Can In Vitro Cell Cultures of Eryngium planum, Lychnis flos-cuculi, and Kickxia elatine Be an Alternative Source of Plant Biomass with Biological Antimicrobial and Anti-Acanthamoeba Activities?
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and In Vitro Cultures
2.2. Phytochemical Evaluation
2.3. Preparation of Cell Biomass Extract for Investigations of Their Biological Activities
2.4. Anti-Acanthamoebic Assay
2.5. Antimicrobial Activity
2.6. Molecular Docking
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bapat, V.A.; Kavi Kishor, P.B.; Jalaja, N.; Jain, S.M.; Penna, S. Plant Cell Cultures: Biofactories for the Production of Bioactive Compounds. Agronomy 2023, 13, 858. [Google Scholar] [CrossRef]
- Wawrosch, C.; Zotchev, S.B. Production of Bioactive Plant Secondary Metabolites through In Vitro Technologies—Status and Outlook. App. Microbiol. Biotechnol. 2021, 105, 6649–6668. [Google Scholar] [CrossRef] [PubMed]
- Niazian, M.; Sabbatini, P. Traditional In Vitro Strategies for Sustainable Production of Bioactive Compounds and Manipulation of Metabolomic Profile in Medicinal, Aromatic and Ornamental Plants. Planta 2021, 254, 111. [Google Scholar] [CrossRef] [PubMed]
- Lakshmaiah, V.V.; Banadka, A.; Thirumoorthy, G.; Naik, P.M.; Al-Khayri, J.M.; Nagella, P. In Vitro Production of Bioactive Compounds from Plant Cell Culture. In Nutraceuticals Production from Plant Cell Factory; Belwal, T., Georgiev, M.I., Al-Khayri, J.M., Eds.; Springer Nature: Singapore, 2022; pp. 29–67. ISBN 978-981-16-8857-7. [Google Scholar]
- Conea, S.; Pârvu, A.E.; Bolboacă, S. Anti-Inflammatory Effects of Eryngium planum L. and E. maritimum L. (Apiaceae) Extracts in Turpentine-Oil Induced Acute Inflammation in Rats. Farmacia 2016, 64, 291–293. [Google Scholar]
- Conea, S.; Alina Elena, P.; Taulescu, M.; Vlase, L. Effects of Eryngium planum and Eryngium campestre Extracts on Ligature-Induced Rat Periodontitis. Dig. J. Nanomater. Biostruct. 2015, 10, 693–704. [Google Scholar]
- Huda, N.U.; Ahmed, M.; Mushtaq, N.; Khan, R.A. Kickxia elatine-Assisted Bio-Fabrication of Nano-Silver and Their Antioxidant, Anti-Alpha Amylase, and Anti-Acetylcholinesterase Properties. Nano Biomed. Eng. 2023, 15, 150–169. [Google Scholar] [CrossRef]
- Maliński, M.P.; Budzianowski, J.; Kikowska, M.; Derda, M.; Jaworska, M.M.; Mlynarczyk, D.T.; Szukalska, M.; Florek, E.; Thiem, B. Two Ecdysteroids Isolated from Micropropagated Lychnis flos-cuculi and the Biological Activity of Plant Material. Molecules 2021, 26, 904. [Google Scholar] [CrossRef] [PubMed]
- Arykbayeva, A.B.; Ustenova, G.O.; Sharipov, K.O.; Beissebayeva, U.T.; Kaukhova, I.E.; Myrzabayeva, A.; Gemejiyeva, N.G. Determination of Chemical Composition and Antimicrobial Activity of the CO2 Extract of Eryngium planum L. Int. J. Biomater. 2023, 2023, 4702607. [Google Scholar] [CrossRef]
- Andreica, A.-M.; Balea, A.; Pojar-Feneșan, M.; Carpa, R. GC-MS Comparative Chemical Composition of Essential Oils and Volatile Compounds of Eryngium planum L. Using Classical Hydrodistillation, Ultrasound-Assisted Hydrodistillation and Headspace Solid-Phase Microextraction. Antimicrobial Activity. Stud. UBB Chem. 2024, 69, 147–161. [Google Scholar] [CrossRef]
- Kikowska, M.; Hermosaningtyas, A.A.; Chanaj-Kaczmarek, J. Little-Known Saniculeae Genera: Phytochemical Studies and Pharmaceutical Activities. Phytochem. Rev. 2024. [Google Scholar] [CrossRef]
- Matiusha, K.; Grytsyk, A.; Hrytsyk, R.; Raal, A.; Koshovyi, O. Phytochemical Research and Screening of Pharmacological Activity in Eryngium planum L. Herb Extracts. Appl. Sci. 2025, 15, 1433. [Google Scholar] [CrossRef]
- Paun, G.; Neagu, E.; Moroeanu, V.; Albu, C.; Savin, S.; Lucian Radu, G. Chemical and Bioactivity Evaluation of Eryngium planum and Cnicus benedictus Polyphenolic-Rich Extracts. BioMed Res. Int. 2019, 2019, 3692605. [Google Scholar] [CrossRef] [PubMed]
- Wojtanowski, K.; Skalicka-Woźniak, K.; Głowniak, K.; Mroczek, T. Screening of the Antioxidant Potentials of Polar Extracts from Fruits of Eryngium planum and Eryngium amethystinum Using the β-Carotene-Linoleic Acid Assay. Curr. Issues Pharm. Med. Sci. 2013, 26, 276–278. [Google Scholar] [CrossRef]
