Implication of Surface Passivation on the In-Plane Charge Transport in the Oriented Thin Films of P3HT
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Methods
2.2.1. Thin Film Characterizations
- X-Ray Diffraction (XRD): Structural analysis was performed using out-of-plane XRD and in-plane GIXD on thin films deposited on bare silicon substrates, employing a Rigaku diffractometer equipped with a Cu-Kα source. Standard grazing incidence configurations were used to assess the film’s crystallinity and anisotropy, with measurement settings tailored to align with the directional orientation induced by the FTM process.
- Water Contact Angle (WCA) Measurement: WCA measurements are employed to analyze the hydrophobicity of OTS-treated substrates. WCA on OTS-treated SiO2 substrates was examined by conducting contact angle measurements employing the Kyowa Interface Science Corporation Ltd. machine (Model DMs-401, Saitama, Japan). Before the measurement, the Si/SiO2 substrates were cleaned ultrasonically with acetone for 10 min and then exposed to UV-O3 treatment for 30 min, followed by the OTS treatment at different conditions. In this procedure, a 2 µL droplet of DI water was deposited onto both untreated and treated substrates, and the resulting contact angle in degrees was measured. This measurement was then utilized to ascertain the characteristics of the OTS-treated substrates.
2.2.2. Electrical Characterizations
3. Results
3.1. WCA Measurement
3.2. Electronic Absorption Spectroscopy
3.3. XRD Characterizations
3.4. Electrical Characterizations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Facchetti, A.; Yoon, M.-H.; Marks, T.J. Gate Dielectrics for Organic Field-Effect Transistors: New Opportunities for Organic Electronics. Adv. Mater. 2005, 17, 1705–1725. [Google Scholar] [CrossRef]
- Liu, K.; Ouyang, B.; Guo, X.; Guo, Y.; Liu, Y. Advances in Flexible Organic Field-Effect Transistors and Their Applications for Flexible Electronics. npj Flex. Electron. 2022, 6, 1. [Google Scholar] [CrossRef]
- Forrest, S.R. The Path to Ubiquitous and Low-Cost Organic Electronic Appliances on Plastic. Nature 2004, 428, 911–918. [Google Scholar] [CrossRef] [PubMed]
- Amegadze, P.S.K.; Noh, Y.-Y. Development of High-Performance Printed Polymer Field-Effect Transistors for Flexible Display. J. Inf. Disp. 2014, 15, 213–229. [Google Scholar] [CrossRef]
- Baude, P.F.; Ender, D.A.; Haase, M.A.; Kelley, T.W.; Muyres, D.V.; Theiss, S.D. Pentacene-Based Radio-Frequency Identification Circuitry. Appl. Phys. Lett. 2003, 82, 3964–3966. [Google Scholar] [CrossRef]
- Subramanian, V.; Chang, P.C.; Lee, J.B.; Molesa, S.E.; Volkman, S.K. Printed Organic Transistors for Ultra-Low-Cost RFID Applications. IEEE Trans. Compon. Packag. Technol. 2005, 28, 742–747. [Google Scholar] [CrossRef]
- Xu, X.; Zhao, Y.; Liu, Y. Wearable Electronics Based on Stretchable Organic Semiconductors. Small 2023, 19, 2206309. [Google Scholar] [CrossRef]
- Lee, M.Y.; Lee, H.R.; Park, C.H.; Han, S.G.; Oh, J.H. Organic Transistor-Based Chemical Sensors for Wearable Bioelectronics. Acc. Chem. Res. 2018, 51, 2829–2838. [Google Scholar] [CrossRef]
