349 | 0.16 | 0.107 | 0.10 | 0.187 | 0.01 | 1.603 | 0.04 | |
16 | −2.028 | 0.02 | 2.783 | 0.05 | 4.781 | 0.07 | −0.089 | 0.08 | 0.375 | 0.03 | −1.000 | 0.03 | |
17 | −1.608 | 0.01 | 3.506 | 0.06 | 4.249 | 0.07 | 0.070 | 0.06 | 0.278 | 0.02 | 0.537 | 0.01 | |
18 | −2.125 | 0.02 | 3.867 | 0.07 | −5.868 | 0.11 | −0.089 | 0.08 | −0.351 | 0.03 | 0.955 | 0.02 | |
Slabs | 8 | −0.786 | 0.01 | 2.177 | 0.04 | 2.766 | 0.04 | 0.131 | 0.12 | −0.147 | 0.01 | −0.476 | 0.02 |
9 | −0.788 | 0.01 | 2.191 | 0.04 | 2.782 | 0.04 | −0.132 | 0.12 | 0.148 | 0.01 | −0.356 | 0.01 | |
10 | −1.324 | 0.01 | 3.758 | 0.07 | 4.751 | 0.08 | −0.253 | 0.23 | 0.284 | 0.02 | −0.718 | 0.02 | |
11 | −1.518 | 0.01 | 4.284 | 0.08 | 5.423 | 0.09 | 0.376 | 0.34 | 0.415 | 0.03 | −1.242 | 0.04 | |
19 | −0.682 | 0.01 | −2.053 | 0.05 | −2.735 | 0.05 | −0.160 | 0.15 | 0.173 | 0.01 | −0.382 | 0.02 | |
20 | −0.683 | 0.01 | 2.057 | 0.04 | 2.740 | 0.04 | 0.188 | 0.17 | −0.204 | 0.02 | 0.359 | 0.02 | |
21 | −1.354 | 0.01 | 4.090 | 0.07 | 5.444 | 0.08 | −0.344 | 0.31 | 0.373 | 0.03 | −0.934 | 0.05 | |
22 | −1.354 | 0.01 | 4.066 | 0.07 | 5.420 | 0.08 | −0.344 | 0.31 | 0.373 | 0.03 | 0.927 | 0.05 |
Appendix B.2. Maximum Stresses in Pinus spp. CLT Buildings
CLT Set | Panel | σb,0 (MPa) | σb,0/Strength | σt/c,0 (MPa) | σt/c,0/Strength | σb,0+t/c,0 (MPa) | σb,0+t/c,0/Strength | Ɣy′z′ (MPa) | Ɣy′z′/Strength | Ɣx′z′ (MPa) | Ɣx′z′/Strength | Ɣx′y′ (MPa) | Ɣx′y′/Strength |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Y-axis Walls | 1 | −1.351 | 0.05 | −2.222 | 0.12 | −1.679 | 0.14 | 0.246 | 0.22 | 0.360 | 0.10 | −0.655 | 0.08 |
2 | −0.804 | 0.03 | 2.178 | 0.09 | 1.876 | 0.10 | −0.221 | 0.20 | −0.253 | 0.07 | 0.409 | 0.05 | |
3 | −2.065 | 0.08 | −2.277 | 0.13 | −1.544 | 0.15 | 0.222 | 0.20 | −0.580 | 0.17 | −0.896 | 0.11 | |
4 | −0.949 | 0.04 | −1.800 | 0.10 | −1.819 | 0.10 | −0.240 | 0.22 | 0.265 | 0.08 | −0.548 | 0.07 | |
12 | 1.051 | 0.04 | −1.751 | 0.10 | −0.312 | 0.11 | 0.078 | 0.07 | 0.135 | 0.04 | −0.812 | 0.10 | |
13 | 0.857 | 0.03 | 1.901 | 0.08 | −1.358 | 0.08 | −0.120 | 0.11 | −0.200 | 0.06 | −0.633 | 0.08 | |
14 | −2.541 | 0.09 | −2.780 | 0.15 | −1.879 | 0.19 | 0.131 | 0.12 | −0.711 | 0.20 | −1.130 | 0.14 | |
15 | −0.907 | 0.03 | −1.582 | 0.09 | −0.836 | 0.12 | −0.118 | 0.11 | −0.254 | 0.07 | 0.897 | 0.11 | |
X-axis Walls | 5 | −0.668 | 0.02 | −7.630 | 0.42 | −7.550 | 0.43 | −0.079 | 0.07 | 0.079 | 0.02 | −1.480 | 0.14 |
6 | 0.318 | 0.01 | 7.387 | 0.32 | 7.338 | 0.32 | 0.059 | 0.05 | −0.059 | 0.02 | 1.327 | 0.12 | |
