Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (314)

Search Parameters:
Keywords = organic optoelectronic devices

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 3634 KiB  
Article
Van Der Waals Mask-Assisted Strategy for Deterministic Fabrication of Two-Dimensional Organic−Inorganic Hybrid Perovskites Lateral Heterostructures
by Bin Han, Mengke Lin, Yanren Tang, Xingyu Liu, Bingtao Lian, Qi Qiu, Shukai Ding and Bingshe Xu
Inorganics 2025, 13(8), 266; https://doi.org/10.3390/inorganics13080266 - 14 Aug 2025
Viewed by 267
Abstract
Two-dimensional (2D) organic−inorganic hybrid perovskites (OIHPs) have emerged as promising candidates for next-generation optoelectronic applications. While vertical heterostructures of 2D OIHPs have been explored through mechanical stacking, the controlled fabrication of lateral heterostructures remains a significant challenge. Here, we present a lithography-free, van [...] Read more.
Two-dimensional (2D) organic−inorganic hybrid perovskites (OIHPs) have emerged as promising candidates for next-generation optoelectronic applications. While vertical heterostructures of 2D OIHPs have been explored through mechanical stacking, the controlled fabrication of lateral heterostructures remains a significant challenge. Here, we present a lithography-free, van der Waals mask-assisted strategy for the deterministic fabrication of 2D OIHP lateral heterostructures. Mechanically exfoliated 2D materials such as graphene serve as removable masks that enable selective conversion of unmasked perovskite regions via ion exchange reaction. This technique enables the fabrication of various lateral heterostructures, such as BA2MA2Pb3I10/MAPbI3, PEAPbI4/MAPbI3, as well as BA2MAPb2I7/MAPbBr3. Furthermore, complex multiheterostructures and superlattices can be constructed through sequential masking and conversion processes. Moreover, to investigate the electronic properties and demonstrate potential device applications of the lateral heterostructures, we have fabricated an electrical diode based on a BA2MA2Pb3I10/MAPbI3 lateral heterostructure. Stable electrical rectifying behavior with a rectification ratio of around 10 was observed. This general and flexible approach provides a robust platform for constructing 2D OIHPs lateral heterostructures and opens new pathways for their integration into high-performance optoelectronic devices. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Figure 1

11 pages, 1525 KiB  
Article
Photodetection Enhancement via Dipole–Dipole Coupling in BA2MAPb2I7/PEA2MA2Pb3I10 Perovskite Heterostructures
by Bin Han, Bingtao Lian, Qi Qiu, Xingyu Liu, Yanren Tang, Mengke Lin, Shukai Ding and Bingshe Xu
Inorganics 2025, 13(7), 240; https://doi.org/10.3390/inorganics13070240 - 11 Jul 2025
Viewed by 483
Abstract
Two-dimensional (2D) hybrid organic–inorganic perovskites (HOIPs) have attracted considerable attention in optoelectronic applications, owing to their remarkable characteristics. Nevertheless, the application of 2D HOIPs encounters inherent challenges due to the presence of insulating organic spacers, which create barriers for efficient interlayer charge transport [...] Read more.
Two-dimensional (2D) hybrid organic–inorganic perovskites (HOIPs) have attracted considerable attention in optoelectronic applications, owing to their remarkable characteristics. Nevertheless, the application of 2D HOIPs encounters inherent challenges due to the presence of insulating organic spacers, which create barriers for efficient interlayer charge transport (CT). To tackle this issue, we propose a BA2MAPb2I7/PEA2MA2Pb3I10 bilayer heterostructure, where efficient interlayer energy transfer (ET) facilitates compensation for the restricted charge transport across the organic spacer. Our findings reveal that under 532 nm light illumination, the BA2MAPb2I7/PEA2MA2Pb3I10 heterostructure photodetector exhibits a significant photocurrent enhancement compared with that of the pure PEA2MA2Pb3I10 device, mainly due to the contribution of the ET process. In contrast, under 600 nm light illumination, where ET is absent, the enhancement is rather limited, emphasizing the critical role of ET in boosting device performance. The overlap of the PL emission peak of BA2MAPb2I7 with the absorption spectra of PEA2MA2Pb3I10, alongside the PL quenching of BA2MAPb2I7 and the enhanced emission of PEA2MA2Pb3I10 provide confirmation of the existence of ET in the BA2MAPb2I7/PEA2MA2Pb3I10 heterostructure. Furthermore, the PL enhancement factor followed a 1/d2 relationship with the thickness of the hBN layer, indicating that ET originates from 2D-to-2D dipole–dipole coupling. This study not only highlights the potential of leveraging ET mechanisms to overcome the limitations of interlayer CT, but also contributes to the fundamental understanding required for engineering advanced 2D HOIP optoelectronic systems. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Figure 1

