Novel 3D-Printed Replica Plate Device Ensures High-Throughput Antibacterial Screening of Halophilic Bacteria
Abstract
1. Introduction
2. Results
2.1. Physicochemical Parameters of the Samples
2.2. Culturable Bacteria Cell Count
2.3. Optimized Bacterial Cell Recovery
2.4. Optimal Design of the 3D-Printed Petri Plate Replicator and Method Validation
2.5. Replica Plate Guided Screening of Bacterial Isolates Library
2.6. Antibacterial Activity Confirmation Against ESKAPE Group Safe Relatives
2.7. Mass AMC Production in Liquid Media
2.8. Antibacterial Activity of Ethyl Acetate Extract from V. salarius POTR191
3. Discussion
4. Materials and Methods
4.1. Reagents, Chemicals, and Strains
4.2. Sampling, Sample Processing, and Culturable Bacteria Cell Enumeration
4.3. Optimization of Cell Extraction Procedure
4.4. 3D-Printed Petri Plate Replicator
4.5. Method Validation
4.6. Simultaneous Isolation and Primary Antibacterial Screening of Halophilic Bacteria
4.7. Culture Media and AMC Production by the Active Strains
4.8. Test Pathogens Cultivation and Inoculum Standardization
4.9. Secondary Screening of the Antibacterial Activity of the Isolates
4.10. Genomic DNA Extraction, PCR Amplification, and 16S rRNA Gene Sequencing
4.11. Identification and Phylogenetic Analysis
4.12. Quantitative Assessment of the Antibacterial Activity of the Isolates
4.13. Ethyl Acetate Extraction of AMC from V. salarius POTR191
4.14. Antibacterial Activity of the Extracted AMC from V. salarius POTR191
4.15. Minimal Inhibitory and Minimal Bactericidal Concentration of the Extract
4.16. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gaynes, R. The Discovery of Penicillin—New Insights after More than 75 Years of Clinical Use. Emerg. Infect. Dis. 2017, 23, 849–853. [Google Scholar] [CrossRef]
- Eisenstein, B.I.; Oleson, F.B., Jr.; Baltz, R.H. Daptomycin: From the Mountain to the Clinic, with Essential Help from Francis Tally, MD. Clin. Infect. Dis. 2010, 50, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- 33000 People Die Every Year Due to Infections with Antibiotic-Resistant Bacteria. Available online: https://www.ecdc.europa.eu/en/news-events/33000-people-die-every-year-due-infections-antibiotic-resistant-bacteria (accessed on 11 June 2025).
- COVID-19:, U.S. Impact on Antimicrobial Resistance, Special Report 2022; Department of Health and Human Services, CDC: Atlanta, GA, USA, 2022; p. 43.
- O’Neil, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations; Government of the United Kingdom: London, UK, 2016; p. 80.
- Lewis, K. Platforms for Antibiotic Discovery. Nat. Rev. Drug Discov. 2013, 12, 371–387. [Google Scholar] [CrossRef] [PubMed]
- Lewis, K. Recover the Lost Art of Drug Discovery. Nature 2012, 485, 439–440. [Google Scholar] [CrossRef] [PubMed]
- Ling, L.L.; Schneider, T.; Peoples, A.J.; Spoering, A.L.; Engels, I.; Conlon, B.P.; Mueller, A.; Schäberle, T.F.; Hughes, D.E.; Epstein, S.; et al. A New Antibiotic Kills Pathogens without Detectable Resistance. Nature 2015, 517, 455–459. [Google Scholar] [CrossRef] [PubMed]