7 | 1.267 | 0.05 | −6.779 | 0.38 | −5.668 | 0.42 | 0.093 | 0.08 | 0.191 | 0.05 | 1.463 | 0.14 | |
16 | −1.648 | 0.06 | −2.156 | 0.12 | −0.081 | 0.16 | −0.072 | 0.07 | 0.307 | 0.09 | −0.810 | 0.08 | |
17 | 0.826 | 0.03 | 3.565 | 0.15 | 3.116 | 0.17 | 0.056 | 0.05 | 0.142 | 0.04 | 0.452 | 0.04 | |
18 | 1.695 | 0.06 | 3.726 | 0.16 | −1.132 | 0.22 | −0.068 | 0.06 | −0.285 | 0.08 | 0.742 | 0.07 | |
Slabs | 8 | 0.363 | 0.01 | −1.257 | 0.07 | −1.620 | 0.08 | 0.098 | 0.09 | −0.105 | 0.03 | −0.328 | 0.06 |
9 | −0.364 | 0.01 | −1.254 | 0.07 | −1.618 | 0.08 | 0.099 | 0.09 | −0.106 | 0.03 | −0.232 | 0.04 | |
10 | −0.621 | 0.02 | −2.089 | 0.12 | −2.710 | 0.14 | −0.184 | 0.17 | 0.197 | 0.06 | −0.440 | 0.08 | |
11 | 0.735 | 0.03 | −2.487 | 0.14 | −3.222 | 0.17 | 0.279 | 0.25 | 0.279 | 0.08 | −0.717 | 0.13 | |
19 | −0.252 | 0.01 | −1.601 | 0.09 | −1.853 | 0.10 | −0.148 | 0.13 | 0.148 | 0.04 | 0.175 | 0.03 | |
20 | 0.260 | 0.01 | −1.662 | 0.09 | −1.922 | 0.10 | −0.148 | 0.13 | 0.148 | 0.04 | 0.190 | 0.03 | |
21 | 0.456 | 0.02 | −2.865 | 0.16 | −3.320 | 0.18 | −0.269 | 0.24 | 0.269 | 0.08 | −0.416 | 0.07 | |
22 | −0.456 | 0.02 | −2.884 | 0.16 | −3.340 | 0.18 | −0.269 | 0.24 | 0.269 | 0.08 | −0.433 | 0.08 |
Appendix B.3. Maximum Stresses in KLH® CLT Buildings
CLT Set | Panel | σb,0 (MPa) | σb,0/Strength | σt/c,0 (MPa) | σt/c,0/Strength | σb,0+t/c,0 (MPa) | σb,0+t/c,0/Strength | Ɣy′z′ (MPa) | Ɣy′z′/Strength | Ɣx′z′ (MPa) | Ɣx′z′/Strength | Ɣx′y′ (MPa) | Ɣx′y′/Strength |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Y-axis Walls | 1 | −3.162 | 0.13 | 3.153 | 0.19 | −3.579 | 0.15 | 0.262 | 0.22 | 0.526 | 0.19 | −0.719 | 0.12 |
2 | −1.242 | 0.05 | 3.139 | 0.19 | 3.617 | 0.21 | −0.234 | 0.20 | −0.264 | 0.10 | 0.399 | 0.06 | |
3 | −4.492 | 0.19 | −2.650 | 0.11 | −4.738 | 0.20 | 0.238 | 0.20 | −0.849 | 0.31 | −0.996 | 0.16 | |
4 | −1.515 | 0.06 | −2.786 | 0.12 | −2.794 | 0.12 | −0.252 | 0.21 | 0.271 | 0.10 | 0.439 | 0.07 | |
12 | −1.756 | 0.07 | 2.135 | 0.13 | −3.65 | 0.15 | 0.088 | 0.07 | 0.179 | 0.07 | −0.709 | 0.11 | |
13 | −1.480 | 0.06 | 2.521 | 0.15 | 2.605 | 0.16 | −0.106 | 0.09 | −0.221 | 0.08 | −0.612 | 0.10 | |
14 | −5.542 | 0.23 | −3.223 | 0.13 | −6.328 | 0.26 | 0.179 | 0.15 | −1.043 | 0.39 | −1.247 | 0.20 | |
15 | −2.539 | 0.11 | −1.712 | 0.07 | 2.700 | 0.12 | −0.125 | 0.10 | −0.155 | 0.06 | 0.864 | 0.14 | |
X-axis Walls | 5 | −0.643 | 0.03 | −8.308 | 0.35 | −8.414 | 0.35 | −0.073 | 0.06 | −0.074 | 0.03 | −1.201 | 0.15 |
