Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,986)

Search Parameters:
Keywords = targets inhibitory activities

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 14539 KiB  
Article
Immunoinformatics Design and Identification of B-Cell Epitopes from Vespa affinis PLA1 Allergen
by Sophida Sukprasert, Siriporn Nonkhwao, Thitijchaya Thanwiset, Walter Keller and Sakda Daduang
Toxins 2025, 17(8), 373; https://doi.org/10.3390/toxins17080373 - 28 Jul 2025
Abstract
Phospholipase A1 (Ves a 1), a major toxin from Vespa affinis venom, poses significant risks to allergic individuals. Nevertheless, the epitope determinants of Ves a 1 have not been characterized. Thus, identifying its linear B-cell epitopes is crucial for understanding envenomation mechanisms. In [...] Read more.
Phospholipase A1 (Ves a 1), a major toxin from Vespa affinis venom, poses significant risks to allergic individuals. Nevertheless, the epitope determinants of Ves a 1 have not been characterized. Thus, identifying its linear B-cell epitopes is crucial for understanding envenomation mechanisms. In this study, we predicted and identified B-cell epitopes EP5 and EP6 as potential candidates. EP5 formed an α-helix at the active site of Ves a 1, whereas EP6 adopted an extended loop conformation. Both synthetic peptides were synthesized and evaluated for their inhibitory effects using immune-inhibitory assays with polyclonal antibodies (pAbs) targeting both native (nVes a 1) and recombinant (rVes a 1) forms. The Ves a 1 polyclonal antibodies (pAb-nVes a 1 and pAb-Ves a 1) were produced, and their specificity binding to Ves a 1 was confirmed by Western blot. Next, ELISA inhibition assays showed that EP5 and EP6 significantly blocked pAb binding to both nVes a 1 and rVes a 1. Dot blot and Western blot assays supported these findings, particularly with stronger inhibition toward rVes a 1. Furthermore, enzymatic assays indicated that nVes a 1 and rVes a 1 retained phospholipase activity. Immunoinformatics docking showed that EP5 and EP6 specifically bind to a single-chain variable fragment antibody (scFv) targeting Naja naja PLA2. Molecular analysis revealed similar amino acid interactions to the template, suggesting effective paratope–epitope binding. These results support the potential of EP5 and EP6 for future diagnosis and therapy of V. affinis venom allergy. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Figure 1

32 pages, 1740 KiB  
Review
Cancer-Associated Fibroblasts: Immunosuppressive Crosstalk with Tumor-Infiltrating Immune Cells and Implications for Therapeutic Resistance
by Jogendra Singh Pawar, Md. Abdus Salam, Md. Shalman Uddin Dipto, Md. Yusuf Al-Amin, Moushumi Tabassoom Salam, Sagnik Sengupta, Smita Kumari, Lohitha Gujjari and Ganesh Yadaigiri
Cancers 2025, 17(15), 2484; https://doi.org/10.3390/cancers17152484 - 28 Jul 2025
Abstract
Cancer is no longer considered as an isolated event. Rather, it occurs because of a complex biological drive orchestrating different cell types, growth factors, cytokines, and signaling pathways within the tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs) are the most populous stromal cells within [...] Read more.
Cancer is no longer considered as an isolated event. Rather, it occurs because of a complex biological drive orchestrating different cell types, growth factors, cytokines, and signaling pathways within the tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs) are the most populous stromal cells within the complex ecosystem of TME, with significant heterogeneity and plasticity in origin and functional phenotypes. Very enigmatic cells, CAFs determine the progress and outcomes of tumors through extensive reciprocal signaling with different tumors infiltrating immune cells in the TME. In their biological drive, CAFs release numerous chemical mediators and utilize various signaling pathways to recruit and modulate tumor-infiltrating immune cells. The CAF-induced secretome and exosomes render immune cells ineffective for their antitumor activities. Moreover, by upregulating immune inhibitory checkpoints, CAFs create an immunosuppressive TME that impedes the susceptibility of tumor cells to tumor-infiltrating lymphocytes (TILs). Further, by depositing and remodeling extracellular matrix (ECM), CAFs reshape the TME, which enhances tumor growth, invasion, metastasis, and chemoresistance. Understanding of CAF biology and its crosstalk with tumor-infiltrating immune cells is crucial not only to gain insight in tumorigenesis but to optimize the potential of novel targeted immunotherapies for cancers. The complex relationships between CAFs and tumor-infiltrating immune cells remain unclear and need further study. Herein, in this narrative review we have focused on updates of CAF biology and its interactions with tumor-infiltrating immune cells in generating immunosuppressive TME and resistance to cell death. Full article
(This article belongs to the Section Tumor Microenvironment)
Show Figures