- Hegemann, J.; Birkelbach, J.; Walesch, S.; Muller, R. Current Developments in Antibiotic Discovery. EMBO Rep. 2022, 24, e56184. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Lou, H.-X. Strategies to Diversify Natural Products for Drug Discovery. Med. Res. Rev. 2018, 38, 1255–1294. [Google Scholar] [CrossRef] [PubMed]
- Mullis, M.M.; Rambo, I.M.; Baker, B.J.; Reese, B.K. Diversity, Ecology, and Prevalence of Antimicrobials in Nature. Front. Microbiol. 2019, 10, 2518. [Google Scholar] [CrossRef] [PubMed]
- Dutta, B.; Bandopadhyay, R. Biotechnological Potentials of Halophilic Microorganisms and Their Impact on Mankind. Beni-Suef Univ. J. Basic Appl. Sci. 2022, 11, 75. [Google Scholar] [CrossRef] [PubMed]
- Santhaseelan, H.; Dinakaran, V.T.; Dahms, H.-U.; Ahamed, J.M.; Murugaiah, S.G.; Krishnan, M.; Hwang, J.-S.; Rathinam, A.J. Recent Antimicrobial Responses of Halophilic Microbes in Clinical Pathogens. Microorganisms 2022, 10, 417. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Ma, R.; Nguyen, L.; Khan, S.; Qader, M.; Mpofu, E.; Shetye, G.; Krull, N.K.; Augustinović, M.; Omarsdottir, S.; et al. Discovery of a New Antibiotic Demethoxytetronasin Using a Dual-Sided Agar Plate Assay (DAPA). ACS Infect. Dis. 2023, 9, 1593–1601. [Google Scholar] [CrossRef] [PubMed]
- Murray, E.M.; Allen, C.F.; Handy, T.E.; Huffine, C.A.; Craig, W.R.; Seaton, S.C.; Wolfe, A.L. Development of a Robust and Quantitative High-Throughput Screening Method for Antibiotic Production in Bacterial Libraries. ACS Omega 2019, 4, 15414–15420. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Kessler, M.G.C.; Marchán-Rivadeneira, M.R.; Han, Y. Combating Antimicrobial Resistance in the Post-Genomic Era: Rapid Antibiotic Discovery. Molecules 2023, 28, 4183. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Hidalgo, M.; Pascual, J.; De La Cruz, M.; Martín, J.; Kath, G.S.; Sigmund, J.M.; Masurekar, P.; Vicente, F.; Genilloud, O.; Bills, G.F. Prescreening Bacterial Colonies for Bioactive Molecules with Janus Plates, a SBS Standard Double-Faced Microbial Culturing System. Antonie Van Leeuwenhoek 2012, 102, 361–374. [Google Scholar] [CrossRef] [PubMed]
- Scherlach, K.; Hertweck, C. Mining and Unearthing Hidden Biosynthetic Potential. Nat. Commun. 2021, 12, 3864. [Google Scholar] [CrossRef] [PubMed]
- Tyc, O.; Van Den Berg, M.; Gerards, S.; Van Veen, J.A.; Raaijmakers, J.M.; De Boer, W.; Garbeva, P. Impact of Interspecific Interactions on Antimicrobial Activity among Soil Bacteria. Front. Microbiol. 2014, 5, 567. [Google Scholar] [CrossRef] [PubMed]
- Hamamoto, H.; Panthee, S.; Hashimoto, K.; Tsuchida, T.; Sekimizu, K. An Efficient Method to Screen for the Soil Bacteria Producing Therapeutically Effective Antibiotics. J. Antibiot. 2021, 74, 850–855. [Google Scholar] [CrossRef] [PubMed]
- Sabo, S.D.S.; Mendes, M.A.; Araújo, E.D.S.; Muradian, L.B.D.A.; Makiyama, E.N.; LeBlanc, J.G.; Borelli, P.; Fock, R.A.; Knöbl, T.; Oliveira, R.P.D.S. Bioprospecting of Probiotics with Antimicrobial Activities against Salmonella Heidelberg and That Produce B-Complex Vitamins as Potential Supplements in Poultry Nutrition. Sci. Rep. 2020, 10, 7235. [Google Scholar] [CrossRef] [PubMed]