- Tomczyk, M. Preliminary Phytochemical Investigation of Lychnis flos-cuculi Herbs. J. Nat. Med. 2008, 62, 473–475. [Google Scholar] [CrossRef] [PubMed]
- Maliński, M.P.; Kikowska, M.A.; Soluch, A.; Kowalczyk, M.; Stochmal, A.; Thiem, B. Phytochemical Screening, Phenolic Compounds and Antioxidant Activity of Biomass from Lychnis flos-cuculi L. In Vitro Cultures and Intact Plants. Plants 2021, 10, 206. [Google Scholar] [CrossRef] [PubMed]
- Mamadalieva, N.Z.; Egamberdieva, D.; Lafont, R.; Girault, J.P. Phytoecdysteroids and Antibacterial Activity of the Plant Coronaria flos-cuculi. Chem. Nat. Compd. 2008, 44, 404–406. [Google Scholar] [CrossRef]
- Carvalho, M.T.B.; Araújo-Filho, H.G.; Barreto, A.S.; Quintans-Júnior, L.J.; Quintans, J.S.S.; Barreto, R.S.S. Wound Healing Properties of Flavonoids: A Systematic Review Highlighting the Mechanisms of Action. Phytomedicine 2021, 90, 153636. [Google Scholar] [CrossRef] [PubMed]
- Toth, L.; Csordas, I.; Papay, V. Chemical Analysis of Kickxia elatine (L.) Dum. Herba Hung. 1978, 17, 35–37. [Google Scholar]
- Toth, L.; Csordas, I.; Papay, V.; Bujtas, G. The Flavonoids of Kickxia elatine (L.) Dum. Die Pharm. 1978, 33, 374–375. [Google Scholar]
- Handjieva, N.; Tersieva, L.; Popov, S.; Evstatieva, L. Two Iridoid Glucosides, 5-O-Menthiafoloylkickxioside and Kickxin, from Kickxia Dum. Species. Phytochemistry 1995, 39, 925–927. [Google Scholar] [CrossRef]
- Dhivya, S.M.; Kalaichelvi, K. Studies on Ethno-Medicinal Plants Used by the Irulas Tribes of Nellithurai Beat, Karamadai Range of Western Ghats, Tamil Nadu, India. Int. J. Pharm. Chem. Sci. 2015, 3, 2116–2124. [Google Scholar]
- Hermosaningtyas, A.A.; Totoń, E.; Budzianowska, A.; Lisiak, N.; Romaniuk-Drapała, A.; Kruszka, D.; Rewers, M.; Kikowska, M. Biotechnology Production of Cell Biomass from the Endangered Kickxia elatine (L.) Dumort: Its Untargeted Metabolomic Analysis and Cytotoxic Potential Against Melanoma Cells. Biomedicines 2025, 13, 1382. [Google Scholar] [CrossRef] [PubMed]
- Yuldashev, M.P.; Malikov, V.M.; Batirov, É.K. Flavonoids of the Epigeal Part of Kickxia elatine. Chem. Nat. Compd. 1996, 32, 30–32. [Google Scholar] [CrossRef]
- Janaćković, P.; Gavrilović, M.; Miletić, M.; Radulović, M.; Kolašinac, S.; Stevanović, Z.D. Small Regions as Key Sources of Traditional Knowledge: A Quantitative Ethnobotanical Survey in the Central Balkans. J. Ethnobiol. Ethnomed. 2022, 18, 70. [Google Scholar] [CrossRef] [PubMed]
- Tuttolomondo, T.; Licata, M.; Leto, C.; Savo, V.; Bonsangue, G.; Letizia Gargano, M.; Venturella, G.; La Bella, S. Ethnobotanical Investigation on Wild Medicinal Plants in the Monti Sicani Regional Park (Sicily, Italy). J. Ethnopharmacol. 2014, 153, 568–586. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jiang, L.; Zhao, Y.; Ju, X.; Wang, L.; Jin, L.; Fine, R.D.; Li, M. Biological Characteristics and Pathogenicity of Acanthamoeba. Front. Microbiol. 2023, 14, 1147077. [Google Scholar] [CrossRef] [PubMed]
- Garg, D.; Daigavane, S. A Comprehensive Review on Acanthamoeba Keratitis: An Overview of Epidemiology, Risk Factors, and Therapeutic Strategies. Cureus 2024, 16, e67803. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.A. Acanthamoeba: Biology and Increasing Importance in Human Health. FEMS Microbiol. Rev. 2006, 30, 564–595. [Google Scholar] [CrossRef] [PubMed]
- Kikowska, M.; Chanaj-Kaczmarek, J.; Derda, M.; Budzianowska, A.; Thiem, B.; Ekiert, H.; Szopa, A. The Evaluation of Phenolic Acids and Flavonoids Content and Antiprotozoal Activity of Eryngium Species Biomass Produced by Biotechnological Methods. Molecules 2022, 27, 363. [Google Scholar] [CrossRef] [PubMed]
- Takeda, H.; Matsuzawa, Y.; Takeuchi, M.; Takahashi, M.; Nishida, K.; Harayama, T.; Todoroki, Y.; Shimizu, K.; Sakamoto, N.; Oka, T.; et al. MS-DIAL 5 Multimodal Mass Spectrometry Data Mining Unveils Lipidome Complexities. Nat. Commun. 2024, 15, 9903. [Google Scholar] [CrossRef] [PubMed]
- de Mendiburu, F. Agricolae: Statistical Procedures for Agricultural Research, Version 1.3-7; R Package. 2023. Available online: https://cran.r-project.org/web/packages/agricolae/agricolae.pdf (accessed on 14 July 2025).