Figure 1

21 pages, 1280 KiB  
Article
Neuroprotective Evaluation of Murraya Carbazoles: In Vitro and Docking Insights into Their Anti-AChE and Anti-Aβ Activities
by Himadri Sharma, Niti Sharma and Seong Soo A. An
Molecules 2025, 30(15), 3138; https://doi.org/10.3390/molecules30153138 - 26 Jul 2025
Viewed by 51
Abstract
The present study investigated the neuroprotective potential of the Murraya carbazole derivatives murrayanol, mahanimbine, murrayafoline A, and 9-methyl-9H-carbazole-2-carbaldehyde using in silico and in vitro assays. The pharmacokinetic properties and potential toxicity (ADME/T) of the carbazole derivatives were assessed to evaluate their prospects as [...] Read more.
The present study investigated the neuroprotective potential of the Murraya carbazole derivatives murrayanol, mahanimbine, murrayafoline A, and 9-methyl-9H-carbazole-2-carbaldehyde using in silico and in vitro assays. The pharmacokinetic properties and potential toxicity (ADME/T) of the carbazole derivatives were assessed to evaluate their prospects as up-and-coming drug candidates. Molecular docking was used to investigate the interactions of the compounds with Aβ (PDB: 1IYT, 2BEG, and 8EZE) and AChE receptors (PDB: 4EY7 and 1C2B). The results from the in vitro assays were used to validate and support the findings from the in silico assays. The compounds demonstrated significant inhibition of acetylcholinesterase (AChE), a key target in neurodegenerative disorders. Murrayanol and mahanimbine presented superior inhibitory activity (IC50 ~0.2 μg/mL), outperforming the reference drug, galantamine. The inhibition mechanisms were competitive (murrayanol, murrayafoline A, and 9-methyl-9H-carbazole-2-carbaldehyde) and non-competitive (mahanimbine), supported by low Ki values and strong docking affinities. The compounds also proved effective in reducing Aβ fibrillization (murrayanol: 40.83 ± 0.30%; murrayafoline A: 33.60 ± 0.55%, mahanimbine: 27.68 ± 2.71%). These findings highlight Murraya carbazoles as promising scaffolds for multifunctional agents in AD therapy. Further optimization and mechanistic studies are warranted to advance their development into clinically relevant neuroprotective agents. Full article
(This article belongs to the Special Issue Bioactive Compounds from Foods for Health Benefits)
16 pages, 2096 KiB  
Article
Acridine Derivatives as Antifungal and Antivirulence Agents Against Candida albicans
by Amra Yunus, Oluwatosin Oluwaseun Faleye, Jin-Hyung Lee and Jintae Lee
Int. J. Mol. Sci. 2025, 26(15), 7228; https://doi.org/10.3390/ijms26157228 - 25 Jul 2025
Viewed by 270
Abstract
Candida albicans is a clinically important fungal pathogen capable of causing both superficial and systemic infections, particularly in immunocompromised individuals. A key factor contributing to its pathogenicity is its ability to form biofilms, structured microbial communities that confer significant resistance to conventional antifungal [...] Read more.
Candida albicans is a clinically important fungal pathogen capable of causing both superficial and systemic infections, particularly in immunocompromised individuals. A key factor contributing to its pathogenicity is its ability to form biofilms, structured microbial communities that confer significant resistance to conventional antifungal therapies. Addressing this challenge, we explored the antivirulence potential of acridine derivatives, a class of heterocyclic aromatic compounds known for their diverse biological activities, including antimicrobial, antitumor, and antiparasitic properties. In this study, a series of acridine derivatives was screened against C. albicans biofilms, revealing notable inhibitory activity and highlighting their potential as scaffolds for the development of novel antifungal agents. Among the tested compounds, acridine-4-carboxylic acid demonstrated the most promising activity, significantly inhibiting the biofilm formation at 10 µg/mL without affecting planktonic cell growth, and with a minimum inhibitory concentration (MIC) of 60 µg/mL. Furthermore, it attenuated filamentation and cell aggregation in a fluconazole-resistant C. albicans strain. Toxicity assessments using Caenorhabditis elegans and plant models supported its low-toxicity profile. These findings highlight the potential of acridine-based scaffolds, particularly acridine-4-carboxylic acid, as lead structures for the development of therapeutics targeting both fungal growth and biofilm formation in Candida albicans infections. Full article
Show Figures