- Ismail, A.; Ktari, L.; Ahmed, M.; Bolhuis, H.; Boudabbous, A.; Stal, L.J.; Cretoiu, M.S.; El Bour, M. Antimicrobial Activities of Bacteria Associated with the Brown Alga Padina Pavonica. Front. Microbiol. 2016, 7, 1072. [Google Scholar] [CrossRef] [PubMed]
- Palumbo, J.D.; O’Keeffe, T.L. Method for High-Throughput Antifungal Activity Screening of Bacterial Strain Libraries. J. Microbiol. Methods 2021, 189, 106311. [Google Scholar] [CrossRef] [PubMed]
- DeLuca, M.; King, R.; Morsy, M. Bioprospecting Saline Gradient of a Wildlife Sanctuary for Bacterial Diversity and Antimicrobial Activities. BMC Res. Notes 2017, 10, 397. [Google Scholar] [CrossRef] [PubMed]
- Gram, L.; Melchiorsen, J.; Bruhn, J.B. Antibacterial Activity of Marine Culturable Bacteria Collected from a Global Sampling of Ocean Surface Waters and Surface Swabs of Marine Organisms. Mar. Biotechnol. 2010, 12, 439–451. [Google Scholar] [CrossRef] [PubMed]
- Lederberg, J.; Lederberg, E.M. Replica plating and indirect selection of bacterial mutants. J. Bacteriol. 1952, 63, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Crossley, K.; Mead, K. A Modified Device for Replica Plating. J. Clin. Pathol. 1979, 32, 409–411. [Google Scholar] [CrossRef] [PubMed]
- Stotzky, G. Replica Plating Technique for Studying Microbial Interactions in Soil. Can. J. Microbiol. 1965, 11, 629–636. [Google Scholar] [CrossRef] [PubMed]
- Wood, T.H.; Mahajan, S.K. A Rapid and Efficient Replica Plating Technique. Genet. Res. 1970, 15, 335–338. [Google Scholar] [CrossRef]
- Haque, R.-U.; Baldwin, J.N. Types of Hemolysins Produced by Staphylococcus aureus, as Determined by the Replica Plating Technique. J. Bacteriol. 1964, 88, 1442–1447. [Google Scholar] [CrossRef] [PubMed]
- Roberts, C.F. A Replica Plating Technique for the Isolation of Nutritionally Exacting Mutants of a Filamentous Fungus (Aspergillus nidulans). J. Gen. Microbiol. 1959, 20, 540–548. [Google Scholar] [CrossRef] [PubMed]
- Mascuch, S.J.; Demko, A.; Viulu, S.; Ginigini, J.; Soapi, K.; Jensen, P.; Kubanek, J. Antibiotic Activity Altered by Competitive Interactions between Two Coral Reef–Associated Bacteria. Microb. Ecol. 2023, 85, 1226–1235. [Google Scholar] [CrossRef] [PubMed]
- Allison, L.E.; Bernstein, L.; Bower, C.A.; Brown, J.W.; Fireman, M.; Hatcher, J.T.; Hayward, H.E.; Pearson, G.A.; Reeve, R.C.; Richards, A. Diagnosis and Improvement of Saline and Alkali Soils; U.S. Government Printing Office: Washington, DC, USA, 1954; ISBN 978-81-7233-799-5.
- Thomas, P.; Sekhar, A.C.; Upreti, R.; Mujawar, M.M.; Pasha, S.S. Optimization of Single Plate-Serial Dilution Spotting (SP-SDS) with Sample Anchoring as an Assured Method for Bacterial and Yeast Cfu Enumeration and Single Colony Isolation from Diverse Samples. Biotechnol. Rep. 2015, 8, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Ventosa, A.; Quesada, E.; Rodriguez-Valera, F.; Ruiz-Berraquero, F.; Ramos-Cormenzana, A. Numerical Taxonomy of Moderately Halophilic Gram-Negative Rods. J. Gen. Microbiol. 1982, 128, 1959–1968. [Google Scholar] [CrossRef]