6 | −0.398 | 0.02 | 8.066 | 0.49 | 8.117 | 0.49 | 0.059 | 0.05 | 0.060 | 0.02 | 1.008 | 0.12 | |
7 | −1.199 | 0.05 | 8.836 | 0.54 | 8.838 | 0.54 | 0.083 | 0.07 | 0.136 | 0.05 | 1.157 | 0.14 | |
16 | −2.408 | 0.10 | 2.725 | 0.17 | 4.987 | 0.26 | −0.062 | 0.05 | 0.414 | 0.15 | −0.675 | 0.08 | |
17 | −1.604 | 0.07 | 3.348 | 0.20 | 3.706 | 0.22 | 0.041 | 0.03 | 0.251 | 0.09 | 0.416 | 0.05 | |
18 | −2.198 | 0.09 | −3.806 | 0.16 | −6.004 | 0.25 | −0.050 | 0.04 | −0.372 | 0.14 | 0.742 | 0.09 | |
Slabs | 8 | −0.513 | 0.02 | 1.552 | 0.09 | 2.065 | 0.12 | 0.102 | 0.08 | −0.110 | 0.04 | −0.336 | 0.07 |
9 | −0.515 | 0.02 | 1.566 | 0.09 | 2.081 | 0.12 | 0.102 | 0.08 | −0.110 | 0.04 | −0.187 | 0.04 | |
10 | −0.949 | 0.04 | 2.956 | 0.18 | 3.905 | 0.22 | −0.193 | 0.16 | 0.209 | 0.08 | −0.358 | 0.08 | |
11 | 1.104 | 0.05 | 3.425 | 0.21 | 4.529 | 0.25 | −0.276 | 0.23 | 0.299 | 0.11 | −0.711 | 0.15 | |
19 | −0.462 | 0.02 | −1.736 | 0.07 | −2.197 | 0.09 | −0.129 | 0.11 | 0.134 | 0.05 | −0.173 | 0.04 | |
20 | −0.462 | 0.02 | 1.741 | 0.11 | 2.203 | 0.12 | −0.129 | 0.11 | 0.134 | 0.05 | −0.194 | 0.04 | |
21 | 0.935 | 0.04 | 3.538 | 0.21 | 4.473 | 0.25 | −0.233 | 0.19 | 0.242 | 0.09 | −0.439 | 0.10 | |
22 | −0.935 | 0.04 | 3.512 | 0.21 | 4.447 | 0.25 | −0.233 | 0.19 | 0.242 | 0.09 | 0.448 | 0.10 |
References
- United Nations Environment Programme (UNEP). Global Status Report for Buildings and Construction: Beyond foundations—Mainstreaming Sustainable Solutions to Cut Emissions from the Buildings Sector; United Nations Environment Programme (UNEP): Nairobi, Kenya, 2024. [Google Scholar]
- Churkina, G.; Organschi, A.; Reyer, C.; Ruff, A. Buildings as a global carbon sink. Nat. Sustain. 2020, 3, 269–276. [Google Scholar] [CrossRef]
- Thai, M.V.; Ménard, S.; Elachachi, S.M.; Galimard, P. Performance of notched connectors for CLT-Concrete. Buildings 2020, 10, 122. [Google Scholar] [CrossRef]
- Huang, Z.; Huang, D.; Chui, Y.; Chen, Z. A layered beam-based model for analyzing the stress of rolling shear for the cross-laminated timber panels under out-of-plane bending. Eng. Struct. 2023, 289, 116290. [Google Scholar] [CrossRef]
- Shin, B.; Chang, S.J.; Wi, S.; Kim, S. Estimation of energy demand and greenhouse gas emission reduction effect of cross-laminated timber (CLT) hybrid wall using life cycle assessment for urban residential planning. Renew. Sustain. Energy Rev. 2023, 185, 113604. [Google Scholar] [CrossRef]