Figure 1

24 pages, 2749 KiB  
Article
Can In Vitro Cell Cultures of Eryngium planum, Lychnis flos-cuculi, and Kickxia elatine Be an Alternative Source of Plant Biomass with Biological Antimicrobial and Anti-Acanthamoeba Activities?
by Anastasia Aliesa Hermosaningtyas, Anna Budzianowska, Dariusz Kruszka, Monika Derda, Jolanta Długaszewska and Małgorzata Kikowska
Appl. Sci. 2025, 15(15), 8292; https://doi.org/10.3390/app15158292 - 25 Jul 2025
Viewed by 128
Abstract
The sustainable production of plant bioactive compounds is increasingly important as natural habitats decline. This study investigates whether in vitro cell cultures of Eryngium planum, Lychnis flos-cuculi, and Kickxia elatine can serve as alternative sources of biologically active biomass with antimicrobial [...] Read more.
The sustainable production of plant bioactive compounds is increasingly important as natural habitats decline. This study investigates whether in vitro cell cultures of Eryngium planum, Lychnis flos-cuculi, and Kickxia elatine can serve as alternative sources of biologically active biomass with antimicrobial and anti-Acanthamoeba properties. Callus cultures were established under optimized and controlled conditions, and metabolomic profiling was completed using UPLC-HRMS/MS. In silico analysis, using a molecular docking approach, was applied to understand the interaction between target compounds and Acanthamoeba profilin and identify possible targets for antimicrobial properties. Untargeted metabolomic analysis confirmed the presence of valuable compounds in the callus cultures of the studied species. Biological activity was assessed through anti-Acanthamoeba and antimicrobial assays. Lychnis flos-cuculi and Kickxia elatine callus extracts showed significant inhibitory effects on Acanthamoeba trophozoites, with 87.5% and 80.1% inhibition at 10 mg/mL, respectively. In contrast, E. planum extract stimulated amoebic growth. The anti-Acanthamoeba activity correlated with the presence of ferulic acid and p-coumaric acid in L. flos-cuculi extract, and acteoside in K. elatine extract. Antibacterial testing revealed moderate activity of E. planum and K. elatine extracts against Staphylococcus spp., while Gram-negative bacteria and fungi were largely resistant. These findings highlight the potential of in vitro cultures—particularly those from L. flos-cuculi and K. elatine—as promising, sustainable sources of anti-Acanthamoeba and antimicrobial agents, warranting further investigation into their pharmacologically active constituents. Full article
Show Figures

Figure 1

13 pages, 776 KiB  
Article
Phytochemical Profile and Functional Properties of the Husk of Argania spinosa (L.) Skeel
by Antonietta Cerulli, Natale Badalamenti, Francesco Sottile, Maurizio Bruno, Sonia Piacente, Vincenzo Ilardi, Rosa Tundis, Roberta Pino and Monica Rosa Loizzo
Plants 2025, 14(15), 2288; https://doi.org/10.3390/plants14152288 - 24 Jul 2025
Viewed by 148
Abstract
Due to the limited scientific exploration of Argania spinosa (L.) skeel husk, this study presents the first investigation of the metabolite profile of methanol and acetone extracts analyzed by liquid chromatography coupled with electrospray ionization and high-resolution multistage mass spectrometry (LC-ESI/HRMSMS). A total [...] Read more.
Due to the limited scientific exploration of Argania spinosa (L.) skeel husk, this study presents the first investigation of the metabolite profile of methanol and acetone extracts analyzed by liquid chromatography coupled with electrospray ionization and high-resolution multistage mass spectrometry (LC-ESI/HRMSMS). A total of 43 compounds, including hydroxycinnamic acid and flavonoid derivatives, saponins, and triterpenic acids, were identified, some of which have not been previously reported in this species. The total phenols (TPC) and flavonoids (TFC) content were spectrophotometrically determined. A multi-target approach was applied to investigate the antioxidant potential using 1,1-Diphenyl-2-picrylhydrazyl (DPPH), 2,2-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS), β-carotene bleaching, and Ferric Reducing Ability Power (FRAP) tests. Carbohydrate hydrolyzing enzymes and lipase inhibitory activities were also assessed. The acetone extract exhibited the highest TPC and TFC values, resulting in being the most active in β-carotene bleaching test with IC50 values of 26.68 and 13.82 µg/mL, after 30 and 60 min of incubation, respectively. Moreover, it was the most active against both α-glucosidase and α-amylase enzymes with IC50 values of 12.37 and 18.93 µg/mL, respectively. These results pointed out that this by-product is a rich source of bioactive phytochemicals potentially useful for prevention of type 2 diabetes and obesity. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