- Rodriguez-Valera, F.; Ruiz-Berraquero, F.; Ramos-Cormenzana, A. Isolation of Extremely Halophilic Bacteria Able to Grow in Defined Inorganic Media with Single Carbon Sources. J. Gen. Microbiol. 1980, 119, 535–538. [Google Scholar] [CrossRef]
- Lombard, N.; Prestat, E.; Van Elsas, J.D.; Simonet, P. Soil-Specific Limitations for Access and Analysis of Soil Microbial Communities by Metagenomics. FEMS Microbiol. Ecol. 2011, 78, 31–49. [Google Scholar] [CrossRef] [PubMed]
- Boyadzhieva, I.; Tomova, I.; Radchenkova, N.; Kambourova, M.; Poli, A.; Vasileva-Tonkova, E. Diversity of Heterotrophic Halophilic Bacteria Isolated from Coastal Solar Salterns, Bulgaria and Their Ability to Synthesize Bioactive Molecules with Biotechnological Impact. Microbiology 2018, 87, 519–528. [Google Scholar] [CrossRef]
- Mohamed, O.G.; Dorandish, S.; Lindow, R.; Steltz, M.; Shoukat, I.; Shoukat, M.; Chehade, H.; Baghdadi, S.; McAlister-Raeburn, M.; Kamal, A.; et al. Identification of a New Antimicrobial, Desertomycin H, Utilizing a Modified Crowded Plate Technique. Mar. Drugs 2021, 19, 424. [Google Scholar] [CrossRef] [PubMed]
- Kowalska-Krochmal, B.; Dudek-Wicher, R. The Minimum Inhibitory Concentration of Antibiotics: Methods, Interpretation, Clinical Relevance. Pathogens 2021, 10, 165. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Chen, J.; Hu, G.; Yu, J.; Zhu, X.; Lin, Y.; Chen, S.; Yuan, J. Statistical Research on the Bioactivity of New Marine Natural Products Discovered during the 28 Years from 1985 to 2012. Mar. Drugs 2015, 13, 202–221. [Google Scholar] [CrossRef] [PubMed]
- Schinke, C.; Martins, T.; Queiroz, S.C.N.; Melo, I.S.; Reyes, F.G.R. Antibacterial Compounds from Marine Bacteria, 2010–2015. J. Nat. Prod. 2017, 80, 1215–1228. [Google Scholar] [CrossRef] [PubMed]
- Mayer, A.; Rodríguez, A.; Taglialatela-Scafati, O.; Fusetani, N. Marine Pharmacology in 2009–2011: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Mar. Drugs 2013, 11, 2510–2573. [Google Scholar] [CrossRef] [PubMed]
- Miethke, M.; Pieroni, M.; Weber, T.; Brönstrup, M.; Hammann, P.; Halby, L.; Arimondo, P.B.; Glaser, P.; Aigle, B.; Bode, H.B.; et al. Towards the Sustainable Discovery and Development of New Antibiotics. Nat. Rev. Chem. 2021, 5, 726–749. [Google Scholar] [CrossRef] [PubMed]
- Diep, T.T.; Ray, P.P.; Edwards, A.D. Methods for Rapid Prototyping Novel Labware: Using CAD and Desktop 3D Printing in the Microbiology Laboratory. Lett. Appl. Microbiol. 2021, 74, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Saggiomo, V. A 3D Printer in the Lab: Not Only a Toy. Adv. Sci. 2022, 9, e2202610. [Google Scholar] [CrossRef] [PubMed]
- Li, Y. Supragingival Microbes. In Atlas of Oral Microbiology; Elsevier: London, UK, 2015; pp. 41–65. ISBN 978-0-12-802234-4. [Google Scholar]
- Quinn, G.A.; Dyson, P.J. Going to Extremes: Progress in Exploring New Environments for Novel Antibiotics. NPJ Antimicrob. Resist. 2024, 2, 8. [Google Scholar] [CrossRef] [PubMed]