- Stassen, I.; Burtch, N.; Talin, A.; Falcaro, P.; Allendorf, M.; Ameloot, R. An Updated Roadmap for the Integration of Metal–Organic Frameworks with Electronic Devices and Chemical Sensors. Chem. Soc. Rev. 2017, 46, 3185–3241. [Google Scholar] [CrossRef]
- Roberts, M.E.; Sokolov, A.N.; Bao, Z. Material and Device Considerations for Organic Thin-Film Transistor Sensors. J. Mater. Chem. 2009, 19, 3351. [Google Scholar] [CrossRef]
- Eder, F.; Klauk, H.; Halik, M.; Zschieschang, U.; Schmid, G.; Dehm, C. Organic Electronics on Paper. Appl. Phys. Lett. 2004, 84, 2673–2675. [Google Scholar] [CrossRef]
- Logothetidis, S. Flexible Organic Electronic Devices: Materials, Process and Applications. Mater. Sci. Eng. B 2008, 152, 96–104. [Google Scholar] [CrossRef]
- Cheng, S.; Wang, Y.; Zhang, R.; Wang, H.; Sun, C.; Wang, T. Recent Progress in Gas Sensors Based on P3HT Polymer Field-Effect Transistors. Sensors 2023, 23, 8309. [Google Scholar] [CrossRef]
- Luo, L.; Liu, Z. Recent Progress in Organic Field-effect Transistor-based Chem/Bio-sensors. View 2022, 3, 20200115. [Google Scholar] [CrossRef]
- Dinelli, F.; Murgia, M.; Levy, P.; Cavallini, M.; Biscarini, F.; de Leeuw, D.M. Spatially Correlated Charge Transport in Organic Thin Film Transistors. Phys. Rev. Lett. 2004, 92, 116802. [Google Scholar] [CrossRef]
- Swiggers, M.L.; Xia, G.; Slinker, J.D.; Gorodetsky, A.A.; Malliaras, G.G.; Headrick, R.L.; Weslowski, B.T.; Shashidhar, R.N.; Dulcey, C.S. Orientation of Pentacene Films Using Surface Alignment Layers and Its Influence on Thin-Film Transistor Characteristics. Appl. Phys. Lett. 2001, 79, 1300–1302. [Google Scholar] [CrossRef]
- Kelley, T.W.; Boardman, L.D.; Dunbar, T.D.; Muyres, D.V.; Pellerite, M.J.; Smith, T.P. High-Performance OTFTs Using Surface-Modified Alumina Dielectrics. J. Phys. Chem. B 2003, 107, 5877–5881. [Google Scholar] [CrossRef]
- Salleo, A.; Chabinyc, M.L.; Yang, M.S.; Street, R.A. Polymer Thin-Film Transistors with Chemically Modified Dielectric Interfaces. Appl. Phys. Lett. 2002, 81, 4383–4385. [Google Scholar] [CrossRef]
- Herzer, N.; Hoeppener, S.; Schubert, U.S. Fabrication of Patterned Silane Based Self-Assembled Monolayers by Photolithography and Surface Reactions on Silicon-Oxide Substrates. Chem. Commun. 2010, 46, 5634. [Google Scholar] [CrossRef]
- Gaurav, K.V.; Rai, H.; Singh, K.R.; Sharma, S.; Ando, Y.; Pandey, S.S. Clarifying the Dominant Role of Crystallinity and Molecular Orientation in Differently Processed Thin Films of Regioregular Poly(3-Hexylthiophene). Micromachines 2024, 15, 677. [Google Scholar] [CrossRef]
- Kobayashi, S.; Nishikawa, T.; Takenobu, T.; Mori, S.; Shimoda, T.; Mitani, T.; Shimotani, H.; Yoshimoto, N.; Ogawa, S.; Iwasa, Y. Control of Carrier Density by Self-Assembled Monolayers in Organic Field-Effect Transistors. Nat. Mater. 2004, 3, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-Y.; Gundlach, D.J.; Nelson, S.F.; Jackson, T.N. Stacked Pentacene Layer Organic Thin-Film Transistors with Improved Characteristics. IEEE Electron. Device Lett. 1997, 18, 606–608. [Google Scholar] [CrossRef]
- Tang, M.L.; Okamoto, T.; Bao, Z. High-Performance Organic Semiconductors: Asymmetric Linear Acenes Containing Sulphur. J. Am. Chem. Soc. 2006, 128, 16002–16003. [Google Scholar] [CrossRef] [PubMed]
