Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,390)

Search Parameters:
Keywords = multi-drug-resistant

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1215 KiB  
Article
Daptomycin-Loaded Nano-Drug Delivery System Based on Biomimetic Cell Membrane Coating Technology: Preparation, Characterization, and Evaluation
by Yuqin Zhou, Shihan Du, Kailun He, Beilei Zhou, Zixuan Chen, Cheng Zheng, Minghao Zhou, Jue Li, Yue Chen, Hu Zhang, Hong Yuan, Yinghong Li, Yan Chen and Fuqiang Hu
Pharmaceuticals 2025, 18(8), 1169; https://doi.org/10.3390/ph18081169 - 6 Aug 2025
Abstract
Background/Objective: Staphylococcus aureus (S. aureus) is a clinically significant pathogenic bacterium. Daptomycin (DAP) is a cyclic lipopeptide antibiotic used to treat infections caused by multidrug-resistant Gram-positive bacteria, including S. aureus. However, DAP currently faces clinical limitations due to its short [...] Read more.
Background/Objective: Staphylococcus aureus (S. aureus) is a clinically significant pathogenic bacterium. Daptomycin (DAP) is a cyclic lipopeptide antibiotic used to treat infections caused by multidrug-resistant Gram-positive bacteria, including S. aureus. However, DAP currently faces clinical limitations due to its short half-life, toxic side effects, and increasingly severe drug resistance issues. This study aimed to develop a biomimetic nano-drug delivery system to enhance targeting ability, prolong blood circulation, and mitigate resistance of DAP. Methods: DAP-loaded chitosan nanocomposite particles (DAP-CS) were prepared by electrostatic self-assembly. Macrophage membrane vesicles (MM) were prepared by fusion of M1-type macrophage membranes with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). A biomimetic nano-drug delivery system (DAP-CS@MM) was constructed by the coextrusion process of DAP-CS and MM. Key physicochemical parameters, including particle diameter, zeta potential, encapsulation efficiency, and membrane protein retention, were systematically characterized. In vitro immune escape studies and in vivo zebrafish infection models were employed to assess the ability of immune escape and antibacterial performance, respectively. Results: The particle size of DAP-CS@MM was 110.9 ± 13.72 nm, with zeta potential +11.90 ± 1.90 mV, and encapsulation efficiency 70.43 ± 1.29%. DAP-CS@MM retained macrophage membrane proteins, including functional TLR2 receptors. In vitro immune escape assays, DAP-CS@MM demonstrated significantly enhanced immune escape compared with DAP-CS (p < 0.05). In the zebrafish infection model, DAP-CS@MM showed superior antibacterial efficacy over both DAP and DAP-CS (p < 0.05). Conclusions: The DAP-CS@MM biomimetic nano-drug delivery system exhibits excellent immune evasion and antibacterial performance, offering a novel strategy to overcome the clinical limitations of DAP. Full article
(This article belongs to the Section Pharmaceutical Technology)
24 pages, 10760 KiB  
Article
Pseudomonas Phage Banzai: Genomic and Functional Analysis of Novel Pbunavirus with Lytic Activity Against Pseudomonas aeruginosa
by Andrei V. Chaplin, Nina N. Sykilinda, George A. Skvortsov, Konstantin S. Troshin, Anna A. Vasilyeva, Sofia A. Shuraleva, Artem A. Malkov, Vladislav S. Simonov, Boris A. Efimov, Lyudmila I. Kafarskaia, Konstantin A. Miroshnikov, Anna A. Kuznetsova and Peter V. Evseev
Viruses 2025, 17(8), 1088; https://doi.org/10.3390/v17081088 - 6 Aug 2025
Abstract
Antibiotic-resistant Pseudomonas aeruginosa presents a critical global health challenge, particularly in hospital-acquired infections. Bacteriophages offer a promising therapeutic avenue due to their ability to target and lyse resistant strains. This study characterizes Pseudomonas phage Banzai, a newly isolated Pbunavirus (family Lindbergviridae) with [...] Read more.
Antibiotic-resistant Pseudomonas aeruginosa presents a critical global health challenge, particularly in hospital-acquired infections. Bacteriophages offer a promising therapeutic avenue due to their ability to target and lyse resistant strains. This study characterizes Pseudomonas phage Banzai, a newly isolated Pbunavirus (family Lindbergviridae) with lytic activity against multiple P. aeruginosa isolates, including multidrug-resistant strains. Genomic analysis revealed a 66,189 bp genome, lacking antibiotic resistance or virulence factors, and suggested a headful packaging mechanism and the presence of a bidirectional component in the replication. In vivo experiments using Galleria mellonella showed therapeutic potential, significantly improving larval survival (87% at 24 h). Host range analysis revealed activity against 13 of 30 P. aeruginosa isolates, including members of O1, O3, O5 and O6 in silico predicted serogroups. Phylogenomic analyses place phage Banzai within the genus Pbunavirus, sharing 94.8% intergenomic similarity with its closest relatives, supporting its classification as a novel species. These findings highlight phage Banzai as a potential candidate for phage therapy, demonstrating genomic stability, a strictly lytic lifestyle, and in vivo efficacy. Full article
(This article belongs to the Section Bacterial Viruses)
Show Figures