33 pages, 57374 KiB  
Article
Enhancement of Phytochemicals and Antioxidant Activity of Thai Fermented Soybean Using Box–Behnken Design Guided Microwave-Assisted Extraction
by Piya Temviriyanukul, Woorawee Inthachat, Ararat Jaiaree, Jirarat Karinchai, Pensiri Buacheen, Supachai Yodkeeree, Tanongsak Laowanitwattana, Teera Chewonarin, Uthaiwan Suttisansanee, Arisa Imsumran, Ariyaphong Wongnoppavich and Pornsiri Pitchakarn
Foods 2025, 14(15), 2603; https://doi.org/10.3390/foods14152603 - 24 Jul 2025
Viewed by 135
Abstract
Thai fermented soybeans (TFSs) contain phytochemicals with anti-diabetic benefits. In this study, an initial non-optimized TFS extract (TFSE) was prepared using a conventional triplicate 80% ethanol extraction method and evaluated for its biological activity. TFSE effectively reversed TNF-α-induced insulin resistance in 3T3-L1 adipocytes [...] Read more.
Thai fermented soybeans (TFSs) contain phytochemicals with anti-diabetic benefits. In this study, an initial non-optimized TFS extract (TFSE) was prepared using a conventional triplicate 80% ethanol extraction method and evaluated for its biological activity. TFSE effectively reversed TNF-α-induced insulin resistance in 3T3-L1 adipocytes by enhancing insulin-stimulated glucose uptake, indicating anti-diabetic potential. TFSE also upregulated the phosphorylation of AKT (a key insulin signaling mediator) and the expression of adipogenic proteins (PPARγ, CEBPα) in TNF-α-exposed 3T3-L1, suggesting the mitigation of adipocyte dysfunction; however, the results did not reach statistical significance. The conventional extraction process was labor-intensive and time-consuming, and to enhance extraction efficiency and bioactivity, the process was subsequently optimized using environmentally friendly microwave-assisted extraction (MAE) in combination with the Box–Behnken design (BBD) and response surface methodology (RSM). The optimized extract (O-TFSE) was obtained over a significantly shorter extraction time and exhibited higher levels of total flavonoids and antioxidant activity in comparison to TFSE, while showing reduced levels of isoflavones (daidzein, genistein, and glycitein) in relation to TFSE. Interestingly, O-TFSE retained similar efficacy in reversing TNF-α-induced insulin resistance and demonstrated significantly stronger α-glucosidase and α-amylase inhibitory activities, indicating its enhanced potential for diabetes management. These results support the use of MAE as an efficient method for extracting functional compounds from TFS for functional foods targeting insulin resistance and type 2 diabetes mellitus. Full article
Show Figures

Figure 1

25 pages, 8725 KiB  
Article
Novel 3D-Printed Replica Plate Device Ensures High-Throughput Antibacterial Screening of Halophilic Bacteria
by Kaloyan Berberov, Nikolina Atanasova, Nikolay Krumov, Boryana Yakimova, Irina Lazarkevich, Stephan Engibarov, Tsvetozara Damyanova, Ivanka Boyadzhieva and Lyudmila Kabaivanova
Mar. Drugs 2025, 23(8), 295; https://doi.org/10.3390/md23080295 - 23 Jul 2025
Viewed by 122
Abstract
Antibiotic resistance is one of the most significant public health issues today. As a consequence, there is an urgent need for novel classes of antibiotics. This necessitates the development of highly efficient screening methods for the rapid identification of antibiotic-producing bacteria. Here, we [...] Read more.
Antibiotic resistance is one of the most significant public health issues today. As a consequence, there is an urgent need for novel classes of antibiotics. This necessitates the development of highly efficient screening methods for the rapid identification of antibiotic-producing bacteria. Here, we describe a new method for high-throughput screening of antimicrobial compounds (AMC) producing halophilic bacteria. Our methodology used a newly designed 3D-printed Petri plate replicator used for drop deposition and colony replication. We employed this device in combination with a modified agar overlay assay to screen more than 7400 bacterial colonies. A total of 54 potential AMC producers were discovered at a success rate of 0.7%. Although 40% of them lost their antibacterial activity during the secondary screening, 22 strains retained inhibitory activity and were able to suppress the growth of one or more safe relatives of the ESKAPE group pathogens. The ethyl acetate extract from the most potent strain, Virgibacillus salarius POTR191, demonstrated moderate antibacterial activity against Enterococcus faecalis, Acinetobacter baumanii, and Staphylococcus epidermidis with minimal inhibitory concentrations of 128 μg/mL, 128 μg/mL, and 512 μg/mL, respectively. We propose that our replica plate assay could be used for target-based antimicrobial screening of various extremophilic bacteria. Full article
Show Figures