11 pages, 1625 KiB  
Article
Optimization of Electron Transport Layer Inkjet Printing Towards Fully Solution-Processable OLEDs
by Riccardo Manfredi, Carmela Tania Prontera, Fabrizio Mariano, Marco Pugliese, Antonio Maggiore, Alessandra Zizzari, Marco Cinquino, Iolena Tarantini, Giuseppe Gigli and Vincenzo Maiorano
Materials 2025, 18(14), 3231; https://doi.org/10.3390/ma18143231 - 9 Jul 2025
Viewed by 396
Abstract
The fabrication of high-performance organic optoelectronic devices using solution-based techniques, in particular inkjet printing, is both a desirable and challenging goal. Organic light-emitting diodes (OLEDs) are multilayer devices that have demonstrated great potential in display applications, with ongoing efforts aimed at extending their [...] Read more.
The fabrication of high-performance organic optoelectronic devices using solution-based techniques, in particular inkjet printing, is both a desirable and challenging goal. Organic light-emitting diodes (OLEDs) are multilayer devices that have demonstrated great potential in display applications, with ongoing efforts aimed at extending their use to the lighting sector. A key objective in this context is the reduction in production costs, for which printing techniques offer a promising pathway. The main obstacle to fully printed OLEDs lies in the difficulty of depositing new layers onto pre-existing ones while maintaining high film quality and avoiding damage to the underlying layers. In a bottom-emitting OLED, the electron transport layer (ETL) is the final organic layer to be deposited, making its printing particularly challenging, a process for which only a few successful examples have been reported. In this work, we report on the optimization of a 2,2′,2″-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi)-based ink formulation for ETL printing on an emitting layer composed of 5,10-Bis(4-(3,6-di-tert-butyl-9H-carbazol-9-yl)-2,6-dimethylphenyl)-5,10-dihydroboranthrene (tBuCzDBA). A specific ratio of methanol to diethyl ether was identified as the most suitable for printing the ETL without compromising the integrity of the underlying layer. The printed ETL was successfully integrated into an OLED device, which exhibited a maximum current efficiency of 6.8 cd/A and a peak luminance of about 8700 cd/m2. These results represent a significant step toward the development of a fully printed OLED architecture. Full article
Show Figures

Figure 1

23 pages, 2710 KiB  
Review
Recent Advances in Chemical Vapor Deposition of Hexagonal Boron Nitride on Insulating Substrates
by Hua Xu, Kai Li, Zuoquan Tan, Jiaqi Jia, Le Wang and Shanshan Chen
Nanomaterials 2025, 15(14), 1059; https://doi.org/10.3390/nano15141059 - 8 Jul 2025
Viewed by 835
Abstract
Direct chemical vapor deposition (CVD) growth of hexagonal boron nitride (h-BN) on insulating substrates offers a promising pathway to circumvent transfer-induced defects and enhance device integration. This comprehensive review systematically evaluates recent advances in CVD techniques for h-BN synthesis on insulating substrates, including [...] Read more.
Direct chemical vapor deposition (CVD) growth of hexagonal boron nitride (h-BN) on insulating substrates offers a promising pathway to circumvent transfer-induced defects and enhance device integration. This comprehensive review systematically evaluates recent advances in CVD techniques for h-BN synthesis on insulating substrates, including metal–organic CVD (MOCVD), low-pressure CVD (LPCVD), atmospheric-pressure CVD (APCVD), and plasma-enhanced CVD (PECVD). Key challenges, including precursor selection, high-temperature processing, achieving single-crystalline films, and maintaining phase purity, are critically analyzed. Special emphasis is placed on comparative performance metrics across different growth methodologies. Furthermore, crucial research directions for future development in this field are outlined. This review aims to serve as a reference for advancing h-BN synthesis toward practical applications in next-generation electronic and optoelectronic devices. Full article
Show Figures

