In Vitro Antimicrobial Activity of the Novel Antimicrobial Peptide OMN51 Against Multi-Drug-Resistant Pseudomonas aeruginosa Isolated from People with Cystic Fibrosis †
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AMP | antimicrobial peptide |
CLSI | Clinical and Laboratory Standards Institute |
CFU | colony-forming units |
CF | cystic fibrosis |
MIC | minimum inhibitory concentration |
MDR | multi-drug-resistant |
pwCF | people with cystic fibrosis |
RBC | red blood cell |
References
- Grasemann, H.; Ratjen, F. Cystic Fibrosis. N. Engl. J. Med. 2023, 389, 1693–1707. [Google Scholar] [CrossRef] [PubMed]
- Vitiello, A.; Blasi, F.; Sabbatucci, M.; Zovi, A.; Miele, F.; Ponzo, A.; Langella, R.; Boccellino, M. The Impact of Antimicrobial Resistance in Cystic Fibrosis. J. Clin. Med. 2024, 13, 1711. [Google Scholar] [CrossRef] [PubMed]
- Fainardi, V.; Neglia, C.; Muscarà, M.; Spaggiari, C.; Tornesello, M.; Grandinetti, R.; Argentiero, A.; Calderaro, A.; Esposito, S.; Pisi, G. Multidrug-Resistant Bacteria in Children and Adolescents with Cystic Fibrosis. Children 2022, 9, 1330. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- GBD 2021 Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance 1990–2021: A systematic analysis with forecasts to 2050. Lancet 2024, 404, 1199–1226. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, D.M.P.; Forde, B.M.; Kidd, T.J.; Harris, P.N.A.; Schembri, M.A.; Beatson, S.A.; Paterson, D.L.; Walker, M.J. Antimicrobial resistance in ESKAPE pathogens. Clin. Microbiol. Rev. 2020, 33, e00181-19. [Google Scholar] [CrossRef] [PubMed]
- Elfadadny, A.; Ragab, R.F.; AlHarbi, M.; Badshah, F.; Ibáñez-Arancibia, E.; Farag, A.; Hendawy, A.O.; De Los Ríos-Escalante, P.R.; Aboubakr, M.; Zakai, S.A.; et al. Antimicrobial resistance of Pseudomonas aeruginosa: Navigating clinical impacts, current resistance trends, and innovations in breaking therapies. Front. Microbiol. 2024, 15, 1374466. [Google Scholar] [CrossRef] [PubMed]
- Nickerson, R.; Thornton, C.S.; Johnston, B.; Lee, A.H.Y.; Cheng, Z. Pseudomonas aeruginosa in chronic lung disease: Untangling the dysregulated host immune response. Front. Immunol. 2024, 15, 1405376. [Google Scholar] [CrossRef] [PubMed]
- Giovagnorio, F.; De Vito, A.; Madeddu, G.; Parisi, S.G.; Geremia, N. Resistance in Pseudomonas aeruginosa: A narrative review of antibiogram interpretation and emerging treatments. Antibiotics 2023, 12, 1621. [Google Scholar] [CrossRef] [PubMed]
- Wright, G.D. Bacterial resistance to antibiotics: Enzymatic degradation and modification. Adv. Drug Deliv. Rev. 2005, 57, 1451–1470. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Santana, J.C.; Gerónimo-Gallegos, A.; Martínez-Corona, M.B.; López-López, M.; Toscano-Garibay, J.D.; Cuevas-Schacht, F.; Coria-Jiménez, V.R. High Rates of Extensively Drug-Resistant Pseudomonas aeruginosa in Children with Cystic Fibrosis. Curr. Microbiol. 2022, 79, 353. [Google Scholar] [CrossRef] [PubMed]
- Parkins, M.D.; Somayaji, R.; Waters, V.J. Epidemiology, Biology, and Impact of Clonal Pseudomonas aeruginosa Infections in Cystic Fibrosis. Clin. Microbiol. Rev. 2018, 31, e00019-18. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.; Alam, M.Z.; Fallon, J.T.; Huang, W. Advances in Development of Novel Therapeutic Strategies against Multi-Drug Resistant Pseudomonas aeruginosa. Antibiotics 2024, 13, 119. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, D.; Kollef, M. The Epidemiology and Pathogenesis and Treatment of Pseudomonas aeruginosa Infections: An Update. Drugs 2021, 81, 2117–2131. [Google Scholar] [CrossRef] [PubMed]