- Zamli, K.M.; Hashim, F.; Razali, S.A.; Yusoff, H.M.; Mohamad, H.; Abdullah, F.; Asari, A. Synthesis, Anti-Amoebic Activity and Molecular Docking Simulation of Eugenol Derivatives against Acanthamoeba sp. Saudi Pharm. J. 2023, 31, 101703. [Google Scholar] [CrossRef]
- Kusrini, E.; Hashim, F.; Gunawan, C.; Mann, R.; Azmi, W.N.N.W.N.; Amin, N.M. Anti-Amoebic Activity of Acyclic and Cyclic-Samarium Complexes on Acanthamoeba. Parasitol. Res. 2018, 117, 1409–1417. [Google Scholar] [CrossRef] [PubMed]
- Saqallah, F.G.; Hamed, W.M.; Talib, W.H.; Dianita, R.; Wahab, H.A. Antimicrobial Activity and Molecular Docking Screening of Bioactive Components of Antirrhinum majus (Snapdragon) Aerial Parts. Heliyon 2022, 8, e10391. [Google Scholar] [CrossRef] [PubMed]
- Araújo, G.R.; Costa, P.C.Q.G.D.; Nogueira, P.L.; Alves, D.D.N.; Ferreira, A.R.; Da Silva, P.R.; De Andrade, J.C.; De Sousa, N.F.; Loureiro, P.B.A.; Sobral, M.V.; et al. In Silico and In Vitro Evaluation of the Antifungal Activity of a New Chromone Derivative against Candida spp. BioTech 2024, 13, 16. [Google Scholar] [CrossRef] [PubMed]
- Schrödinger LLC. The PyMOL Molecular Graphics System, Version 1.8; Schrödinger, LLC: New York, NY, USA, 2015. [Google Scholar]
- Morris, G.M.; Huey, R.; Olson, A.J. Using AutoDock for Ligand-Receptor Docking. Curr. Protoc. Bioinform. 2008, 24, 8.14.1–8.14.40. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed]
- Dassault Systèmes. BIOVIA Discovery Studio Visualizer; Dassault Systèmes: San Diego, CA, USA, 2025. [Google Scholar]
- Singh, H.; Bharadvaja, N. Treasuring the Computational Approach in Medicinal Plant Research. Prog. Biophys. Mol. Biol. 2021, 164, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Niyyati, M.; Dodangeh, S.; Lorenzo-Morales, J. A Review of the Current Research Trends in the Application of Medicinal Plants as a Source for Novel Therapeutic Agents Against Acanthamoeba Infections. Iran. J. Pharm. Res. 2016, 15, 893–900. [Google Scholar] [PubMed]
- Ženíšková, K.; Stopka, P.; Martín-Pérez, T.; Chevreux, G.; Grechnikova, M.; Drncová, E.; Malych, R.; Mach, J.; Walochnik, J.; Camadro, J.-M.; et al. Molecular Mechanisms of Acanthamoeba castellanii Response to Different Sources of Oxidative Stress. J. Proteome Res. 2025, 24, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Motavallihaghi, S.; Khodadadi, I.; Goudarzi, F.; Afshar, S.; Shahbazi, A.E.; Maghsood, A.H. The Role of Acanthamoeba castellanii (T4 Genotype) Antioxidant Enzymes in Parasite Survival under H2O2-Induced Oxidative Stress. Parasitol. Int. 2022, 87, 102523. [Google Scholar] [CrossRef] [PubMed]
- Mahboob, T.; Azlan, A.-M.; Tan, T.-C.; Samudi, C.; Sekaran, S.D.; Nissapatorn, V.; Wiart, C. Anti-Encystment and Amoebicidal Activity of Lonicera japonica Thunb. and Its Major Constituent Chlorogenic Acid In Vitro. Asian Pac. J. Trop. Med. 2016, 9, 866–871. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, R.; Akbar, N.; Khatoon, B.; Kawish, M.; Ali, M.S.; Shah, M.R.; Khan, N.A. Novel Plant-Based Metabolites as Disinfectants against Acanthamoeba castellanii. Antibiotics 2022, 11, 248. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, M.; Masullo, M.; Thiem, B.; Piacente, S.; Stochmal, A.; Oleszek, W. Three New Triterpene Saponins from Roots of Eryngium planum. Nat. Prod. Res. 2014, 28, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Wang, P. Phytochemical Constituents and Pharmacological Activities of Eryngium L. (Apiaceae). TOPHARMCJ 2012, 3, 99–120. [Google Scholar] [CrossRef]