Graphical abstract

13 pages, 482 KiB  
Article
In Vitro Antimicrobial Activity of the Novel Antimicrobial Peptide OMN51 Against Multi-Drug-Resistant Pseudomonas aeruginosa Isolated from People with Cystic Fibrosis
by Moshe Heching, Moshe Cohen-Kutner, Haim Ben-Zvi, Liora Slomianksy, Elital Chass Maurice, Noa Nur Maymon, Shira Mandel, Michal Oholy, Rony Moses, Michal Lavon, Katherine Kaufman, Orel Mayost Lev-Ari, Tamar Shachar, Joel Weinberg, Mordechai R. Kramer and Niv Bachnoff
J. Clin. Med. 2025, 14(15), 5208; https://doi.org/10.3390/jcm14155208 - 23 Jul 2025
Viewed by 240
Abstract
Background: People with cystic fibrosis (pwCF) frequently suffer from chronic lung infections, with Pseudomonas aeruginosa being the predominant pathogen contributing to disease progression and morbidity. The increasing prevalence of multi-drug-resistant (MDR) P. aeruginosa has diminished treatment options. Antimicrobial peptides (AMPs) have emerged as [...] Read more.
Background: People with cystic fibrosis (pwCF) frequently suffer from chronic lung infections, with Pseudomonas aeruginosa being the predominant pathogen contributing to disease progression and morbidity. The increasing prevalence of multi-drug-resistant (MDR) P. aeruginosa has diminished treatment options. Antimicrobial peptides (AMPs) have emerged as promising alternatives to conventional antibiotics due to their unique membrane-targeting mechanisms. OMN51, a novel bioengineered AMP derived from capitellacin, was evaluated for antimicrobial activity against P. aeruginosa in sputum samples from pwCF. This study aimed to compare the bactericidal effects of OMN51 with those of a range of conventional antibiotics known to have activity against P. aeruginosa clinical isolates derived from pwCF. Methods:P. aeruginosa clinical isolates were obtained from fifty-six unique sputum cultures of pwCF at a tertiary-university-affiliated hospital. Minimum inhibitory concentrations (MICs) of OMN51 and comparator antibiotics were determined using broth microdilution. Antimicrobial susceptibility was evaluated using the Kirby–Bauer disc diffusion method. Results: OMN51 demonstrated in vitro bactericidal activity across all P. aeruginosa isolates, including MDR strains. MIC values for OMN51 ranged from 4 to 16 µg/mL, with no observed resistance or cross-resistance. Comparative analysis revealed the superior efficacy of OMN51 compared with conventional antibiotics. Conclusions: OMN51 exhibits robust in vitro activity against MDR P. aeruginosa, supporting its candidacy as a therapeutic agent for MDR P. aeruginosa- associated infections. Further studies are warranted to assess pharmacokinetics and in vivo safety and efficacy. OMN51 represents a first-in-class, membrane-targeting therapeutic showing promise against MDR P. aeruginosa. Full article
(This article belongs to the Special Issue Cystic Fibrosis: Novel Strategies of Diagnosis and Treatments)
Show Figures