- Canesi, L.; Auguste, M.; Balbi, T.; Prochazkova, P. Soluble mediators of innate immunity in annelids and bivalve mollusks: A mini-review. Front. Immunol. 2022, 13, 1051155. [Google Scholar] [CrossRef] [PubMed]
- Talapko, J.; Meštrović, T.; Juzbašić, M.; Tomas, M.; Erić, S.; Horvat Aleksijević, L.; Bekić, S.; Schwarz, D.; Matić, S.; Neuberg, M.; et al. Antimicrobial Peptides-Mechanisms of Action, Antimicrobial Effects and Clinical Applications. Antibiotics 2022, 11, 1417. [Google Scholar] [CrossRef] [PubMed]
- Huan, Y.; Kong, Q.; Mou, H.; Yi, H. Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields. Front. Microbiol. 2020, 11, 582779. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Koh, J.J.; Liu, S.; Lakshminarayanan, R.; Verma, C.S.; Beuerman, R.W. Membrane Active Antimicrobial Peptides: Translating Mechanistic Insights to Design. Front. Neurosci. 2017, 11, 73. [Google Scholar] [CrossRef] [PubMed]
- Shepperson, O.A.; Harris, P.W.R.; Brimble, M.A.; Cameron, A.J. The Antimicrobial Peptide Capitellacin: Chemical Synthesis of Analogues to Probe the Role of Disulphide Bridges and Their Replacement with Vinyl Sulphides. Antibiotics 2024, 13, 615. [Google Scholar] [CrossRef] [PubMed]
- Duarte-Mata, D.I.; Salinas-Carmona, M.C. Antimicrobial peptides’ immune modulation role in intracellular bacterial infection. Front. Immunol. 2023, 14, 1119574. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.J.; Nam, S.H.; Lee, B.J. Engineering approaches for the development of antimicrobial peptide-based antibiotics. Antibiotics 2022, 11, 1338. [Google Scholar] [CrossRef] [PubMed]
- Panteleev, P.V.; Tsarev, A.V.; Safronova, V.N.; Reznikova, O.V.; Bolosov, I.A.; Sychev, S.V.; Shenkarev, Z.O.; Ovchinnikova, T.V. Structure Elucidation and Functional Studies of a Novel β-hairpin Antimicrobial Peptide from the Marine Polychaeta Capitella teleta. Mar. Drugs 2020, 18, 620. [Google Scholar] [CrossRef] [PubMed]
- Safronova, V.N.; Panteleev, P.V.; Sukhanov, S.V.; Toropygin, I.Y.; Bolosov, I.A.; Ovchinnikova, T.V. Mechanism of Action and Therapeutic Potential of the β-Hairpin Antimicrobial Peptide Capitellacin from the Marine Polychaeta Capitella teleta. Mar. Drugs 2022, 20, 167. [Google Scholar] [CrossRef] [PubMed]
- Bachnoff, N.; Cohen-Kutner, M.; Mandel, S.; Nur, N. Novel Peptide for Treating an Infectious Disease or Condition. International Patent WO 2024/003890 A1, 4 January 2024. [Google Scholar]
- Gagat, P.; Ostrówka, M.; Duda-Madej, A.; Mackiewicz, P. Enhancing Antimicrobial Peptide Activity through Modifications of Charge, Hydrophobicity, and Structure. Int. J. Mol. Sci. 2024, 25, 10821. [Google Scholar] [CrossRef] [PubMed]
- Agadi, N.; Maity, A.; Jha, A.K.; Chakrabarti, R.; Kumar, A. Distinct mode of membrane interaction and disintegration by diverse class of antimicrobial peptides. Biochim. Biophys. Acta Biomembr. 2022, 1864, 184047. [Google Scholar] [CrossRef] [PubMed]