- Ong, B.S.; Wu, Y.; Liu, P.; Gardner, S. High-Performance Semiconducting Polythiophenes for Organic Thin-Film Transistors. J. Am. Chem. Soc. 2004, 126, 3378–3379. [Google Scholar] [CrossRef]
- Sharma, S.; Vats, A.K.; Pandey, M.; Nagamatsu, S.; Chen, J.-C.; Pandey, S.S. Unraveling the Implications of Macromolecular Orientation on the Planar and Vertical Charge Transport in Organic Electronic Devices. ACS Appl. Polym. Mater. 2022, 4, 8315–8323. [Google Scholar] [CrossRef]
- Sharma, S.; Vats, A.K.; Tang, L.; Kaishan, F.; Toyoda, J.; Nagamatsu, S.; Ando, Y.; Tamagawa, M.; Tanaka, H.; Pandey, M.; et al. High Field-Effect Mobility in Oriented Thin Films of D-A Type Semiconducting Polymers by Engineering Stable Interfacial System. Chem. Eng. J. 2023, 469, 143932. [Google Scholar] [CrossRef]
- Li, H.; Li, N.; Zhang, Y.; He, H.; Liu, Z. Anti-Reflection OTS-Treated SiO2 Thin Films with Super-Hydrophobic Property. J. Sol-Gel Sci. Technol. 2017, 83, 518–526. [Google Scholar] [CrossRef]
- Hayakawa, R.; Petit, M.; Chikyow, T.; Wakayama, Y. Interface Engineering for Molecular Alignment and Device Performance of Quaterrylene Thin Films. Appl. Phys. Lett. 2008, 93, 153301. [Google Scholar] [CrossRef]
- Kabza, K.G.; Gestwicki, J.E.; McGrath, J.L. Contact Angle Goniometry as a Tool for Surface Tension Measurements of Solids, Using Zisman Plot Method. A Physical Chemistry Experiment. J. Chem. Educ. 2000, 77, 63. [Google Scholar] [CrossRef]
- Lax, M. The Franck-Condon Principle and Its Application to Crystals. J. Chem. Phys. 1952, 20, 1752–1760. [Google Scholar] [CrossRef]
- Headrick, R.L.; Wo, S.; Sansoz, F.; Anthony, J.E. Anisotropic Mobility in Large Grain Size Solution Processed Organic Semiconductor Thin Films. Appl. Phys. Lett. 2008, 92, 063302. [Google Scholar] [CrossRef]
- Goh, R.G.S.; Waclawik, E.R.; Motta, N.; Bell, J.M. Influence of Dispersed Carbon Nanotubes on the Optical and Structural Properties of a Conjugated Polymer; Chiao, J.-C., Dzurak, A.S., Jagadish, C., Thiel, D.V., Eds.; SPIE: Bellingham, WA, USA, 2005; p. 60370Z. [Google Scholar]
- Sugiyama, K.; Kojima, T.; Fukuda, H.; Yashiro, H.; Matsuura, T.; Shimoyama, Y. ESR and X-Ray Diffraction Studies on Thin Films of Poly-3-Hexylthiophene: Molecular Orientation and Magnetic Interactions. Thin Solid. Film. 2008, 516, 2691–2694. [Google Scholar] [CrossRef]
- Pandey, M.; Kumari, N.; Nagamatsu, S.; Pandey, S.S. Recent Advances in the Orientation of Conjugated Polymers for Organic Field-Effect Transistors. J. Mater. Chem. C Mater. 2019, 7, 13323–13351. [Google Scholar] [CrossRef]
- Virkar, A.; Mannsfeld, S.; Oh, J.H.; Toney, M.F.; Tan, Y.H.; Liu, G.; Scott, J.C.; Miller, R.; Bao, Z. The Role of OTS Density on Pentacene and C 60 Nucleation, Thin Film Growth, and Transistor Performance. Adv. Funct. Mater. 2009, 19, 1962–1970. [Google Scholar] [CrossRef]
- Sirringhaus, H. 25th Anniversary Article: Organic Field-Effect Transistors: The Path Beyond Amorphous Silicon. Adv. Mater. 2014, 26, 1319–1335. [Google Scholar] [CrossRef]
- Sharma, S.; Nagamatsu, S.; Singh, V.; Pandey, S.S. Facile Fabrication and Characterization of Oriented and Multilayer Thin Films of Solution Processable Conjugated Polymer. Phys. Status Solidi (a) 2023, 220, 2300194. [Google Scholar] [CrossRef]