Figure 1

13 pages, 2087 KiB  
Article
Liposome-Loaded Mesenchymal Stem Cells Enhance Tumor Accumulation and Anti-Tumor Efficacy of Doxorubicin in Mouse Tumor Models of Melanoma
by Yusuke Kono, Himi Kanbara, Saki Danjo, Aiga Yoshikawa, Yoshihiro Iwayama and Ken-ichi Ogawara
Pharmaceutics 2025, 17(8), 947; https://doi.org/10.3390/pharmaceutics17080947 - 22 Jul 2025
Viewed by 247
Abstract
Background: Mesenchymal stem cells (MSCs) possess an intrinsic tumor-tropic ability, and therefore, MSCs may potentially be used as biomimetic carriers for active drug delivery systems targeting tumors. We previously developed a method to efficiently load liposomes onto the surface of MSCs via [...] Read more.
Background: Mesenchymal stem cells (MSCs) possess an intrinsic tumor-tropic ability, and therefore, MSCs may potentially be used as biomimetic carriers for active drug delivery systems targeting tumors. We previously developed a method to efficiently load liposomes onto the surface of MSCs via electrostatic interactions. The prepared liposome-loaded MSCs (Lip-MSCs) spontaneously accumulated in solid melanoma tumors with low vascular permeability while stably carrying liposomes. Methods: To explore Lip-MSC applications in cancer chemotherapy, doxorubicin (DOX)-encapsulated liposomes (DOX-Lip) were prepared and loaded onto MSCs. The cell viability, DOX-releasing properties, tumor-homing capacity, and anti-tumor efficacy of DOX-Lip-MSCs were analyzed. Results: Small liposomes (100 nm) retained DOX, whereas significant leakage of DOX was observed from 600 nm-sized liposomes. Based on this result, we used 100 nm DOX-Lip for the preparation of DOX-Lip-MSCs. Compared with MSCs loaded with DOX by incubation with DOX solution, DOX-Lip-MSCs could load a larger amount of DOX with minimal cytotoxicity. DOX-Lip-MSCs also showed sustained DOX release. DOX-Lip-MSCs efficiently migrated toward the conditioned medium of B16/BL6 melanoma cells in vitro and accumulated in B16/BL6 tumors in vivo, leading to a significant inhibitory effect on tumor growth. Conclusions: Lip-MSCs can serve as an efficient carrier to deliver anti-cancer drugs into solid tumors. Full article
(This article belongs to the Special Issue Cell-Mediated Delivery Systems)
Show Figures

Graphical abstract

21 pages, 17488 KiB  
Article
Mechanistic Study on the Inhibitory Effect of Dandelion Extract on Breast Cancer Cell Proliferation and Its Induction of Apoptosis
by Weifeng Mou, Ping Zhang, Yu Cui, Doudou Yang, Guanjie Zhao, Haijun Xu, Dandan Zhang and Yinku Liang
Biology 2025, 14(8), 910; https://doi.org/10.3390/biology14080910 - 22 Jul 2025
Viewed by 274
Abstract
This study aimed to investigate the underlying mechanisms by which dandelion extract inhibits the proliferation of breast cancer MDA-MB-231 cells. Dandelion root and leaf extracts were prepared using a heat reflux method and subjected to solvent gradient extraction to obtain fractions with different [...] Read more.
This study aimed to investigate the underlying mechanisms by which dandelion extract inhibits the proliferation of breast cancer MDA-MB-231 cells. Dandelion root and leaf extracts were prepared using a heat reflux method and subjected to solvent gradient extraction to obtain fractions with different polarities. MTT assays revealed that the ethyl acetate fraction exhibited the strongest inhibitory effect on cell proliferation. LC-MS analysis identified 12 potential active compounds, including sesquiterpenes such as Isoalantolactone and Artemisinin, which showed significantly lower toxicity toward normal mammary epithelial MCF-10A cells compared to tumor cells (p < 0.01). Mechanistic studies demonstrated that the extract induced apoptosis in a dose-dependent manner, with an apoptosis rate as high as 85.04%, and significantly arrested the cell cycle at the S and G2/M phases. Label-free quantitative proteomics identified 137 differentially expressed proteins (|FC| > 2, p < 0.05). GO enrichment analysis indicated that these proteins were mainly involved in cell cycle regulation and apoptosis. KEGG pathway analysis revealed that the antitumor effects were primarily mediated through the regulation of PI3K-Akt (hsa04151), JAK-STAT (hsa04630), and PPAR (hsa03320) signaling pathways. Moreover, differential proteins such as PI3K, AKT1S1, SIRT6, JAK1, SCD, STAT3, CASP8, STAT2, STAT6, and PAK1 showed strong correlation with the core components of the EA-2 fraction of dandelion. Molecular docking results demonstrated that these active compounds exhibited strong binding affinities with key target proteins such as PI3K and JAK1 (binding energy < −5.0 kcal/mol). This study elucidates the multi-target, multi-pathway synergistic mechanisms by which dandelion extract inhibits breast cancer, providing a theoretical basis for the development of novel antitumor agents. Full article
(This article belongs to the Section Cell Biology)
Show Figures