- Lei, J.; Sun, L.; Huang, S.; Zhu, C.; Li, P.; He, J.; Mackey, V.; Coy, D.H.; He, Q. The antimicrobial peptides and their potential clinical applications. Am. J. Transl. Res. 2019, 11, 3919–3931. [Google Scholar] [PubMed]
- Lopes, B.S.; Hanafiah, A.; Nachimuthu, R.; Muthupandian, S.; Md Nesran, Z.N.; Patil, S. The role of antimicrobial peptides as antimicrobial and antibiofilm agents in tackling the silent pandemic of antimicrobial resistance. Molecules 2022, 27, 2995. [Google Scholar] [CrossRef] [PubMed]
- Greco, I.; Molchanova, N.; Holmedal, E.; Jenssen, H.; Hummel, B.D.; Watts, J.L.; Håkansson, J.; Hansen, P.R.; Svenson, J. Correlation between hemolytic activity, cytotoxicity and systemic in vivo toxicity of synthetic antimicrobial peptides. Sci. Rep. 2020, 10, 13206. [Google Scholar] [CrossRef] [PubMed]
- Mandel, S.; Michaeli, J.; Nur, N.; Erbetti, I.; Zazoun, J.; Ferrari, L.; Felici, A.; Cohen-Kutner, M.; Bachnoff, N. OMN6 a novel bioengineered peptide for the treatment of multidrug resistant Gram negative bacteria. Sci. Rep. 2021, 11, 6603. [Google Scholar] [CrossRef] [PubMed]
- Michaeli, J.; Mandel, S.; Maximov, S.; Zazoun, J.; Savoia, P.; Kothari, N.; Valmont, T.; Ferrari, L.; Duncan, L.R.; Hawser, S.; et al. In vitro and in vivo antimicrobial activity of the novel peptide OMN6 against multidrug-resistant Acinetobacter baumannii. Antibiotics 2022, 11, 1201. [Google Scholar] [CrossRef] [PubMed]
- Gagandeep, K.R.; Balenahalli Narasingappa, R.; Vishnu Vyas, G. Unveiling mechanisms of antimicrobial peptide: Actions beyond the membranes disruption. Heliyon 2024, 10, e38079. [Google Scholar] [CrossRef] [PubMed]
- Tajer, L.; Paillart, J.C.; Dib, H.; Sabatier, J.M.; Fajloun, Z.; Abi Khattar, Z. Molecular Mechanisms of Bacterial Resistance to Antimicrobial Peptides in the Modern Era: An Updated Review. Microorganisms 2024, 12, 1259. [Google Scholar] [CrossRef] [PubMed]
- Narimisa, N.; Keshtkar, A.; Dadgar-Zankbar, L.; Bostanghadiri, N.; Far, Y.R.; Shahroodian, S.; Zahedi Bialvaei, A.; Razavi, S. Prevalence of colistin resistance in clinical isolates of Pseudomonas aeruginosa: A systematic review and meta-analysis. Front. Microbiol. 2024, 15, 1477836. [Google Scholar] [CrossRef] [PubMed]
- Islam, T.; Tamanna, N.T.; Sagor, M.S.; Zaki, R.M.; Rabbee, M.F.; Lackner, M. Antimicrobial Peptides: A Promising Solution to the Rising Threat of Antibiotic Resistance. Pharmaceutics 2024, 16, 1542. [Google Scholar] [CrossRef] [PubMed]
- Taheri-Araghi, S. Synergistic action of antimicrobial peptides and antibiotics: Current understanding and future directions. Front. Microbiol. 2024, 15, 1390765. [Google Scholar] [CrossRef] [PubMed]
- Ghigo, A.; Prono, G.; Riccardi, E.; De Rose, V. Dysfunctional Inflammation in Cystic Fibrosis Airways: From Mechanisms to Novel Therapeutic Approaches. Int. J. Mol. Sci. 2021, 22, 1952. [Google Scholar] [CrossRef] [PubMed]
- Taccetti, G.; Francalanci, M.; Pizzamiglio, G.; Messore, B.; Carnovale, V.; Cimino, G.; Cipolli, M. Cystic Fibrosis: Recent insights into inhaled antibiotic treatment and future perspectives. Antibiotics 2021, 10, 338. [Google Scholar] [CrossRef] [PubMed]
Characterization | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No. | Age | Gender | Resistance Pattern | OMN51 MIC [µg/mL] | ATM | FDC | CAZ | CZA | CT | CIP | IPM | MEM | OFL | PIP | TZP | TOB |