- Klein, J.M.; Stockwell, V.O.; Minsavage, G.V.; Vallad, G.E.; Goss, E.M.; Jones, J.B. Improved Deferred Antagonism Technique for Detecting Antibiosis. Lett. Appl. Microbiol. 2020, 71, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Tagg, J.R.; Dajani, A.S.; Wannamaker, L.W. Bacteriocins of Gram-Positive Bacteria. Microbiol. Rev. 1976, 40, 722–756. [Google Scholar] [CrossRef] [PubMed]
- Kekessy, D.A.; Piguet, J.D. New Method for Detecting Bacteriocin Production. Appl. Microbiol. 1970, 20, 282–283. [Google Scholar] [CrossRef] [PubMed]
- Brady, S.F. Construction of Soil Environmental DNA Cosmid Libraries and Screening for Clones That Produce Biologically Active Small Molecules. Nat. Protoc. 2007, 2, 1297–1305. [Google Scholar] [CrossRef] [PubMed]
- Walter, M.E.; Ortiz, A.; Sondgeroth, C.; Sindt, N.M.; Duszenko, N.; Catlett, J.L.; Zhou, Y.; Valloppilly, S.; Anderson, C.; Fernando, S.; et al. High-Throughput Mutation, Selection, and Phenotype Screening of Mutant Methanogenic Archaea. J. Microbiol. Methods 2016, 131, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Cardona, S.T.; Rahman, A.S.M.Z.; Nechcoff, J. Innovative Perspectives on the Discovery of Small Molecule Antibiotics. NPJ Antimicrob. Resist. 2025, 3, 19. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, J.N.; Rea, M.C.; O’Connor, P.M.; Hill, C.; Ross, R.P. Human Skin Microbiota Is a Rich Source of Bacteriocin-Producing Staphylococci That Kill Human Pathogens. FEMS Microbiol. Ecol. 2019, 95, fiy241. [Google Scholar] [CrossRef] [PubMed]
- Marcolefas, E.; Leung, T.; Okshevsky, M.; McKay, G.; Hignett, E.; Hamel, J.; Aguirre, G.; Blenner-Hassett, O.; Boyle, B.; Lévesque, R.C.; et al. Culture-Dependent Bioprospecting of Bacterial Isolates from the Canadian High Arctic Displaying Antibacterial Activity. Front. Microbiol. 2019, 10, 1836. [Google Scholar] [CrossRef] [PubMed]
- Elyasifar, B.; Jafari, S.; Hallaj-Nezhadi, S.; Chapeland-leclerc, F.; Ruprich-Robert, G.; Dilmaghani, A. Isolation and Identification of Antibiotic-Producing Halophilic Bacteria from Dagh Biarjmand and Haj Aligholi Salt Deserts, Iran. Pharm. Sci. 2019, 25, 70–77. [Google Scholar] [CrossRef]
- Shleeva, M.O.; Kondratieva, D.A.; Kaprelyants, A.S. Bacillus licheniformis: A Producer of Antimicrobial Substances, Including Antimycobacterials, Which Are Feasible for Medical Applications. Pharmaceutics 2023, 15, 1893. [Google Scholar] [CrossRef] [PubMed]
- Eltokhy, M.A.; Saad, B.T.; Eltayeb, W.N.; Alshahrani, M.Y.; Radwan, S.M.R.; Aboshanab, K.M.; Ashour, M.S.E. Metagenomic Nanopore Sequencing for Exploring the Nature of Antimicrobial Metabolites of Bacillus haynesii. AMB Express 2024, 14, 52. [Google Scholar] [CrossRef] [PubMed]
- Sehgal, S.N.; Gibbons, N.E. Effect of Some Metal Ions on the Growth of Halobacterium cutirubrum. Can. J. Microbiol. 1960, 6, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Caton, T.M.; Witte, L.R.; Ngyuen, H.D.; Buchheim, J.A.; Buchheim, M.A.; Schneegurt, M.A. Halotolerant Aerobic Heterotrophic Bacteria from the Great Salt Plains of Oklahoma. Microb. Ecol. 2004, 48, 449–462. [Google Scholar] [CrossRef] [PubMed]