- Sifaoui, I.; Rodríguez-Expósito, R.L.; Reyes-Batlle, M.; Rizo-Liendo, A.; Piñero, J.E.; Bazzocchi, I.L.; Lorenzo-Morales, J.; Jiménez, I.A. Ursolic Acid Derivatives as Potential Agents Against Acanthamoeba spp. Pathogens 2019, 8, 130. [Google Scholar] [CrossRef]
- Kikowska, M.; Derda, M.; Thiem, B.; Włodarczyk, A.; Długaszewska, J.; Stochmal, A.; Żuchowski, J.; Hadaś, E. Evaluation of Antiamoebic and Antimicrobial Activities In Vitro of Chaenomeles japonica (Thunb.) Lindl. ex Spach Extracts. Acta Biol. Cracoviensia Ser. Bot. 2019, 61, 47–58. [Google Scholar] [CrossRef]
- Budzianowska, A.; Derda, M.; Budzianowski, J.; Szopa, A.; Kikowska, M. Comparative Study of Plantago media Extracts in the Treatment of Acanthamoeba sp. Trophozoites. Appl. Sci. 2023, 13, 7075. [Google Scholar] [CrossRef]
- Mahboob, T.; Azlan, A.-M.; Shipton, F.N.; Boonroumkaew, P.; Nor Azman, N.S.; Sekaran, S.D.; Ithoi, I.; Tan, T.-C.; Samudi, C.; Wiart, C.; et al. Acanthamoebicidal Activity of Periglaucine A and Betulinic Acid from Pericampylus glaucus (Lam.) Merr. Vitr. Exp. Parasitol. 2017, 183, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Jordá, T.; Puig, S. Regulation of Ergosterol Biosynthesis in Saccharomyces cerevisiae. Genes 2020, 11, 795. [Google Scholar] [CrossRef] [PubMed]
- Shaw, M.; Petzer, A.; Petzer, J.P.; Cloete, T.T. The Pterin Binding Site of Dihydropteroate Synthase (DHPS): In Silico Screening and In Vitro Antibacterial Activity of Existing Drugs. Results Chem. 2023, 5, 100863. [Google Scholar] [CrossRef]
- Gurram, S.R.; Azam, M.A. GyrB Inhibitors as Potential Antibacterial Agents: A Review. Monatsh. Chem. 2021, 152, 725–744. [Google Scholar] [CrossRef]
- Kikowska, M.; Dlugaszewska, J.; Jaworska, M.M.; Kędziora, I.; Budzianowski, J.; Thiem, B. In Vitro Antimicrobial Activity of Extracts and Their Fractions from Three Eryngium L. Species. Herba Pol. 2016, 62, 67–77. [Google Scholar] [CrossRef]
- Li, J.; Monje-Galvan, V. In Vitro and In Silico Studies of Antimicrobial Saponins: A Review. Processes 2023, 11, 2856. [Google Scholar] [CrossRef]
RT (min) | Observed m/z | Theoretical m/z | Error [ppm] | Formula | MS/MS Fragmentation | Metabolite Name | Ontology |
---|---|---|---|---|---|---|---|
2.29 | 191.0188 | 191.0190 | −1.05 | C6H8O7 | 111.0072, 129.0178, 173.0078, 191.0187 | Citric acid | Carboxylic acid |
2.44 | 339.1295 | 339.1250 | 13.27 | C13H24O10 | 101.0227, 207.0866, 339.1295 | Disaccharides | Saccharides |
3.7 | 167.0337 | 167.0338 | −1.16 | C8H8O4 | 83.0120, 95.0122, 108.0202, 123.0435, 138.9277, 152.0102, 167.0337 | Vanillic acid | Methoxybenzoic acids and derivatives |
4.47 | 353.0877 | 353.0878 | 0.28 | C16H18O9 | 135.0436, 161.0229, 173.0443, 179.0338, 191.0550, 353.1698 | Neochlorogenic acid | Quinic acid derivatives |
5.80 | 179.0337 | 179.0340 | −1.68 | C9H8O4 | 135.0436, 179.0337 | Caffeic acid (or isomer) | Hydroxycinnamic acid |
5.39 | 353.0876 | 353.0867 | 2.66 | C16H18O9 | 191.0550 | Chlorogenic acid | Quinic acid derivatives |
6.29 | 367.1033 | 367.1035 | −0.54 | C17H20O9 | 111.0435, 175.0443, 191.0551 | 3-O-Feruloylquinic acid | Quinic acid derivatives |
6.91 | 163.0388 | 163.0389 | −0.84 | C9H8O3 | 119.0487, 163.0388 | trans-Coumaric acid | Hydroxycinnamic acid |
7.05 | 193.0497 | 193.0506 | 4.66 | C10H10O4 | 134.0358, 149.054, 178.0260, 193.0495 | Ferulic acid | Hydroxycinnamic acid |
7.16 | 593.1509 | 593.1511 | −0.34 | C27H30O15 | 284.0326, 384.9893, 593.1503 | Kaempferol-3-O-rutinoside | Flavonoid glycoside |