1 | 29 | M | Susceptible | 4 | S | NA | S | S | NA | S | S | S | S | S | S | S |
2 | NA | NA | Susceptible | 4 | S | NA | S | S | NA | S | S | S | S | S | S | S |
3 | NA | NA | Susceptible | 4 | S | NA | S | S | NA | S | S | S | S | S | S | S |
4 | 39 | F | Susceptible | 8 | S | NA | S | S | NA | S | S | S | S | S | S | S |
5 | 52 | F | Susceptible | 8 | S | NA | S | S | NA | S | S | S | S | S | S | S |
6 | 52 | F | Susceptible | 16 | S | NA | S | S | NA | S | S | S | S | S | S | S |
7 | 58 | F | Susceptible | 8 | S | NA | S | S | NA | S | S | S | S | S | S | S |
8 | 39 | F | Susceptible | 4 | S | NA | S | S | NA | S | S | S | S | S | S | S |
9 | 75 | M | Susceptible | 4 | S | NA | S | S | NA | S | S | S | S | S | S | S |
10 | NA | NA | Susceptible | 8 | S | NA | S | S | NA | S | S | S | S | S | S | NA |
11 | 70 | F | Susceptible | 8 | S | NA | S | S | NA | S | S | S | S | S | S | NA |
12 | 39 | F | ND | 4 | I | NA | S | S | NA | S | S | S | S | S | S | S |
13 | 51 | M | ND | 8 | S | NA | S | S | S | S | I | S | S | S | S | I |
14 | 25 | M | ND | 8 | S | NA | S | S | NA | S | S | S | I | I | I | S |
15 | 62 | F | ND | 8 | S | NA | S | S | NA | I | S | S | R | S | S | S |
16 | 38 | M | ND | 4 | S | S | S | S | S | S | R | I | I | S | S | S |
17 | 46 | F | ND | 4 | S | NA | S | S | NA | R | S | S | R | S | S | NA |
18 | 34 | M | ND | 8 | S | NA | S | S | NA | R | S | S | R | S | S | NA |
19 | 34 | M | ND | 16 | S | NA | S | S | NA | R | S | S | R | S | S | NA |
20 | 38 | M | ND | 4 | S | NA | S | S | NA | I | R | S | R | S | S | S |
21 | 40 | F | ND | 4 | S | S | S | S | S | R | R | S | R | S | S | S |
22 | 38 | M | ND | 4 | S | S | S | S | S | R | R | S | R | S | S | S |
23 | 36 | F | ND | 4 | S | S | S | S | NA | R | R | S | R | S | S | S |
24 | 40 | F | ND | 4 | S | NA | S | S | NA | R | R | S | R | S | S | S |
25 | 36 | F | MDR | 8 | S | NA | S | S | NA | R | R | S | R | R | S | S |
26 | 22 | F | MDR | 16 | R | NA | S | S | NA | R | S | S | R | S | S | R |
27 | 63 | F | MDR | 16 | R | S | S | S | S | R | S | R | R | S | S | R |
28 | 40 | F | MDR | 4 | S | S | R | S | NA | R | R | R | R | R | S | S |
29 | 31 | F | MDR | 16 | R | S | R | R | NA | R | S | R | R | S | S | R |
30 | 32 | F | MDR | 4 | R | S | R | S | S | R | R | R | R | R | R | S |
31 | 51 | M | MDR | 16 | I | R | R | S | I | R | R | I | R | S | S | R |
32 | 51 | M | MDR | 8 | R | R | R | S | R | R | R | I | R | S | S | R |
33 | 38 | M | MDR | 8 | R | S | R | S | S | R | R | R | R | R | R | R |
34 | 38 | M | MDR | 4 | R | S | R | S | S | R | R | R | R | R | R | R |
35 | 36 | F | MDR | 16 | R | R | R | S | S | R | R | R | R | R | R | R |
36 | 36 | F | MDR | 8 | R | S | R | R | S | R | R | R | R | R | R | R |
37 | 30 | M | MDR | 16 | R | S | R | I | R | R | R | R | R | I | I | R |
38 | 36 | F | MDR | 16 | R | R | R | S | R | R | R | R | R | R | I | R |
39 | 63 | F | MDR | 16 | R | S | R | R | R | R | R | R | R | R | R | R |
40 | 34 | M | MDR | 8 | R | S | R | R | R | R | R | R | R | R | R | R |
41 | NA | NA | MDR | 16 | R | S | R | R | R | R | R | R | R | R | R | R |
42 | 48 | F | MDR | 16 | R | S | R | R | R | R | R | R | R | R | R | R |
43 | 32 | F | MDR | 16 | R | S | R | R | R | R | R | R | R | R | R | R |
44 | 32 | F | MDR | 8 | R | I | R | R | NA | R | R | R | R | R | R | R |