- Asdrubali, F.; Ferracuti, B.; Lombardi, L.; Guattari, C.; Evangelisti, L.; Grazieschi, G. A review of structural, thermo-physical, acoustical, and environmental properties of wooden materials for building applications. Build. Environ. 2017, 114, 307–332. [Google Scholar] [CrossRef]
- Sun, X.; He, M.; Li, Z. Novel engineered wood and bamboo composites for structural applications: State-of-art of manufacturing technology and mechanical performance evaluation. Constr. Build. Mater. 2020, 249, 118751. [Google Scholar] [CrossRef]
- Navaratnam, S.; Christopher, P.B.; Ngo, T.; Le, T.V. Bending and shear performance of Australian Radiata pine cross-laminated timber. Constr. Build. Mater. 2020, 232, 117215. [Google Scholar] [CrossRef]
- Hematabadi, H.; Madhoushi, M.; Khazaeyan, A.; Ebrahimi, G.; Hindman, D.; Loferski, J. Bending and shear properties of cross-laminated timber panels made of poplar (Populus alba). Constr. Build. Mater. 2020, 265, 120326. [Google Scholar] [CrossRef]
- Li, H.; Wei, Y.; Chen, J.; Du, H.; Zhang, Y. Out-of-plane bending and shear behavior of cross-laminated bamboo and timber under four-point loading with variable spans. Eng. Struct. 2025, 323, 119273. [Google Scholar] [CrossRef]
- Sciomenta, M.; Fanti, R.; Doudak, G.; Polastri, A.; Casagrande, D. Predicting the non-linear behaviour of cross laminated timber shearwalls with cut-out openings. Structures 2024, 68, 107138. [Google Scholar] [CrossRef]
- Teixeira, M.Z.; Terezo, R.F.; da Cunha, A.B.; Tomio, G.F.; Coelho, H.B.; Corrêa, C.A. Validation of the Physical and Mechanical Properties of Eucalyptus benthamii Maiden & Cambage Wood and Cross Laminated Timber Panels Using the Finite Element Method. Forests 2024, 15, 881. [Google Scholar] [CrossRef]
- Indústria Brasileira de Árvores (IBÁ). Relatório IBÁ 2024; IBÁ: São Paulo, Brazil, 2024. [Google Scholar]
- Nisgoski, S.; Muniz, G.I.B.; Klock, U. Caracterização anatômica da madeira de Eucalyptus benthamii Mainden et Cambage. Ciência Florest. 1998, 8, 67–76. [Google Scholar] [CrossRef]
- Silva, L.D.; Higa, A.R.; Santos, G.A. Desafios do uso da madeira de Eucalyptus benthamii para serraria. In Silvicultura e Melhoramento Genético de Eucalyptus Benthamii; Editora FUPEF: Curitiba, Brazil, 2012; pp. 123–150. [Google Scholar]
- NBR 7190-2; Projeto de Estruturas de Madeira. Parte 2: Métodos de Ensaio para Classificação Visual e Mecânica de Peças Estruturais de Madeira. Associação Brasileira de Normas Técnicas (ABNT): Rio de Janeiro, Brazil, 2022.