7.49 | 447.0932 | 447.0933 | −0.22 | C21H20O11 | 284.0325, 447.0931 | Kaempferol-3-O-glucoside | Flavonoid glycoside |
7.50 | 549.0884 | 549.0886 | −0.36 | C24H22O15 | 178.9969, 300.0275, 345.0374, 463.0880, 505.1010 | Quercetin 3-O-malonylglucoside | Flavonoid glycoside |
7.71 | 359.077 | 359.0761 | 2.46 | C18H16O8 | 161.0231, 179.0338, 197.0446 | Rosmarinic acid | Hydroxycinnamic acid |
7.79 | 179.0338 | 179.0338 | −0.57 | C9H8O4 | 135.0436, 179.0338 | Caffeic acid (or isomer) | Hydroxycinnamic acid |
8.23 | 263.1287 | 263.1289 | −0.76 | C15H20O4 | 151.0750, 204.1146, 219.1383 | Abscisic acid | Abscisic acids derivatives |
8.39 | 1119.5593 | 1119.5581 | 1.02 | C54H88O24 | 751.4631, 795.4525, 913.5151, 957.5065, 1055.692, 1119.5581 | Triterpenoid saponin (Eryngioside C) | Triterpenoid saponin |
9.39 | 1251.6019 | 1251.6004 | 1.19 | C59H96O28 | 101.0229, 161.0443, 221.0657, 296.9634, 500.9339, 608.2999, 719.4329, 881.4872, 1043.5446, 1205.6021 | Unknown triterpenoid saponin I | Triterpenoid saponin |
9.49 | 1057.5229 | 1057.5214 | 1.46 | C52H82O22 | 113.0229, 119.0333, 131.0331, 149.04441, 157.0130, 169.8532, 316.0179, 408.9600, 503.3569, 610.5472, 655.4232, 683.4191, 831.3508, 877.3508, 877.4583, 895.4639, 925.4744, 1057.5229 | Unknown triterpenoid saponin II | Triterpenoid saponin |
9.64 | 925.4802 | 925.4791 | 1.17 | C47H74O18 | 113.0228, 157.0132, 179.0553, 655.4217, 745.6167, 795.4150, 843.4360, 925.4805 | Unknown triterpenoid saponin III | Triterpenoid saponin |
11.47 | 909.4845 | 909.4853 | −0.88 | C47H74O17 | 539.4251, 909.4849 | Unknown triterpenoid saponin IV | Triterpenoid saponin |
RT (min) | Observed m/z | Theoretical m/z | Error [ppm] | Formula | MS/MS Fragmentation | Metabolite Name | Ontology |
---|---|---|---|---|---|---|---|
4.00 | 167.0338 | 167.0338 | −0.34 | C8H8O4 | 167.0338 | Vanillic acid | Phenolic |
4.62 | 341.0879 | 341.0867 | 3.91 | C15H18O9 | 163.0389 | 1-O-caffeoylglucose | Phenolic |
4.78 | 163.0389 | 163.0389 | −0.28 | C9H8O3 | 163.0389 | cis-p-coumaric acid | Phenolic |
5.10 | 193.0498 | 193.0495 | 1.40 | C10H10O4 | 193.0498 | Ferulic acid | Hydroxycinnamic acid |
5.12 | 621.2035 | 621.2025 | 1.75 | C26H37O17 | 459.1514, 283.1038, 193.0498, 175.0391, 134.0360 | Ferulic acid derivative | Hydroxycinnamic acid |
5.32 | 179.0338 | 179.0339 | −0.23 | C9H8O4 | 135.0450, 179.0339 | Caffeic acid | Hydroxycinnamic acid |
5.57 | 355.1039 | 355.1024 | 4.20 | C16H20O9 | 85.0279, 134.0360, 160.0155, 175.0392, 193.0499, 209.0297 | 1-O-feruloylglucose | Phenolic |
5.75 | 137.0231 | 137.0233 | −1.49 | C7H6O4 | 93.0331, 137.0231 | 4-hydroxybenzoic acid | Phenolic |
6.33 | 593.1498 | 593.1501 | −0.43 | C27H30O15 | 225.0667, 269.0572, 293.0460, 413.0885 | Kaempferol 3-rutinoside | Flavonoid glycoside |
6.65 | 577.1553 | 577.1552 | 0.16 | C27H29O14 | 293.0455, 311.0560, 323.0561, 413.0877 | Vitexin O-rhamnoside | Flavonoid glycoside |
6.88 | 609.1454 | 609.1450 | 0.62 | C27H30O16 | 241.0612, 271.0346, 300.0277, 301.0357 | Rutin | Flavonoid |
7.73 | 163.0389 | 163.0389 | −0.37 | C9H8O3 | - | trans-p-coumaric acid | Phenolic |
8.67 | 987.4813 | 987.4795 | 2.18 | C48H75O21 | 119.0336, 439.3219, 663.3750 | Triterpene saponin VIII (hydroxygypsogenic acid derivative) | Triterpenoid saponin |
8.69 | 967.4548 | 967.4533 | 2.07 | C48H71O20 | 414.8124, 437.3048, 499.3075, 521.2425, 553.2910, 613.3378, 675.3400 | Triterpene saponin IX (GA or QA derivative) | Triterpenoid saponin |