- Rai, H.; Vivek Gaurav, K.; Pradhan, S.; Desu, M.; Sharma, S.; Nagamatsu, S.; Pandey, S.S. Vertical Distribution of Molecular Orientation and Its Implication on Charge Transport in Floating Films of Conjugated Polymers. Phys. Status Solidi (a) 2023, 220, 2300236. [Google Scholar] [CrossRef]
- Xie, Y.; Cai, S.; Shi, Q.; Ouyang, S.; Lee, W.-Y.; Bao, Z.; Matthews, J.R.; Bellman, R.A.; He, M.; Fong, H.H. High Performance Organic Thin Film Transistors Using Chemically Modified Bottom Contacts and Dielectric Surfaces. Org. Electron. 2014, 15, 2073–2078. [Google Scholar] [CrossRef]
- Toman, P.; Menšík, M.; Bartkowiak, W.; Pfleger, J. Modelling of the Charge Carrier Mobility in Disordered Linear Polymer Materials. Phys. Chem. Chem. Phys. 2017, 19, 7760–7771. [Google Scholar] [CrossRef]
- Menšík, M.; Toman, P.; Bielecka, U.; Bartkowiak, W.; Pfleger, J.; Paruzel, B. On the Methodology of the Determination of Charge Concentration Dependent Mobility from Organic Field-Effect Transistor Characteristics. Phys. Chem. Chem. Phys. 2018, 20, 2308–2319. [Google Scholar] [CrossRef]
- Horowitz, G.; Hajlaoui, M.E.; Hajlaoui, R. Temperature and Gate Voltage Dependence of Hole Mobility in Polycrystalline Oligothiophene Thin Film Transistors. J. Appl. Phys. 2000, 87, 4456–4463. [Google Scholar] [CrossRef]
- Baranovskii, S.D. Theoretical Description of Charge Transport in Disordered Organic Semiconductors. Phys. Status Solidi (b) 2014, 251, 487–525. [Google Scholar] [CrossRef]
OTS | DR | d (nm) | WCA (°) | A0-0 | A0-1 | A0-2 | A0-0/A0-1 | A0-1/A0-2 | W (meV) |
---|---|---|---|---|---|---|---|---|---|
OTS-A | 1.85 | 22.66 | 107 | 0.04 | 0.06 | 0.06 | 0.75 | 1.00 | 79.5 |
OTS-D | 1.29 | 19.53 | 106.4 | 0.11 | 0.18 | 0.17 | 0.60 | 1.06 | 137 |
OTS-F | 1.80 | 22.93 | 110.2 | 0.05 | 0.06 | 0.05 | 0.80 | 1.08 | 62.2 |
Surface Modifications | Treatment Time (h) | Temperature (°C) | μsat (cm2V−1s−1) | Ion/Ioff | Vth (V) |
---|---|---|---|---|---|
OTS-A | 12 | 25 | 4 × 10−2 | 105 | 20 |
OTS-B | 24 | 25 | 3 × 10−2 | 104 | 12 |
OTS-C | 36 | 25 | 3 × 10−2 | 104 | 10.5 |
OTS-D | 3 | 100 | 10−3 | 102 | 15 |
OTS-E | 24 | 100 | 0.12 | 5 × 102 | 7.3 |
OTS-F | 48 | 100 | 0.18 | 3.2 × 103 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Purabiarao, N.H.; Gaurav, K.V.; Sharma, S.; Ando, Y.; Pandey, S.S. Implication of Surface Passivation on the In-Plane Charge Transport in the Oriented Thin Films of P3HT. Electron. Mater. 2025, 6, 6. https://doi.org/10.3390/electronicmat6020006
Purabiarao NH, Gaurav KV, Sharma S, Ando Y, Pandey SS. Implication of Surface Passivation on the In-Plane Charge Transport in the Oriented Thin Films of P3HT. Electronic Materials. 2025; 6(2):6. https://doi.org/10.3390/electronicmat6020006
Chicago/Turabian StylePurabiarao, Nisarg Hirens, Kumar Vivek Gaurav, Shubham Sharma, Yoshito Ando, and Shyam Sudhir Pandey. 2025. "Implication of Surface Passivation on the In-Plane Charge Transport in the Oriented Thin Films of P3HT" Electronic Materials 6, no. 2: 6. https://doi.org/10.3390/electronicmat6020006
APA StylePurabiarao, N. H., Gaurav, K. V., Sharma, S., Ando, Y., & Pandey, S. S. (2025). Implication of Surface Passivation on the In-Plane Charge Transport in the Oriented Thin Films of P3HT. Electronic Materials, 6(2), 6. https://doi.org/10.3390/electronicmat6020006