- Kelner, A. A Method for Investigating Large Microbial Populations for Antibiotic Activity. J. Bacteriol. 1948, 56, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Tomova, I.; Lazarkevich, I.; Tomova, A.; Kambourova, M.; Vasileva-Tonkova, E. Diversity and Biosynthetic Potential of Culturable Aerobic Heterotrophic Bacteria Isolated from Magura Cave, Bulgaria. Int. J. Speleol. 2013, 42, 65–76. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Sneath, P.H.A.; Sokal, R. Numerical Taxonomy. Nature 1962, 193, 855–860. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Nei, M. Estimation of the Number of Nucleotide Substitutions in the Control Region of Mitochondrial DNA in Humans and Chimpanzees. Mol. Biol. Evol. 1993, 10, 512–526. [Google Scholar] [CrossRef] [PubMed]
- Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J.V.; Brodie, J.L.; Benner, E.J.; Kirby, W.M.M. Simplified, Accurate Method for Antibiotic Assay of Clinical Specimens. Appl. Microbiol. 1966, 14, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Koeth, L.M. Tests to Assess Bactericidal Activity. In Clinical Microbiology Procedures Handbook; John Wiley & Sons, Inc.: Washington, DC, USA, 2023; pp. 1–35. ISBN 978-1-68367-043-8. [Google Scholar]
- Hurley, A.; Chevrette, M.G.; Acharya, D.D.; Lozano, G.L.; Garavito, M.; Heinritz, J.; Balderrama, L.; Beebe, M.; DenHartog, M.L.; Corinaldi, K.; et al. Tiny Earth: A Big Idea for STEM Education and Antibiotic Discovery. mBio 2021, 12, e03432-20. [Google Scholar] [CrossRef] [PubMed]
- Valderrama, M.J.; González-Zorn, B.; De Pablo, P.C.; Díez-Orejas, R.; Fernández-Acero, T.; Gil-Serna, J.; De Juan, L.; Martín, H.; Molina, M.; Navarro-García, F.; et al. Educating in Antimicrobial Resistance Awareness: Adaptation of the Small World Initiative Program to Service-Learning. FEMS Microbiol. Lett. 2018, 365, fny161. [Google Scholar] [CrossRef] [PubMed]
Sampling Point | Temperature (°C) | Salinity (% or dS/m) | pH | CFU/g Sample | CFU/mL Sample |
---|---|---|---|---|---|
Provadia salt deposit | |||||
South zone | 34.0 ± 2.0 | 7.26 ± 0.24 * | 8.2 ± 0.0 | 3.08 ± 4.56 × 104 | — |
East zone | 34.0 ± 2.0 | 2.93 ± 0.04 * | 8.3 ± 0.1 | 1.97 ± 2.96 × 104 | — |
Crystallizer pond | 34.0 ± 2.0 | 20.30 ± 0.61 * | 8.0 ± 0.0 | 0.37 ± 0.08 × 104 | — |
Burgas salterns | |||||
Feeding pond #1 | 35.9 ± 0.8 | 9.0 ± 0.0 | 8.2 ± 0.0 | 4.37 ± 3.40 × 105 | 4.55 ± 5.73 × 105 |
Feeding pond #2 | 36.9 ± 1.1 | 9.3 ± 0.5 | 8.2 ± 0.0 | 8.08 ± 5.81 × 105 | 1.41 ± 0.55 × 105 |
Feeding pond #3 | 38.0 ± 0.9 | 9.8 ± 0.4 | 8.2 ± 0.0 | 1.66 ± 2.37 × 105 | 80.00 ± 17.32 × 105 |
Feeding pond #4 | 36.7 ± 0.2 | 7.3 ± 0.8 | 8.0 ± 0.1 | 1.95 ± 3.62 × 105 | — |
Crystallizer pond #1 | 35.4 ± 1.2 | 20.9 ± 8.7 | 7.5 ± 0.5 | 4.90 ± 5.45 × 105 | 1.26 ± 2.34 × 105 |
Crystallizer pond #2 | 38.0 ± 0.0 | 29.0 ± 0.0 | 7.0 ± 0.0 | 7.50 ± 3.25 × 105 | 0.01 ± 0.01 × 105 |
Pomorie salterns | |||||
Pomorie lake | 25.8 ± 0.7 | 5.9 ± 1.3 | 9.0 ± 0.2 | 5.47 ± 3.97 × 104 | 9.10 ± 5.83 × 104 |
Feeding pond #1 | 26.7 ± 0.6 | 13.8 ± 6.1 | 7.9 ± 0.5 | 8.49 ± 1.04 × 104 | 11.20 ± 1.13 × 104 |
Feeding pond #2 | 28.0 ± 0.0 | 10.0 ± 0.0 | 8.2 ± 0.0 | 3.15 ± 2.49 × 104 | — |
Crystallizer pond | 27.7 ± 0.0 | 27.0 ± 0.0 | 7.8 ± 0.0 | 3.36 ± 2.30 × 104 | — |