8.74 | 1277.581 | 1277.5797 | −0.09 | C60H93O29 | 101.0227, 423.3267, 647.3798 | Triterpene saponin X (GA or QA derivative) | Triterpenoid saponin |
9.37 | 1247.570 | 1247.56914 | 1.23 | C59H91O28 | 405.3152, 485.3299, 643.3488, 761.4094, 823.4127 | Triterpene saponin XXI (GA or QA derivative) | Triterpenoid saponin |
13.84 | 269.0457 | 269.0445 | 3.68 | C15H9O5 | - | Apigenin | Flavonoid |
RT (min) | Observed m/z | Theoretical m/z | Error [ppm] | Formula | MS/MS Fragmentation | Metabolite Name | Ontology |
---|---|---|---|---|---|---|---|
2.78 | 164.0704 | 164.0717 | −7.92 | C9H11NO2 | 72.0075, 103.0535, 147.0439, 164.0705 | Phenylalanine | Phenylalanine and derivatives |
3.22 | 218.1029 | 218.1034 | −2.29 | C9H17NO5 | 59.0123, 88.0400, 116.0703, 146.0810, 218.1030 | Pantothenate | Secondary alcohols |
3.89 | 203.0818 | 203.0826 | −3.93 | C11H12N2O2 | 72.0074, 116.0490, 142.0648, 159.0914, 186.0547, 203.0816 | Tryptophan | Indolyl carboxylic acids and derivatives |
4.50 | 175.06 | 175.0612 | −6.85 | C7H12O5 | 85.0643, 115.0386, 131.0700, 157.0494, 175.0602 | 2-Isopropylmalic acid | Hydroxy acids |
4.64 | 431.1556 | 431.1559 | −0.69 | C19H28O11 | 59.0122, 89.0228, 101.0228, 119.0336, 149.0443, 191.0552, 233.0671, 299.1137, 336.2642 | Darendoside A | Phenylpropanoids |
5.38 | 179.0339 | 179.035 | 0.20 | C9H8O4 | 135.0437, 179.0339 | Caffeic acid | Hydroxycinnamic acids |
5.84 | 415.1614 | 415.161 | 0.96 | C19H28O10 | 59.0122, 71.0122, 89.0228, 101.0229, 113.0229, 131.0335, 147.0284, 161.0442, 173.0078, 191.005, 228.2101, 269.1042, 301.8495, 415.1274 | (2R,3S,4S,5R,6R)-2-[[(2S,3R,4R)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxymethyl]-6-(2-phenylethoxy)oxane-3,4,5-triol | Phenylpropanoids |
6.19 | 785.2514 | 785.251 | 0.51 | C35H46O20 | 161.0232, 461.1668, 623.1983 | Echinacoside | Phenylpropanoids |
6.31 | 755.2402 | 755.2404 | −0.26 | C34H44O19 | 161.0232, 447.1517, 593.2087, 755.2401 | Lavandulifolioside | Phenylpropanoids |
6.67 | 623.1978 | 623.1981 | −0.48 | C34H44O19 | 161.0231, 315.1089, 461.1667, 623.1978 | Acteoside | Phenylpropanoids |
6.71 | 217.1074 | 217.1082 | −3.68 | C10H18O5 | 155.1066, 171.1016, 199.0968, 217.1077 | Hydroxysebacic acid | Medium-chain hydroxy acids and derivatives |
6.92 | 163.0389 | 163.0401 | −7.36 | C9H8O3 | 119.0487, 163.0338 | trans-4-Coumaric acid | Hydroxycinnamic acids |
7.08 | 623.1979 | 623.1981 | −0.32 | C29H36O15 | 161.0232, 315.1091, 461.1670, 623.1969 | Isoacteoside | Phenylpropanoids |
7.19 | 637.2136 | 637.2127 | −1.41 | C30H37O15 | 175.0390, 461.1668, 637.2114 | Leucosceptoside A | Phenylpropanoids |
7.39 | 187.0966 | 187.0976 | −5.34 | C9H16O4 | 57.0329, 94.0642, 125.0956, 143.1062, 169.0858, 187.0695 | Azelaic acid | Medium-chain fatty acids |
9.82 | 329.2335 | 329.2333 | 0.61 | C18H34O5 | 171.1014, 211.1331, 229.1439, 329.2333 | (Z)-5,8,11-trihydroxyoctadec-9-enoic acid | Long-chain fatty acids |
10.61 | 309.2074 | 309.2071 | 0.97 | C18H30O4 | 137.0958, 171.1015, 251.1649, 291.1969, 309.2076 | FA 18:3+2O | Lineolic acids and derivatives |
13.24 | 295.2278 | 295.2279 | −0.34 | C18H32O3 | 171.1015, 276.8783, 295.2279 | 9-HODE | Lineolic acids and derivatives |
14.77 | 297.2434 | 297.2435 | −0.34 | C18H34O3 | 155.1065, 171.1017, 279.2328, 297.2434 | FA 18:1+1O | Lineolic acids and derivatives |
14.91 | 279.2327 | 279.2329 | −0.72 | C18H32O2 | 96.9584, 138.3048, 232.9239, 279.2330 | Linoleic acid | Lineolic acids and derivatives |
Extracts Concentration | 1st Day | 2nd Day | 3rd Day | |||