45 | 48 | F | MDR | 16 | R | I | R | R | I | R | R | R | R | R | R | R |
46 | 63 | F | MDR | 4 | R | R | R | R | NA | R | R | R | R | R | R | R |
47 | 36 | F | MDR | 8 | R | R | R | R | R | R | R | R | R | R | R | R |
48 | 34 | M | MDR | 16 | R | R | R | R | R | R | R | R | R | R | R | R |
49 | 32 | F | MDR | 8 | R | R | R | R | R | R | R | R | R | R | R | R |
50 | 32 | F | MDR | 16 | R | R | R | R | R | R | R | R | R | R | R | R |
51 | 39 | M | MDR | 16 | R | R | R | R | R | R | R | R | R | R | R | R |
52 | 36 | F | MDR | 8 | R | R | R | R | R | R | R | R | R | R | R | R |
53 | 31 | F | MDR | 16 | R | R | R | R | R | R | R | R | R | R | R | R |
54 | 31 | F | MDR | 16 | R | R | R | R | R | R | R | R | R | R | R | R |
55 | 63 | F | MDR | 16 | R | R | R | R | R | R | R | R | R | R | R | R |
56 | 22 | F | MDR | 8 | R | R | R | R | R | R | R | R | R | R | R | R |
Antibiotic | CLSI Breakpoints (S|I|R) | Percentage of Clinical Isolates by Susceptibility Category for Each Antibiotic (%) | |||
---|---|---|---|---|---|
S | I | R | NA | ||
OFL | ≤2|4|≥8 | 23.2 | 3.6 | 73.2 | 0.0 |
CIP | ≤0.5|1|≥2 | 26.8 | 3.6 | 69.6 | 0.0 |
IPM | ≤2|4|≥8 | 35.7 | 1.8 | 62.5 | 0.0 |
ATM | ≤8|16|≥32 | 44.6 | 3.6 | 51.8 | 0.0 |
CAZ | ≤8|16|≥32 | 48.2 | 0.0 | 51.8 | 0.0 |
TOB | ≤1|2|≥4 | 39.3 | 1.8 | 51.8 | 7.1 |
MEM | ≤2|4|≥8 | 44.6 | 5.4 | 50.0 | 0.0 |
PIP | ≤16|32|≥64 | 50.0 | 3.6 | 46.4 | 0.0 |
TZP | ≤16/4|32/4|≥64/4 | 53.6 | 5.4 | 41.1 | 0.0 |
CZA | ≤8/4|-|≥16/4 | 62.5 | 1.8 | 35.7 | 0.0 |
CT | ≤4/4|8/4|≥16/4 | 17.9 | 3.6 | 32.1 | 46.4 |
FDC | ≤4|8|≥16 | 30.4 | 3.6 | 26.8 | 39.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heching, M.; Cohen-Kutner, M.; Ben-Zvi, H.; Slomianksy, L.; Chass Maurice, E.; Nur Maymon, N.; Mandel, S.; Oholy, M.; Moses, R.; Lavon, M.; et al. In Vitro Antimicrobial Activity of the Novel Antimicrobial Peptide OMN51 Against Multi-Drug-Resistant Pseudomonas aeruginosa Isolated from People with Cystic Fibrosis. J. Clin. Med. 2025, 14, 5208. https://doi.org/10.3390/jcm14155208
Heching M, Cohen-Kutner M, Ben-Zvi H, Slomianksy L, Chass Maurice E, Nur Maymon N, Mandel S, Oholy M, Moses R, Lavon M, et al. In Vitro Antimicrobial Activity of the Novel Antimicrobial Peptide OMN51 Against Multi-Drug-Resistant Pseudomonas aeruginosa Isolated from People with Cystic Fibrosis. Journal of Clinical Medicine. 2025; 14(15):5208. https://doi.org/10.3390/jcm14155208
Chicago/Turabian StyleHeching, Moshe, Moshe Cohen-Kutner, Haim Ben-Zvi, Liora Slomianksy, Elital Chass Maurice, Noa Nur Maymon, Shira Mandel, Michal Oholy, Rony Moses, Michal Lavon, and et al. 2025. "In Vitro Antimicrobial Activity of the Novel Antimicrobial Peptide OMN51 Against Multi-Drug-Resistant Pseudomonas aeruginosa Isolated from People with Cystic Fibrosis" Journal of Clinical Medicine 14, no. 15: 5208. https://doi.org/10.3390/jcm14155208
APA StyleHeching, M., Cohen-Kutner, M., Ben-Zvi, H., Slomianksy, L., Chass Maurice, E., Nur Maymon, N., Mandel, S., Oholy, M., Moses, R., Lavon, M., Kaufman, K., Mayost Lev-Ari, O., Shachar, T., Weinberg, J., Kramer, M. R., & Bachnoff, N. (2025). In Vitro Antimicrobial Activity of the Novel Antimicrobial Peptide OMN51 Against Multi-Drug-Resistant Pseudomonas aeruginosa Isolated from People with Cystic Fibrosis. Journal of Clinical Medicine, 14(15), 5208. https://doi.org/10.3390/jcm14155208