- ETA 06/0138; KLH Solid Wood Slabs: Solid Wood Slab Element to be Used as Structural Elements in Buildings. Österreichisches Institut für Bautechnik (OIB): Vienna, Austria; KLH Massivholz GmbH: Teufenbach-Katsch, Austria, 2017; p. 51.
- Bodig, J.; Jayne, B.A. Mechanics of Wood and Wood Composites; Van Nostrand: New York, NY, USA, 1982. [Google Scholar]
- NBR 7190-1; Projeto de Estruturas de Madeira. Parte 1: Critérios de Dimensionamento. Associação Brasileira de Normas Técnicas (ABNT): Rio de Janeiro, Brazil, 2022.
- NBR 7190-3; Projeto de Estruturas de Madeira. Parte 3: Métodos de Ensaio para Corpos de Prova Isentos de Defeitos para Madeiras de Florestas Nativas. Associação Brasileira de Normas Técnicas (ABNT): Rio de Janeiro, Brazil, 2022.
- EN 16351; Timber Structures—Cross Laminated Timber—Requirements. Comité Européen de Normalization (CEN): Brussels, Belgium, 2015.
- Dlubal. RF-Laminate Program Description; Dlubal Software GmbH: Tiefenbach, Germany, 2016. [Google Scholar]
- EN 195-1-1:2004; Eurocode 5; Design of Timber Structure. Part 1-1: General—Common Rules and Rules for Buildings. Comité Européen de Normalization (CEN): Brussels, Belgium, 2004.
- Rosa, T.O.; Iwakiri, S.; Trianoski, R.; Terezo, R.F.; Righez, J.L.B. Influence of juvenile wood proportion on density and modulus of elasticity in softwood boards for structural use: A preliminary study. Ann. Braz. Acad. Sci. 2023, 95, e20200809. [Google Scholar] [CrossRef] [PubMed]
- NBR 8681; Ações e segurança nas estruturas—Procedimento. Associação Brasileira de Normas Técnicas (ABNT): Rio de Janeiro, Brazil, 2003.
- NBR 6120; Ações para o cálculo de estruturas de edificações. Associação Brasileira de Normas Técnicas (ABNT): Rio de Janeiro, Brazil, 2019.
- NBR 6123; Forças devidas ao vento em edificações. Associação Brasileira de Normas Técnicas (ABNT): Rio de Janeiro, Brazil, 1988.
- Wiedenhoeft, A.; Eberhardt, T.L. Structure and function of wood. In WOOD HANDBOOK: Wood as an Engineering Material; General Technical Report 282; U.S. Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 2021. [Google Scholar]
- Senalik, C.A.; Farber, B. Mechanical properties of wood. In WOOD HANDBOOK: Wood as an Engineering Material; General Technical Report 282; U.S. Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 2021. [Google Scholar]
- Kollmann, F.F.P.; Côté, W.A. Principles of Wood Science and Technology; Volume I: Solid Wood; Springer-Verlag: Berlin, Germany, 1968. [Google Scholar]
- Kibblewhite, R.P. Pinus radiata wood residue qualities and some utilization options. New Zealand J. For. Sci. 1984, 14, 382–394. [Google Scholar]
- Arriaga, F.; Wang, X.; Íñiguez-González, G.; Llana, D.F.; Esteban, M.; Niemz, P. Mechanical Properties of Wood: A Review. Forests 2023, 14, 1202. [Google Scholar] [CrossRef]
- Embrapa Florestas. Indicadores de Custos, Produtividade e Renda de Plantios de Eucaliptos Para Energia na Região de Guarapuava, PR; Comunicado Técnico 179; Embrapa Florestas: Colombo, Brazil, 2007. [Google Scholar]
- Watzlawick, L.F.; Benin, C.C. Variáveis dendrométricas e produção de Eucalyptus benthamii em diferentes espaçamentos. Colloq. Agrar. 2020, 16, 111–120. [Google Scholar] [CrossRef]
- Kruchelski, S.; Trautenmüller, J.W.; Orso, G.A.; Triches, G.P.; Porfírio-da-Silva, V.; Moraes, A. Growth and productivity of Eucalyptus benthamii in integrated crop-livestock systems in southern Brazil. Agroforest Syst. 2023, 97, 45–57. [Google Scholar] [CrossRef]
- Ferraz, A.G.; Cruz, C.D.; dos Santos, G.A.; Nascimento, M.; Baldin, T.; dos Santos, O.P.; Valente, B.M.R.T.; dos Santos, C.E.M. Potencial of a population of Eucalyptus benthamii based on growth and technological characteristics of wood. Euphytica 2020, 216, 94. [Google Scholar] [CrossRef]
- Cown, D.J. New Zealand Radiana Pine and Douglas-fir: Suitability for Processing; FRI Bulletin 216; Ministry of Forestry, Forest Research Institute: Rotorua, New Zealand, 1999.