Figure 1

33 pages, 7442 KiB  
Review
Transparent Electrodes Based on Crack-Templated Metallic Networks for Next-Generation Optoelectronics
by Eleonora Sofia Cama, Mariacecilia Pasini, Francesco Galeotti and Umberto Giovanella
Materials 2025, 18(13), 3091; https://doi.org/10.3390/ma18133091 - 30 Jun 2025
Viewed by 656
Abstract
Transparent conductive electrodes (TCEs) are essential components in modern optoelectronic devices, including organic light-emitting diodes and solar cells, sensors, and flexible displays. Indium tin oxide has been the dominant material for TCEs due to its high transparency and conductivity. However, its brittleness, high [...] Read more.
Transparent conductive electrodes (TCEs) are essential components in modern optoelectronic devices, including organic light-emitting diodes and solar cells, sensors, and flexible displays. Indium tin oxide has been the dominant material for TCEs due to its high transparency and conductivity. However, its brittleness, high cost, and increasingly limited availability pose significant challenges for electronics. Crack-template (CT)-assisted fabrication has emerged as a promising technique to develop metal mesh-based TCEs with superior mechanical flexibility, high conductivity, and excellent optical transmittance. This technique leverages the spontaneous formation of random and continuous microcrack networks in sacrificial templates, followed by metal deposition (e.g., Cu, Ag, Al, etc.), to produce highly conductive, scalable, and low-cost electrodes. Various crack formation strategies, including controlled drying of polymer suspensions, mechanical strain engineering, and thermal processing, have been explored to tailor electrode properties. Recent studies have demonstrated that crack-templated TCEs can achieve transmittance values exceeding 85% and sheet resistances below 10 Ω/sq, with mesh line widths as low as ~40 nm. Moreover, these electrodes exhibit enhanced stretchability and robustness under mechanical deformation, outperforming ITO in bend and fatigue tests. This review aims to explore recent advancements in CT engineering, highlighting key fabrication methods, performance metrics across different metals and substrates, and presenting examples of its applications in optoelectronic devices. Additionally, it will examine current challenges and future prospects for the widespread adoption of this emerging technology. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Graphical abstract