---|---|---|---|---|---|---|
MN ± SD | % GS/GI | MN ± SD | % GS/GI | MN ± SD | % GS/GI | |
Rosmarinic acid | ||||||
control | 4.28 ± 2.02 ab | 0 | 8.66 ± 2.36 ab | 0 | 10.31 ± 2.68 a | 0 |
0.01 mg/mL | 5.61 ± 2.03 a | 31.07 ST | 6.05 ± 2.39 c | 31.34 IN | 9.33 ± 2.81 b | 9.51 IN |
0.05 mg/mL | 5.50 ± 2.01 a | 28.50 ST | 7.33 ± 2.49 bc | 15.36 IN | 8.19 ± 2.92 b | 20.56 IN |
0.1 mg/mL | 3.67 ± 1.25 b | 14.26 IN | 9.44 ± 2.33 a | 9.00 ST | 10.61 ± 2.75 a | 2.91 ST |
Chlorogenic acid | ||||||
control | 5.28 ± 2.02 a | 0 | 8.66 ± 2.36 a | 0 | 10.31 ± 2.68 a | 0 |
0.01 mg/mL | 4.44 ± 1.50 b | 15.91 | 5.33 ± 2.05 b | 38.46 | 8.71 ± 1.66 a | 15.52 |
0.05 mg/mL | 4.72 ± 1.91 b | 10.61 | 5.83 ± 1.64 b | 32.68 | 8.35 ± 2.54 a | 19.02 |
0.1 mg/mL | 4.83 ± 1.89 b | 8.53 | 6.15 ± 1.16 b | 28.99 | 9.00 ± 3.21 a | 22.71 |
Extracts Concentration | 1st Day | 2nd Day | 3rd Day | |||
---|---|---|---|---|---|---|
MN ± SD | % GS | MN ± SD | % GS | MN ± SD | % GS | |
control | 6.27 ± 2.43 a | 0 | 8.59 ± 2.43 b | 0 | 18.08 ± 2.75 b | 0 |
1 mg/mL | 6.35 ± 2.19 a | 1.28 | 10.33 ± 1.63 a | 20.26 | 19.63 ± 4.53 b | 8.57 |
5 mg/mL | 6.57 ± 1.40 a | 4.78 | 10.76 ± 1.70 a | 25.26 | 28.60 ± 6.86 a | 58.19 |
10 mg/mL | 6.92 ± 1.69 a | 10.37 | 9.89 ± 2.35 ab | 15.13 | 28.81 ± 5.60 aa | 59.35 |
Extracts Concentration | 1st Day | 2nd Day | 3rd Day | |||
---|---|---|---|---|---|---|
MN ± SD | GI [%] | MN ± SD | GI [%] | MN ± SD | GI [%] | |
Ferulic acid | ||||||
control | 3.17 ± 1.01 a | 0 | 2.72 ± 1.73 a | 0 | 2.94 ± 1.16 a | 0 |
0.05 mg/mL | 2.06 ± 1.47 b | 5.07 | 2.44 ± 0.96 a | 10.30 | 2.71 ± 1.56 a | 7.83 |
0.1 mg/mL | 1.56 ± 0.76 b | 28.12 | 2.28 ± 1.27 a | 16.18 | 2.44 ± 2.00 a | 17.01 |
0.2 mg/mL | 1.94 ± 0.85 b | 10.60 | 1.88 ± 0.68 a | 30.89 | 2.00 ± 1.41 a | 31.98 |
p-coumaric acid | ||||||
control | 3.17 ± 1.01 a | 0 | 2.72 ± 1.73 a | 0 | 2.94 ± 1.16 a | 0 |
0.05 mg/mL | 1.72 ± 1.04 b | 45.75 | 2.28 ± 1.18 a | 16.18 | 2.41 ± 1.42 a | 18.03 |
0.1 mg/mL | 1.67 ± 1.45 b | 47.32 | 2.11 ± 1.66 a | 22.43 | 2.24 ± 1.00 a | 25.81 |
0.2 mg/mL | 1.50 ± 1.21 b | 52.69 | 2.00 ± 1.20 a | 26.48 | 2.17± 1.26 a | 26.20 |
Extracts Concentration | 1st Day | 2nd Day | 3rd Day | |||
---|---|---|---|---|---|---|
MN ± SD | GI [%] | MN ± SD | GI [%] | MN ± SD | GI [%] | |
control | 3.56 ± 1.57 a | 0 | 5.89 ± 1.41 a | 0 | 10.25 ± 2.38 a | 0 |
1 mg/mL | 2.11 ± 1.20 bc | 40.74 | 3.67 ± 0.94 b | 37.70 | 4.63 ± 1.56 b | 54.83 |
5 mg/mL | 2.41 ± 1.03 b | 32.31 | 2.83 ± 1.38 b | 51.96 | 2.78 ± 1.58 c | 72.88 |
10 mg/mL | 1.28 ± 0.99 c | 64.05 | 1.11 ± 1.05 c | 81.16 | 1.28 ± 0.99 d | 87.52 |
Extracts Concentration | 1st Day | 2nd Day | 3rd Day | |||
---|---|---|---|---|---|---|
MN ± SD | GI [%] | MN ± SD | GI [%] | MN ± SD | GI [%] | |
control | 1.61 ± 1.41 a | 0 | 3.61 ± 1.38 a | 0 | 6.00 ± 1.33 a | 0 |
0.01 mg/mL | 2.44 ± 1.44 a | 6.52 | 2.75 ± 1.19 b | 23.83 | 4.00 ± 2.47 b | 43.33 |
0.1 mg/mL | 2.42 ± 1.54 a | 7.28 | 2.61 ± 0.95 b | 27.71 | 3.76 ± 1.70 b | 37.34 |
0.2 mg/mL | 2.17 ± 1.57 a | 16.86 | 2.17 ± 0.96 b | 39.89 | 2.95 ± 0.91 b | 50.84 |
Extracts Concentration | 1st Day | 2nd Day | 3rd Day | |||
---|---|---|---|---|---|---|
MN ± SD | GI [%] | MN ± SD | GI [%] | MN ± SD | GI [%] | |
control | 2.61 ± 1.57 a | 0 | 3.50 ± 2.09 a | 0 | 5.33 ± 3.61 a | 0 |
1 mg/mL | 1.25 ± 0.56 b | 52.11 | 2.00 ± 1.15 b | 42.86 | 3.94 ± 2.17 b | 26.08 |
5 mg/mL | 1.39 ± 0.68 b | 46.75 | 1.89 ± 0.94 b | 46.00 | 1.82 ± 1.38 b | 65.86 |
10 mg/mL | 1.56 ± 0.93 b | 40.33 | 1.22 ± 0.85 b | 65.15 | 1.06 ± 1.13 b | 80.12 |