- Shchekalev, R.V.; Danilov, D.A.; Zaytsev, D.A.; Korchagov, S.A.; Melehov, V.I. Variation of Physical and Mechanical Properties of Pinus sylvestris L. Wood in the Boreal Zone of the European Northeast. South-East Eur. For. 2023, 14, 197–213. [Google Scholar] [CrossRef]
- Konofalska, E.; Kozakiewicz, P.; Buraczyk, W.; Szeligowski, H.; Lachowicz, H. The Technical Quality of the Wood of Scots Pine (Pinus sylvestris L.) of Diverse Genetic Origin. Forests 2021, 12, 619. [Google Scholar] [CrossRef]
- Krzosek, S.; Burawska-Kupniewska, I.; Mańkowski, P. The Influence of Scots Pine Log Type (Pinus sylvestris L.) on the Mechanical Properties of Lumber. Forests 2020, 11, 1257. [Google Scholar] [CrossRef]
- Pretzsch, H.; Bravo-Oviedo, A.; Hilmers, T.; Ruiz-Peinado, R.; Coll, L.; Löf, M.; Ahmed, S.; Aldea, J.; Ammer, C.; Avdagić, A.; et al. With increasing site quality asymmetric competition and mortality reduces Scots pine (Pinus sylvestris L.) stand structuring across Europe. For. Ecol. Manag. 2022, 520, 120365. [Google Scholar] [CrossRef]
- Van der Merwe, J.P.; Bacher, M.; Madiope, S.; Ncongwane, T.; Ngomane, R.; Spogter, O.; Kuisis, H.; Potgieter, J.; Tait, O.; Clarke, C.; et al. The impact of site on tree form, wood properties, and lumber quality of plantation-grown Pinus patula. Holzforschung 2024, 78, 1–15. [Google Scholar] [CrossRef]
- Blazier, M.A.; Hennessey, T.; Schimleck, L.; Abbey, S.; Holbrook, R.; Dahlen, J. Long-term effects of stand density management and genotype on wood properties of loblolly pine (Pinus taeda L.) in the mid-South USA. For. Ecol. Manag. 2021, 491, 119176. [Google Scholar] [CrossRef]
- Keles, S.Ö. Dendrometric and Wood Anatomical Properties of Pinus sylvestris and Quercus petraea in Managed and Unmanaged Forests. Cerne 2023, 29, e-103266. [Google Scholar] [CrossRef]
- Neto, T.C.C.; Santos, V.B.; Kulmann, M.S.S.; Cirilo, N.R.M.; Schumacher, M.V.; Stape, J.L.; Vidaurre, G.B. The impact of age and forestry practices on the wood quality of Pinus taeda L. grown in different sites in Southern Brazil. For. Ecol. Manag. 2024, 562, 121898. [Google Scholar] [CrossRef]
- Oliveira, F.L.; Lima, I.L.; Garcia, J.N.; Florsheim, S.M.B. Propriedades da madeira de Pinus taeda L. em função da idade e da posição radial na tora. Rev. Do Inst. Florest. 2006, 18, 59–70. [Google Scholar] [CrossRef]
- Garbachevski, E.; Hillig, E.; Abreu Neto, R.; Retslaff, F.; Koehler, H. Physico-mechanical properties and growth characteristics of pine juvenile wood as a function of age and planting spacing. Rev. Árvore 2022, 46, e4627. [Google Scholar] [CrossRef]