26 pages, 3149 KiB  
Review
Research Progress and Future Perspectives on Photonic and Optoelectronic Devices Based on p-Type Boron-Doped Diamond/n-Type Titanium Dioxide Heterojunctions: A Mini Review
by Shunhao Ge, Dandan Sang, Changxing Li, Yarong Shi, Qinglin Wang and Dao Xiao
Nanomaterials 2025, 15(13), 1003; https://doi.org/10.3390/nano15131003 - 29 Jun 2025
Cited by 1 | Viewed by 586
Abstract
Titanium dioxide (TiO2) is a wide-bandgap semiconductor material with broad application potential, known for its excellent photocatalytic performance, high chemical stability, low cost, and non-toxicity. These properties make it highly attractive for applications in photovoltaic energy, environmental remediation, and optoelectronic devices. [...] Read more.
Titanium dioxide (TiO2) is a wide-bandgap semiconductor material with broad application potential, known for its excellent photocatalytic performance, high chemical stability, low cost, and non-toxicity. These properties make it highly attractive for applications in photovoltaic energy, environmental remediation, and optoelectronic devices. For instance, TiO2 is widely used as a photocatalyst for hydrogen production via water splitting and for degrading organic pollutants, thanks to its efficient photo-generated electron–hole separation. Additionally, TiO2 exhibits remarkable performance in dye-sensitized solar cells and photodetectors, providing critical support for advancements in green energy and photoelectric conversion technologies. Boron-doped diamond (BDD) is renowned for its exceptional electrical conductivity, high hardness, wide electrochemical window, and outstanding chemical inertness. These unique characteristics enable its extensive use in fields such as electrochemical analysis, electrocatalysis, sensors, and biomedicine. For example, BDD electrodes exhibit high sensitivity and stability in detecting trace chemicals and pollutants, while also demonstrating excellent performance in electrocatalytic water splitting and industrial wastewater treatment. Its chemical stability and biocompatibility make it an ideal material for biosensors and implantable devices. Research indicates that the combination of TiO2 nanostructures and BDD into heterostructures can exhibit unexpected optical and electrical performance and transport behavior, opening up new possibilities for photoluminescence and rectifier diode devices. However, applications based on this heterostructure still face challenges, particularly in terms of photodetector, photoelectric emitter, optical modulator, and optical fiber devices under high-temperature conditions. This article explores the potential and prospects of their combined heterostructures in the field of optoelectronic devices such as photodetector, light emitting diode (LED), memory, field effect transistor (FET) and sensing. TiO2/BDD heterojunction can enhance photoresponsivity and extend the spectral detection range which enables stability in high-temperature and harsh environments due to BDD’s thermal conductivity. This article proposes future research directions and prospects to facilitate the development of TiO2 nanostructured materials and BDD-based heterostructures, providing a foundation for enhancing photoresponsivity and extending the spectral detection range enables stability in high-temperature and high-frequency optoelectronic devices field. Further research and exploration of optoelectronic devices based on TiO2-BDD heterostructures hold significant importance, offering new breakthroughs and innovations for the future development of optoelectronic technology. Full article
(This article belongs to the Special Issue Nanoscale Photonics and Optoelectronics)
Show Figures

Graphical abstract

13 pages, 2045 KiB  
Article
Enhanced Nonlinear Optical Absorption in Fused-Ring Aromatic Donor–Acceptor–Donor Core Units of Y6 Derivatives
by Xingyuan Wen, Tianyang Dong, Xingzhi Wu, Jiabei Xu, Xiaofeng Shi, Yinglin Song, Chunru Wang and Li Jiang
Molecules 2025, 30(13), 2748; https://doi.org/10.3390/molecules30132748 - 26 Jun 2025
Viewed by 423
Abstract
This fundamental understanding of molecular structure–NLO property relationships provides critical design principles for next-generation optical limiting materials, quantum photonic devices, and ultrafast nonlinear optical switches, addressing the growing demand for high-performance organic optoelectronic materials in laser protection and photonic computing applications. In this [...] Read more.
This fundamental understanding of molecular structure–NLO property relationships provides critical design principles for next-generation optical limiting materials, quantum photonic devices, and ultrafast nonlinear optical switches, addressing the growing demand for high-performance organic optoelectronic materials in laser protection and photonic computing applications. In this study, it was observed that selenophene-incorporated fused D-A-D architectures exhibit a remarkable enhancement in two-photon absorption characteristics. By strategically modifying the heteroatomic composition of the Y6-derived fused-ring core, replacing thiophene (BDS) with selenophene (BDSe), the optimized system achieves unprecedented NLO performance. BDSe displays a nonlinear absorption coefficient (β) of 3.32 × 10−10 m/W and an effective two-photon absorption cross-section (σTPA) of 2428.2 GM under 532 nm with ns pulse excitation. Comprehensive characterization combining Z-scan measurements, transient absorption spectroscopy, and DFT calculations reveals that the heavy atom effect of selenium induces enhanced spin–orbit coupling, optimized intramolecular charge transfer dynamics and stabilized excited states, collectively contributing to the superior reverse saturable absorption behavior. It is believed that this molecular engineering strategy establishes critical structure–property relationships for the rational design of organic NLO materials. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