Graphical abstract

21 pages, 3089 KiB  
Article
Design, Synthesis, and Evaluation of 1-Benzylpiperidine and 1-Benzoylpiperidine Derivatives as Dual-Target Inhibitors of Acetylcholinesterase and Serotonin Transporter for Alzheimer′s Disease
by Juan Pablo González-Gutiérrez, Damián Castillo-Ríos, Víctor Ríos-Campos, Ignacio Alejandro González-Gutiérrez, Dánae Flores Melivilu, Emilio Hormazábal Uribe, Felipe Moraga-Nicolás, Kerim Segura, Valentina Hernández, Amaury Farías-Cea, Hernán Armando Pessoa-Mahana, Miguel Iván Reyes-Parada and Patricio Iturriaga-Vásquez
Molecules 2025, 30(14), 3047; https://doi.org/10.3390/molecules30143047 - 21 Jul 2025
Viewed by 430
Abstract
Cholinergic neuron impairment is a significant cause of cognitive decline in Alzheimer’s disease (AD), making acetylcholinesterase (AChE) a key therapeutic target. AChE inhibitors are principal drugs prescribed to alleviate symptoms in AD patients, while up to 50% of these individuals also suffer from [...] Read more.
Cholinergic neuron impairment is a significant cause of cognitive decline in Alzheimer’s disease (AD), making acetylcholinesterase (AChE) a key therapeutic target. AChE inhibitors are principal drugs prescribed to alleviate symptoms in AD patients, while up to 50% of these individuals also suffer from depression, frequently treated with selective serotonin reuptake inhibitors (SSRIs). Due to the multisymptomatic nature of AD, there is a growing interest in developing multitargeted ligands that simultaneously enhance cholinergic and serotonergic tone. This study presents the synthesis of novel ligands based on functionalized piperidines, evaluated through radioligand binding assays at the serotonin transporter (SERT) and AChE and butyrylcholinesterase (BuChE) inhibition. The pharmacological results showed that some compounds exhibited moderate inhibitory activity against AChE, with one compound 19 standing out as the most potent, also displaying a moderate BuChE inhibitory activity, while showing low affinity for SERT. On the other hand, compound 21 displayed an interesting polypharmacological profile, with good and selective activity against BuChE and SERT. The results underscore the difficulty of designing promiscuous ligands for these targets and suggest that future structural modifications could optimize their therapeutic potential in AD. Full article
(This article belongs to the Special Issue Therapeutic Agents for Neurodegenerative Disorders—2nd Edition)
Show Figures

Graphical abstract

28 pages, 944 KiB  
Review
Amphiregulin in Fibrotic Diseases and Cancer
by Tae Rim Kim, Beomseok Son, Chun Geun Lee and Han-Oh Park
Int. J. Mol. Sci. 2025, 26(14), 6945; https://doi.org/10.3390/ijms26146945 - 19 Jul 2025
Viewed by 266
Abstract
Fibrotic disorders pose a significant global health burden due to limited treatment options, creating an urgent need for novel therapeutic strategies. Amphiregulin (AREG), a low-affinity ligand for the epidermal growth factor receptor (EGFR), has emerged as a key mediator of fibrogenesis through dual [...] Read more.
Fibrotic disorders pose a significant global health burden due to limited treatment options, creating an urgent need for novel therapeutic strategies. Amphiregulin (AREG), a low-affinity ligand for the epidermal growth factor receptor (EGFR), has emerged as a key mediator of fibrogenesis through dual signaling pathways. Unlike high-affinity EGFR ligands, AREG induces sustained signaling that activates downstream effectors and promotes the integrin-mediated activation of transforming growth factor (TGF)-β. This enables both canonical and non-canonical EGFR signaling pathways that contribute to fibrosis. Elevated AREG expression correlates with disease severity across multiple organs, including the lungs, kidneys, liver, and heart. The therapeutic targeting of AREG has shown promising antifibrotic and anticancer effects, suggesting a dual-benefit strategy. The increasing recognition of the shared mechanisms between fibrosis and cancer further supports the development of unified treatment approaches. The inhibition of AREG has been shown to sensitize fibrotic tumor microenvironments to chemotherapy, enhancing combination therapy efficacy. Targeted therapies, such as Self-Assembled-Micelle inhibitory RNA (SAMiRNA)-AREG, have demonstrated enhanced specificity and favorable safety profiles in preclinical studies and early clinical trials. Personalized treatment based on AREG expression may improve clinical outcomes, establishing AREG as a promising precision medicine target for both fibrotic and malignant diseases. This review aims to provide a comprehensive understanding of AREG biology and evaluate its therapeutic potential in fibrosis and cancer. Full article
Show Figures