Pin Diameter (mm) | Volume Deposited (μL) | Number of Grown Colonies | Success Rate (%) |
---|---|---|---|
1 | 0.5 ± 0.1 | 1.04 ± 0.03 | 88 ± 12 |
2 | 1.0 ± 0.1 | 1.17 ± 0.50 | 92 ± 9 |
3 | 2.2 ± 0.2 | 2.38 ± 0.31 | 100 ± 0 |
Inhibitory Zone (mm) | |||
---|---|---|---|
Strain | A. calcoaceticus ATCC 23055 | E. faecalis ATCC 29212 | S. epidermidis ATCC 12228 |
Bacillus haynesii PWSR21 | 17 ± 1 | 8 ± 0 | − |
Bacillus haynesii PWSR23 | 29.5 ± 0.5 | 9.5 ± 0.5 | − |
Bacillus licheniformis PWSR24 | − | − | − |
Bacillus haynesii PWSR32 | 30.5 ± 1.5 | 11.5 ± 0.5 | W |
Bacillus haynesii PWSR51 | 14 ± 1 | 8 ± 0 | − |
Bacillus haynesii PWSR53 | 17.5 ± 0.5 | 8 ± 0 | − |
Bacillus licheniformis PWSR111 | − | − | − |
Bacillus paralicheniformis PWSR191 | 31.5 ± 1.5 | 9.5 ± 0.5 | |
Bacillus altitudinis T1K12 | − | − | − |
Salinivibrio kushneri BSTR21 | − | − | − |
Bacillus haynesii BSTR61 | 22.5 ± 2.5 | 7.5 ± 0.5 | − |
Salinivibrio costicola BSTR171 | − | − | − |
Virgibacillus olivae POTR21 | − | − | 11 ± 1 |
Virgibacillus olivae POTR22 | − | − | − |
Virgibacillus olivae POTR23 | − | − | 16 ± 1 |
Virgibacillus olivae POTR24 | − | − | 11.5 ± 0.5 |
Virgibacillus olivae POLR81 | − | − | 10.5 ± 0.5 |
Virgibacillus olivae POLR82 | − | − | 9.5 ± 0.5 |
Virgibacillus olivae POTR122 | − | − | W |
Virgibacillus olivae POTR181 | − | − | 9 ± 1 |
Virgibacillus marismortui POTR183 | − | − | − |
Virgibacillus salarius POTR191 | 20.5 ± 0.5 | 10 ± 0.5 | 6 ± 0.5 |
HM medium | 0 | 0 | 0 |
chloramphenicol | 41.5 ± 1.5 | 16.5 ± 3.5 | 26.5 ± 1.5 |
Test Pathogen | Inhibitory Zone (mm) | MIC (μg/mL) | MBC (μg/mL) |
---|---|---|---|
A. calcoaceticus ATCC 23055 | 27.5 ± 0.5 | 128 | >512 |
E. faecalis ATCC 29212 | 20.5 ± 0.5 | 128 | >512 |
S. epidermidis ATCC 12228 | 14.5 ± 0.5 | 512 | >512 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berberov, K.; Atanasova, N.; Krumov, N.; Yakimova, B.; Lazarkevich, I.; Engibarov, S.; Damyanova, T.; Boyadzhieva, I.; Kabaivanova, L. Novel 3D-Printed Replica Plate Device Ensures High-Throughput Antibacterial Screening of Halophilic Bacteria. Mar. Drugs 2025, 23, 295. https://doi.org/10.3390/md23080295
Berberov K, Atanasova N, Krumov N, Yakimova B, Lazarkevich I, Engibarov S, Damyanova T, Boyadzhieva I, Kabaivanova L. Novel 3D-Printed Replica Plate Device Ensures High-Throughput Antibacterial Screening of Halophilic Bacteria. Marine Drugs. 2025; 23(8):295. https://doi.org/10.3390/md23080295
Chicago/Turabian StyleBerberov, Kaloyan, Nikolina Atanasova, Nikolay Krumov, Boryana Yakimova, Irina Lazarkevich, Stephan Engibarov, Tsvetozara Damyanova, Ivanka Boyadzhieva, and Lyudmila Kabaivanova. 2025. "Novel 3D-Printed Replica Plate Device Ensures High-Throughput Antibacterial Screening of Halophilic Bacteria" Marine Drugs 23, no. 8: 295. https://doi.org/10.3390/md23080295
APA StyleBerberov, K., Atanasova, N., Krumov, N., Yakimova, B., Lazarkevich, I., Engibarov, S., Damyanova, T., Boyadzhieva, I., & Kabaivanova, L. (2025). Novel 3D-Printed Replica Plate Device Ensures High-Throughput Antibacterial Screening of Halophilic Bacteria. Marine Drugs, 23(8), 295. https://doi.org/10.3390/md23080295