30 pages, 9790 KiB  
Review
A Comprehensive Review on Aero-Materials: Present and Future Perspectives
by Corina Orha, Mircea Nicolaescu, Mina-Ionela Morariu (Popescu), Tatiana Galatonova, Simon Busuioc, Carmen Lazau and Cornelia Bandas
Coatings 2025, 15(7), 754; https://doi.org/10.3390/coatings15070754 - 25 Jun 2025
Viewed by 384
Abstract
Recently, a new class of materials with very high porosity and ultra-lightweight, namely, semiconductor aero-materials, has attracted the attention of many researchers. Semiconductor aero-materials, due to their special properties, can be used in the development of devices applied in biomedical, electronics, optoelectronic, energy [...] Read more.
Recently, a new class of materials with very high porosity and ultra-lightweight, namely, semiconductor aero-materials, has attracted the attention of many researchers. Semiconductor aero-materials, due to their special properties, can be used in the development of devices applied in biomedical, electronics, optoelectronic, energy conversion and storage, sensors, biosensors, catalysis, automotive, and aeronautic industries. Although aero-materials and aerogels are similar, different methods of obtaining them are used. Aerogels are synthesized from organic, inorganic, or hybrid precursors, the main characteristic being that they are gel-like solids with a high air content (99.9%) in the structure. Thus, three-dimensional (3D) interconnected porous network chains are formed, resulting in light solid-state structures with very high porosity due to the large number of air pores in the network. On the other hand, to obtain aero-materials with controlled properties such as morphology, shape, or the formation of 3D hollow structures, sacrificial templates are used. Thus, sacrificial structures (which can be easily removed) can be obtained depending on the morphology of the 3D structure to be obtained. Therefore, this review paper offers a comprehensive coverage of the synthesis methods of different types of semiconductor aero-materials that use ZnO tetrapod, ZnO(T), as a sacrificial template, related to the present and future perspectives. These ZnO(T) sacrificial substrates offer several advantages, including diverse synthesis processes and easy removal methods that occur simultaneously with the growth of the desired aero-materials. Full article
Show Figures

Figure 1

13 pages, 3559 KiB  
Article
Oriented Boron Nitride in Calcium Alginate Matrix: A Sustainable Pathway to High-Efficiency Thermal Interface Materials
by Jiachen Sun, Dengfeng Shu, Fei Huang, Wenbo Qin, Wen Yue and Chengbiao Wang
Materials 2025, 18(12), 2757; https://doi.org/10.3390/ma18122757 - 12 Jun 2025
Viewed by 462
Abstract
With the rapid advancement of electronic devices toward higher frequencies, faster speeds, increased integration, and miniaturization, the resulting elevated operating temperatures pose significant challenges to the performance and longevity of electronic components. These developments have intensified the demand for high-performance thermal interface materials [...] Read more.
With the rapid advancement of electronic devices toward higher frequencies, faster speeds, increased integration, and miniaturization, the resulting elevated operating temperatures pose significant challenges to the performance and longevity of electronic components. These developments have intensified the demand for high-performance thermal interface materials (TIMs). Conventional silicone rubber-based TIMs often suffer from silicone oil-bleeding and the volatilization of low-molecular-weight siloxanes under elevated temperatures and mechanical stress. The release of these volatile organic compounds can lead to their deposition on circuit boards and electronic components, causing signal interference or distortion in optical and electronic systems, ultimately compromising device functionality. Additionally, the intrinsic thermal conductivity of traditional TIMs is insufficient to meet the escalating demands for efficient heat dissipation. To overcome these limitations, this study introduces a novel, non-silicone TIM based on a calcium ion-crosslinked sodium alginate matrix, prepared via ion-exchange curing. This bio-derived polymer matrix serves as an environmentally benign alternative to silicone rubber. Furthermore, a brush-coating technique is employed to induce the oriented alignment of boron nitride (BN) fillers within the alginate matrix. Experimental characterization reveals that this aligned microstructure markedly enhances the thermal conductivity of the composite, achieving a value of 7.87 W·m−1·K−1. The resulting material also exhibits outstanding thermal and mechanical stability, with no observable leakage or condensate formation under high-temperature and high-pressure conditions. This work offers a new design paradigm for environmentally friendly, high-performance TIMs with considerable potential for advanced electronic and optoelectronic applications. Full article
Show Figures