Figure 1

34 pages, 2764 KiB  
Review
The Inositol-5-Phosphatase SHIP1: Expression, Regulation and Role in Acute Lymphoblastic Leukemia
by Patrick Ehm and Manfred Jücker
Int. J. Mol. Sci. 2025, 26(14), 6935; https://doi.org/10.3390/ijms26146935 - 19 Jul 2025
Viewed by 345
Abstract
Despite the successes achieved in recent years in the treatment of childhood acute lymphoblastic leukemia (ALL), high-risk ALL in particular still represents a considerable challenge, with poorer outcomes. The PI3K/AKT/mTOR signaling pathway is frequently constitutively activated in ALL and consequently leads to unrestricted [...] Read more.
Despite the successes achieved in recent years in the treatment of childhood acute lymphoblastic leukemia (ALL), high-risk ALL in particular still represents a considerable challenge, with poorer outcomes. The PI3K/AKT/mTOR signaling pathway is frequently constitutively activated in ALL and consequently leads to unrestricted cell proliferation, without showing frequent mutations in the most important representatives of the signaling pathway. Recent studies have shown that fine balanced protein expression is a common way to adjust oncogenic B cell directed receptor signaling and to mediate malignant cell proliferation and survival in leukemic cells. Too low expression of inhibitory phosphatases can lead to constitutive signaling of kinases, which are important for cell proliferation and survival. In contrast, marked high expression levels of key phosphatases enable cells with distinct pronounced oncogenic B cell directed receptor signaling to escape negative selection by attenuating signal strength and thus raising the threshold for deletion checkpoint activation. One of the most important B cell receptor-dependent signaling cascades is the PI3K/AKT signaling pathway, with its important antagonist SHIP1. However, recent data show that the inositol-5-phosphatase SHIP1 is differentially expressed across the heterogeneity of the ALL subtypes, making the overall therapeutic strategy targeting SHIP1 more complex. The aim of this article is therefore to provide an overview of the current knowledge about SHIP1, its expression in the various subtypes of ALL, its regulation, and the molecules that influence its gene and protein expression, to better understand its role in the pathogenesis of leukemia and other human cancers. Full article
(This article belongs to the Collection Latest Review Papers in Molecular Oncology)
Show Figures

Figure 1

32 pages, 3865 KiB  
Article
Purine–Hydrazone Scaffolds as Potential Dual EGFR/HER2 Inhibitors
by Fatemah S. Albalawi, Mashooq A. Bhat, Ahmed H. Bakheit, A. F. M. Motiur Rahman, Nawaf A. Alsaif, Alan M. Jones and Isolda Romero-Canelon
Pharmaceuticals 2025, 18(7), 1051; https://doi.org/10.3390/ph18071051 - 17 Jul 2025
Viewed by 417
Abstract
Background/Objectives: The dual targeting of epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) represents an effective approach for cancer treatment. The current study involved the design, synthesis, and biological evaluation of a new series of purine-containing hydrazones, 6 [...] Read more.
Background/Objectives: The dual targeting of epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) represents an effective approach for cancer treatment. The current study involved the design, synthesis, and biological evaluation of a new series of purine-containing hydrazones, 624 (a,b), as anticancer agents targeting EGFR and HER2 kinases. Methods: The proposed compounds were initially screened in silico using molecular docking to investigate their binding affinity to the active sites of EGFR and HER2 kinase domains. Subsequently, the compounds were synthesized and evaluated in vitro for their antiproliferative activity, using the MTT assay, against the various cancer cell lines A549, SKOV-3, A2780, and SKBR-3, with lapatinib as the reference drug. The most active derivatives were then examined to determine their inhibitory activity against EGFR and HER2 kinases. Results: Among the assessed compounds, significant antiproliferative activity was demonstrated by 19a, 16b, and 22b. 19a exhibited substantial anticancer efficacy against A549 and SKBR-3, with IC50 values of 0.81 µM and 1.41 µM, respectively. This activity surpassed lapatinib, which has an IC50 of 11.57 µM on A549 and 8.54 µM on SKBR-3 cells. Furthermore, 19a, 16b, and 22b exhibited superior EGFR inhibitory efficacy compared with lapatinib (IC50 = 0.13 µM), with IC50 values of 0.08, 0.06, and 0.07 µM, respectively. Regarding HER2, 22b demonstrated the greatest potency with an IC50 of 0.03 µM, equipotent to lapatinib (IC50 = 0.03 µM). Flow cytometry analysis of A549 cells treated with 19a and 22b indicated their ability to arrest the cell cycle during the G1 phase and to trigger cellular apoptosis. Conclusions: Compounds 19a, 16b, and 22b represent intriguing candidates for the development of an anticancer agent targeting EGFR and HER2 kinases. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

Back to TopTop