Property | Un. | CLT Panel | ||
---|---|---|---|---|
E. benthamii a | Pinus spp. b | KLH® b | ||
ρ | kg/m3 | 610.00 | 400.00 | 560.84 |
Ex | MPa | 15,325.24 | 8,000.00 | 12,000.00 |
fb | MPa | 109.11 | 27.00 | 24.00 |
fv | MPa | 13.07 | 3.50 | 2.70 |
fc0 | MPa | 43.51 | 18.00 | 24.00 |
fc90 | MPa | 10.88 | 4.50 | 2.70 |
ft0 | MPa | 56.51 | 23.38 | 16.50 |
ft90 | MPa | 0.60 | 0.40 | 0.12 |
fR,m | MPa | 1.10 | 1.10 | 1.20 |
Gxz | MPa | 1028.98 | 537.14 | 690.00 |
Gyz | MPa | 109.47 | 57.14 | 50.00 |
Gxy | MPa | 1094.66 | 571.43 | 500.00 |
fxy (20 mm) | MPa | 39.69 | 10.63 | 8.20 |
fxy (30 mm) | MPa | 30.01 | 8.04 | 6.20 |
fxy (40 mm) | MPa | 21.01 | 6.63 | 4.34 |
Permanent Load | |||
---|---|---|---|
CLT Set | Material | Load (kN/m2) | Total Load (kN/m2) |
Upper floor slab | Floor covering for residential and commercial buildings (5 cm) | 1.00 | 1.08 |
Waterproofing with simple asphalt blanket (0.3 cm) | 0.08 | ||
Roof slab | Roof waterproofing with asphalt blanket and mechanical protection, without finishing (10 cm) | 1.80 | 2.50 |
Roof with general ceramic tiles (excluding Germanic and colonial types), with a wooden structure and slope ≤ 40% | 0.70 | ||
Variable Load | |||
CLT Set | Site | Load (kN/m2) | Total Load (kN/m2) |
Upper floor slab | Bedrooms, living room, pantry, kitchen, and toilets in residential buildings | 1.50 | 1.50 |
Roof slab | Roofs with maintenance-only access | 1.00 | 1.00 |
Wind Load | ||||
---|---|---|---|---|
CLT Set | Vk (m/s) | q (kN/m2) | Load Direction | Fa (kN/m2) |
Ground floor walls | 33.q30 | 0.68 | X | 0.58 |
Y | 0.71 | |||
Upper floor walls | 36.45 | 0.82 | X | 0.70 |
Y | 0.86 |
CLT Set | Panel Layer | CLT Panel Thickness (mm) | ||
---|---|---|---|---|
E. benthamii | Pinus spp. | KLH® | ||
X-axis Walls | 1 | 20 | 30 | 30 |
2 | 30 | 30 | 20 | |
3 | 20 | 30 | 30 | |
Total | 70 | 90 | 80 | |
Y-axis Walls | 1 | 20 | 20 | 20 |
2 | 20 | 20 | 20 | |
3 | 20 | 20 | 20 | |
Total | 60 | 60 | 60 | |
Floor Slabs | 1 | 30 | 40 | 40 |
2 | 20 | 30 | 20 | |
3 | 40 | 40 | 40 | |
4 | 20 | 30 | 20 | |
5 | 30 | 40 | 40 | |
Total | 140 | 180 | 160 | |
Roof Slabs | 1 | 40 | 30 | 40 |
2 | 20 | 40 | 40 | |
3 | 40 | 30 | 30 | |
4 | 20 | 20 | 40 | |
5 | 40 | 30 | 40 | |
6 | - | 40 | - | |
7 | - | 30 | - | |
Total | 160 | 220 | 190 |
CLT Set | Panel | E. benthamii | Pinus spp. | KLH® | |||
---|---|---|---|---|---|---|---|
uz (mm) | Ratio uz/Limit | uz (mm) | Ratio uz/Limit | uz (mm) | Ratio uz/Limit | ||
X-axis Walls | 1 | −6.60 | 0.33 | −6.6 | 0.33 | −8.10 | 0.41 |