Figure 1

13 pages, 3398 KiB  
Article
Synthesis and Optical Properties of Red Carbon@(NH4)3ZnCl5 Hybrid Heterostructures
by Walker Vinícius Ferreira do Carmo Batista, Aniely Pereira de Souza, Tais dos Santos Cruz, Dilton Martins Pimentel, Danila Graziele Silva de Avelar, Sarah Karoline Natalino Oliveira, Wanessa Lima de Oliveira, Danilo Roberto Carvalho Ferreira, Márcio Cesar Pereira, Rondinele Alberto dos Reis Ferreira and João Paulo de Mesquita
Compounds 2025, 5(2), 21; https://doi.org/10.3390/compounds5020021 - 10 Jun 2025
Viewed by 583
Abstract
In this study, we report the synthesis and characterization of hybrid heterostructures composed of red carbon, an organic semiconductor polymer, and the perovskite (NH4)3ZnCl5. Red carbon was synthesized via the polymerization of carbon suboxide (C3O [...] Read more.
In this study, we report the synthesis and characterization of hybrid heterostructures composed of red carbon, an organic semiconductor polymer, and the perovskite (NH4)3ZnCl5. Red carbon was synthesized via the polymerization of carbon suboxide (C3O2), exhibiting strong light absorption and distinctive optical properties. The hybrid material was obtained by crystallizing (NH4)3ZnCl5 in the presence of red carbon, leading to significant modifications in the optical characteristics of the perovskite. Comprehensive analyses, including X-ray diffraction, FTIR spectroscopy, UV-vis spectroscopy, and cyclic voltammetry, confirmed the formation of a type I heterostructure with enhanced luminescence and potential for advanced optical applications. The energy band alignment suggests that red carbon can function effectively as both a hole and electron transport medium. This work underscores the potential of (NH4)3ZnCl5@red carbon hybrid heterostructures in the development of next-generation optoelectronic devices, including sensors and LEDs. Full article
Show Figures

Graphical abstract

30 pages, 5617 KiB  
Review
Perovskite Quantum Dot-Based Memory Technologies: Insights from Emerging Trends
by Fateh Ullah, Zina Fredj and Mohamad Sawan
Nanomaterials 2025, 15(11), 873; https://doi.org/10.3390/nano15110873 - 5 Jun 2025
Viewed by 1124
Abstract
Perovskite quantum dots (PVK QDs) are gaining significant attention as potential materials for next-generation memory devices leveraged by their ion dynamics, quantum confinement, optoelectronic synergy, bandgap tunability, and solution-processable fabrication. In this review paper, we explore the fundamental characteristics of organic/inorganic halide PVK [...] Read more.
Perovskite quantum dots (PVK QDs) are gaining significant attention as potential materials for next-generation memory devices leveraged by their ion dynamics, quantum confinement, optoelectronic synergy, bandgap tunability, and solution-processable fabrication. In this review paper, we explore the fundamental characteristics of organic/inorganic halide PVK QDs and their role in resistive switching memory architectures. We provide an overview of halide PVK QDs synthesis techniques, switching mechanisms, and recent advancements in memristive applications. Special emphasis is placed on the ionic migration and charge trapping phenomena governing resistive switching, along with the prospects of photonic memory devices that leverage the intrinsic photosensitivity of PVK QDs. Despite their advantages, challenges such as stability, scalability, and environmental concerns remain critical hurdles. We conclude this review with insights into potential strategies for enhancing the reliability and commercial viability of PVK QD-based memory technologies. Full article
(This article belongs to the Special Issue The Interaction of Electron Phenomena on the Mesoscopic Scale)
Show Figures