ΔG (kcal/mol) | Inhibitory Constant | |
---|---|---|
Acteoside | −2.86 | 8.02 mM |
Chlorogenic acid | −4.58 | 437.19 µM |
p-coumaric acid | −4.33 | 667.05 µM |
Ferulic acid | −3.80 | 1.64 mM |
Rosmarinic acid | −4.58 | 483.33 µM |
Extract | S. aureus ATCC 25923 | S. epidermidis ATCC 35984 | P. aeruginosa ATCC 27853 | C. albicans ATCC 10231 | ||||
---|---|---|---|---|---|---|---|---|
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MFC | |
Eryngium planum | ||||||||
in vitro shoot culture | 12.5 | 50 | 12.5 | 25 | 100 | >100 | >100 | >100 |
callus culture | 50 | 100 | 50 | 100 | >100 | >100 | >100 | >100 |
cell suspension culture | 100 | 100 | >100 | >100 | >100 | >100 | >100 | >100 |
Kickxia elatine | ||||||||
in vitro shoot culture | 100 | 100 | 25 | 100 | 100 | 100 | >100 | >100 |
callus culture | >100 | >100 | 25 | 100 | 100 | >100 | >100 | >100 |
cell suspension culture | >100 | >100 | >100 | >100 | >100 | >100 | >100 | >100 |
Lychnis flos-cuculi | ||||||||
in vitro shoot culture | 25 | 50 | >100 | >100 | 100 | >100 | >100 | >100 |
callus culture | >100 | >100 | >100 | >100 | >100 | >100 | >100 | >100 |
cell suspension culture | >100 | >100 | >100 | >100 | 100 | >100 | >100 | >100 |
Gentamycin | 0.125 | 0.25 | - | - | 0.125 | 0.125 | - | - |
Nystatin | - | - | - | - | - | - | 0.125 | 0.25 |
Dihydropteroate Synthase | Gyrase B | Sterol 14-Demethylase (PDB 5TZ1) | |||
---|---|---|---|---|---|
Gram + (PDB 1AD4) | Gram − (PDB 5V7A) | Gram + (PDB 4URN) | Gram − (PDB 1KZN) | ||
Acteoside | −4.80 | −3.48 | −5.10 | −4.83 | −7.94 |
Azelaic acid | −4.24 | −4.82 | −3.42 | −2.74 | −5.90 |
Chlorogenic acid | −6.35 | −6.33 | −5.12 | −5.49 | −7.89 |
p-Coumaric acid | −5.43 | −5.49 | −5.45 | −4.65 | −5.46 |
Ferulic acid | −4.84 | −4.95 | −5.64 | −4.75 | −5.79 |
Leucosceptoside A | −3.21 | −4.50 | −4.53 | −4.68 | −6.63 |
Rosmarinic acid | −7.13 | −6.50 | −5.76 | −6.78 | −7.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hermosaningtyas, A.A.; Budzianowska, A.; Kruszka, D.; Derda, M.; Długaszewska, J.; Kikowska, M. Can In Vitro Cell Cultures of Eryngium planum, Lychnis flos-cuculi, and Kickxia elatine Be an Alternative Source of Plant Biomass with Biological Antimicrobial and Anti-Acanthamoeba Activities? Appl. Sci. 2025, 15, 8292. https://doi.org/10.3390/app15158292
Hermosaningtyas AA, Budzianowska A, Kruszka D, Derda M, Długaszewska J, Kikowska M. Can In Vitro Cell Cultures of Eryngium planum, Lychnis flos-cuculi, and Kickxia elatine Be an Alternative Source of Plant Biomass with Biological Antimicrobial and Anti-Acanthamoeba Activities? Applied Sciences. 2025; 15(15):8292. https://doi.org/10.3390/app15158292
Chicago/Turabian StyleHermosaningtyas, Anastasia Aliesa, Anna Budzianowska, Dariusz Kruszka, Monika Derda, Jolanta Długaszewska, and Małgorzata Kikowska. 2025. "Can In Vitro Cell Cultures of Eryngium planum, Lychnis flos-cuculi, and Kickxia elatine Be an Alternative Source of Plant Biomass with Biological Antimicrobial and Anti-Acanthamoeba Activities?" Applied Sciences 15, no. 15: 8292. https://doi.org/10.3390/app15158292
APA StyleHermosaningtyas, A. A., Budzianowska, A., Kruszka, D., Derda, M., Długaszewska, J., & Kikowska, M. (2025). Can In Vitro Cell Cultures of Eryngium planum, Lychnis flos-cuculi, and Kickxia elatine Be an Alternative Source of Plant Biomass with Biological Antimicrobial and Anti-Acanthamoeba Activities? Applied Sciences, 15(15), 8292. https://doi.org/10.3390/app15158292