2 | 0.60 | 0.03 | 1.00 | 0.05 | 1.00 | 0.05 | |
3 | −11.50 | 0.57 | −11.60 | 0.58 | −15.10 | 0.76 | |
4 | 0.60 | 0.03 | 1.10 | 0.05 | 1.10 | 0.05 | |
12 | −3.60 | 0.18 | −3.80 | 0.19 | −3.60 | 0.18 | |
13 | −2.90 | 0.15 | −2.70 | 0.14 | −2.60 | 0.13 | |
14 | −14.00 | 0.70 | −14.50 | 0.73 | −18.70 | 0.94 | |
15 | −3.30 | 0.17 | −3.10 | 0.16 | −2.80 | 0.14 | |
Y-axis Walls | 5 | 0.20 | 0.01 | 0.30 | 0.01 | 0.30 | 0.01 |
6 | −0.20 | 0.01 | −0.20 | 0.01 | −0.30 | 0.01 | |
7 | −3.50 | 0.17 | −6.90 | 0.35 | −4.70 | 0.24 | |
16 | −1.40 | 0.07 | −1.50 | 0.07 | −1.30 | 0.07 | |
17 | 3.40 | 0.17 | 3.30 | 0.17 | 3.40 | 0.17 | |
18 | −5.50 | 0.28 | −7.20 | 0.36 | −6.10 | 0.31 | |
Floor Slabs | 8 | 4.90 | 0.25 | 4.80 | 0.24 | 4.50 | 0.22 |
9 | 4.90 | 0.25 | 4.80 | 0.24 | 4.50 | 0.22 | |
10 | 17.10 | 0.85 | 16.40 | 0.82 | 16.60 | 0.83 | |
11 | 17.10 | 0.85 | 16.40 | 0.82 | 16.60 | 0.83 | |
Roof Slabs | 19 | 4.50 | 0.23 | 4.90 | 0.25 | 4.80 | 0.24 |
20 | 4.50 | 0.23 | 4.90 | 0.25 | 4.80 | 0.24 | |
21 | 18.50 | 0.93 | 17.60 | 0.88 | 18.20 | 0.91 | |
22 | 18.50 | 0.93 | 17.60 | 0.88 | 18.20 | 0.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teixeira, M.Z.; Terezo, R.F.; Corrêa, C.A.; Santos, S.d.S.; Vieira, H.C.; da Cunha, A.B. Brazilian Potential of Eucalyptus benthamii Maiden & Cambage for Cross-Laminated Timber Panels: Structural Analysis and Comparison with Pinus spp. and European Standards. Buildings 2025, 15, 2606. https://doi.org/10.3390/buildings15152606
Teixeira MZ, Terezo RF, Corrêa CA, Santos SdS, Vieira HC, da Cunha AB. Brazilian Potential of Eucalyptus benthamii Maiden & Cambage for Cross-Laminated Timber Panels: Structural Analysis and Comparison with Pinus spp. and European Standards. Buildings. 2025; 15(15):2606. https://doi.org/10.3390/buildings15152606
Chicago/Turabian StyleTeixeira, Matheus Zanghelini, Rodrigo Figueiredo Terezo, Camila Alves Corrêa, Samuel da Silva Santos, Helena Cristina Vieira, and Alexsandro Bayestorff da Cunha. 2025. "Brazilian Potential of Eucalyptus benthamii Maiden & Cambage for Cross-Laminated Timber Panels: Structural Analysis and Comparison with Pinus spp. and European Standards" Buildings 15, no. 15: 2606. https://doi.org/10.3390/buildings15152606
APA StyleTeixeira, M. Z., Terezo, R. F., Corrêa, C. A., Santos, S. d. S., Vieira, H. C., & da Cunha, A. B. (2025). Brazilian Potential of Eucalyptus benthamii Maiden & Cambage for Cross-Laminated Timber Panels: Structural Analysis and Comparison with Pinus spp. and European Standards. Buildings, 15(15), 2606. https://doi.org/10.3390/buildings15152606