Graphical abstract

13 pages, 3247 KiB  
Article
Anisotropic Photoelectric Properties of Aligned P3HT Nanowire Arrays Fabricated via Solution Blade Coating and UV-Induced Molecular Ordering
by Qianxun Gong, Jin Luo, Chen Meng, Zuhong Xiong, Sijie Zhang and Tian Yu
Materials 2025, 18(11), 2649; https://doi.org/10.3390/ma18112649 - 5 Jun 2025
Viewed by 457
Abstract
This paper reports on the anisotropic optoelectronic properties of aligned poly(3-hexylthiophene) (P3HT) nanowire (NW) arrays fabricated via blade coating and UV irradiation, exhibiting a remarkably high electrical resistance anisotropy ratio of up to 8.05 between the parallel (0°) and perpendicular (90°) directions. This [...] Read more.
This paper reports on the anisotropic optoelectronic properties of aligned poly(3-hexylthiophene) (P3HT) nanowire (NW) arrays fabricated via blade coating and UV irradiation, exhibiting a remarkably high electrical resistance anisotropy ratio of up to 8.05 between the parallel (0°) and perpendicular (90°) directions. This resistance anisotropy originates from the advantage of directional charge transport. Optimized 5 mg/mL P3HT solutions under 32 min UV irradiation yielded unidirectional π-π*-stacked NWs with enhanced crystallinity. Polarized microscopy and atomic force microscopy confirmed high alignment and dense NW networks. The angular dependence of polarization exhibits a cosine-modulated response, while the angular anisotropy of the measured photocurrent points to structural alignment rather than trap-state control. The scalable fabrication and tunable anisotropy demonstrate potential for polarization-sensitive organic electronics and anisotropic logic devices. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

24 pages, 5160 KiB  
Review
Chiral Perovskite Single Crystals: Toward Promising Design and Application
by Lin Wang, Jie Ren and Hanying Li
Materials 2025, 18(11), 2635; https://doi.org/10.3390/ma18112635 - 4 Jun 2025
Viewed by 912
Abstract
Organic–inorganic hybrid halide perovskites have emerged as promising optoelectronic materials owing to their exceptional optoelectronic properties and versatile crystal structures. The introduction of chiral organic ligands into perovskite frameworks, breaking the inversion symmetry of the structure, has attracted significant attention toward chiral perovskites. [...] Read more.
Organic–inorganic hybrid halide perovskites have emerged as promising optoelectronic materials owing to their exceptional optoelectronic properties and versatile crystal structures. The introduction of chiral organic ligands into perovskite frameworks, breaking the inversion symmetry of the structure, has attracted significant attention toward chiral perovskites. Herein, the recent advances in various synthesis strategies for chiral perovskite single crystals (SCs) are systematically demonstrated. Then, we elucidate an in-depth understanding of the chirality transfer mechanisms from chiral organic ligands to perovskite inorganic frameworks. Furthermore, representative examples of chiral perovskite SC-based applications are comprehensively discussed, including circularly polarized light (CPL) photodetection, nonlinear optical (NLO) responses, and other emerging chirality-dependent applications. In the end, an outlook for future challenges and research opportunities is provided, highlighting the transformative potential of chiral perovskites in next-generation optoelectronic devices. Full article
(This article belongs to the Special Issue Halide Perovskite Crystal Materials and Optoelectronic Devices)
Show Figures

Graphical abstract

45 pages, 11703 KiB  
Review
A Comprehensive Review of Self-Assembled Monolayers as Hole-Transport Layers in Inverted Perovskite Solar Cells
by Yuchen Yuan, Houlin Li, Haiqiang Luo, Yang Zhang, Xiaoli Li, Ting Jiang, Yajie Yang, Lei Liu, Baoyan Fan and Xia Hao
Energies 2025, 18(10), 2577; https://doi.org/10.3390/en18102577 - 16 May 2025
Cited by 1 | Viewed by 3062
Abstract
The hole-transport layer (HTL) plays a pivotal role in engineering high-performance inverted perovskite solar cells (PSCs), as it governs both hole extraction/transport dynamics and critically impacts the crystallization quality of the perovskite absorber layer in device architectures. Recent advancements have highlighted self-assembled monolayers [...] Read more.
The hole-transport layer (HTL) plays a pivotal role in engineering high-performance inverted perovskite solar cells (PSCs), as it governs both hole extraction/transport dynamics and critically impacts the crystallization quality of the perovskite absorber layer in device architectures. Recent advancements have highlighted self-assembled monolayers (SAMs) as promising candidates for next-generation HTL materials in inverted PSCs due to their intrinsic advantages over conventional counterparts. These molecularly engineered interfaces demonstrate superior characteristics including simplified purification processes, tunable molecular structures, and enhanced interfacial compatibility with device substrates. This review systematically examines the progress, existing challenges, and future prospects of SAM-based HTLs in inverted photovoltaic systems, aiming to establish a systematic framework for understanding their structure–property relationships. The review is organized into three sections: (1) fundamental architecture of inverted PSCs, (2) molecular design principles of SAMs with emphasis on head-group functionality, and (3) recent breakthroughs in SAM-engineered HTLs and their modification strategies for HTL optimization. Through critical analysis of performance benchmarks and interfacial engineering approaches, we elucidate both the technological merits and inherent limitations of SAM implementation in photovoltaic devices. Furthermore, we propose strategic directions for advancing SAM-based HTL development, focusing on molecular customization and interfacial engineering to achieve device efficiency and stability targets. This comprehensive work aims to establish a knowledge platform for accelerating the rational design of SAM-modified interfaces in next-generation optoelectronic devices. Full article
(This article belongs to the Collection Review Papers in Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

14 pages, 3406 KiB  
Article
Implication of Surface Passivation on the In-Plane Charge Transport in the Oriented Thin Films of P3HT
by Nisarg Hirens Purabiarao, Kumar Vivek Gaurav, Shubham Sharma, Yoshito Ando and Shyam Sudhir Pandey
Electron. Mater. 2025, 6(2), 6; https://doi.org/10.3390/electronicmat6020006 - 7 May 2025
Viewed by 1234
Abstract
Optimizing charge transport in organic semiconductors is crucial for advancing next-generation optoelectronic devices. The performance of organic field-effect transistors (OFETs) is significantly influenced by the alignment of films in the channel direction and the quality of the dielectric surface, which should be uniform, [...] Read more.
Optimizing charge transport in organic semiconductors is crucial for advancing next-generation optoelectronic devices. The performance of organic field-effect transistors (OFETs) is significantly influenced by the alignment of films in the channel direction and the quality of the dielectric surface, which should be uniform, smooth, and free of charge-trapping defects. Our study reports the enhancement of OFET performance using large-area, uniform, and oriented thin films of regioregular poly[3-hexylthiophene] (RR-P3HT), prepared via the Floating Film Transfer Method (FTM) on octadecyltrichlorosilane (OTS) passivated SiO2 surfaces. SiO2 surfaces inherently possess dangling bonds that act as charge traps, but these can be effectively passivated through optimized surface treatments. OTS treatment has improved the optical anisotropy of thin films and the surface wettability of SiO2. Notably, using octadecene as a solvent during OTS passivation, as opposed to toluene, resulted in a significant enhancement of charge carrier transport. Specifically, passivation with OTS-F (10 mM OTS in octadecene at 100 °C for 48 h) led to a >150 times increase in mobility and a reduction in threshold voltage compared to OTS-A (5 mM OTS in toluene for 12 h at room temperature). Under optimal conditions, these FTM-processed RR-P3HT films achieved the best device performance, with a saturated mobility (μsat) of 0.18 cm2V−1s−1. Full article
Show Figures

Figure 1

Back to TopTop