Figure 1

19 pages, 2475 KiB  
Article
Phage Host Range Expansion Through Directed Evolution on Highly Phage-Resistant Strains of Klebsiella pneumoniae
by Kevin A. Burke, Tracey L. Peters, Olga A. Kirillina, Caitlin D. Urick, Bertran D. Walton, Jordan T. Bird, Nino Mzhavia, Martin O. Georges, Paphavee Lertsethtakarn, Lillian A. Musila, Mikeljon P. Nikolich and Andrey A. Filippov
Int. J. Mol. Sci. 2025, 26(15), 7597; https://doi.org/10.3390/ijms26157597 - 6 Aug 2025
Abstract
Multidrug-resistant (MDR) strains of Klebsiella pneumoniae present an acute threat as they continue to disseminate globally. Phage therapy has shown promise as a powerful approach to combat MDR infections, but narrow phage host ranges make development of broad acting therapeutics more challenging. The [...] Read more.
Multidrug-resistant (MDR) strains of Klebsiella pneumoniae present an acute threat as they continue to disseminate globally. Phage therapy has shown promise as a powerful approach to combat MDR infections, but narrow phage host ranges make development of broad acting therapeutics more challenging. The goal of this effort was to use in vitro directed evolution (the “Appelmans protocol”) to isolate K. pneumoniae phages with broader host ranges for improved therapeutic cocktails. Five myophages in the genus Jiaodavirus (family Straboviridae) with complementary activity were mixed and passaged against a panel of 11 bacterial strains including a permissive host and phage-resistant clinical isolates. Following multiple rounds of training, we collected phage variants displaying altered specificity or expanded host ranges compared with parental phages when tested against a 100 strain diversity panel of K. pneumoniae. Some phage variants gained the ability to lyse previously phage-resistant strains but lost activity towards previously phage-susceptible strains, while several variants had expanded activity. Whole-genome sequencing identified mutations and recombination events impacting genes associated with host tropism including tail fiber genes that most likely underlie the observed changes in host ranges. Evolved phages with broader activity are promising candidates for improved K. pneumoniae therapeutic phage cocktails. Full article
(This article belongs to the Special Issue Bacteriophage—Molecular Studies (6th Edition))
Show Figures

Figure 1

14 pages, 1033 KiB  
Systematic Review
Resistance of Gram-Negative Bacteria to Cefepime-Enmetazobactam: A Systematic Review
by Matthew E. Falagas, Laura T. Romanos, Dimitrios S. Kontogiannis, Katerina Tsiara and Stylianos A. Kakoullis
Pathogens 2025, 14(8), 777; https://doi.org/10.3390/pathogens14080777 - 6 Aug 2025
Abstract
Cefepime-enmetazobactam is a novel β-lactam/β-lactamase inhibitor combination showing good activity against multidrug-resistant (MDR) Gram-negative bacteria producing a variety of β-lactamases. In this systematic review, we aimed to evaluate the available data on resistance to this drug. We performed a thorough search of four [...] Read more.
Cefepime-enmetazobactam is a novel β-lactam/β-lactamase inhibitor combination showing good activity against multidrug-resistant (MDR) Gram-negative bacteria producing a variety of β-lactamases. In this systematic review, we aimed to evaluate the available data on resistance to this drug. We performed a thorough search of four databases (Embase, PubMed, Scopus, and Web of Science), as well as backward citation searching, to identify studies containing data on resistance to cefepime-enmetazobactam. The data were extracted and analyzed according to the breakpoints established by the European Committee on Antimicrobial Susceptibility Testing (EUCAST) and the Food and Drug Administration (FDA), or the specific breakpoints reported by the authors of the respective studies. Analysis based on the type of lactamases produced by the isolates was also performed. Ten studies reported in vitro susceptibility testing and mechanisms of antimicrobial resistance. The total number of isolates was 15,408. The activity of cefepime-enmetazobactam against β-lactamase-producing isolates was variable. The resistance of the studied extended-spectrum β-lactamase (ESBL)-producing and ampicillin C β-lactamase (AmpC)-producing isolates was low (0–2.8% and 0%, respectively). The resistance was higher among oxacillinase-48 β-lactamase (OXA-48)-producing and Klebsiella pneumoniae carbapenemase (KPC)-producing isolates (3.4–13.2% and 36.7–57.8%, respectively). High resistance was noted among metallo-β-lactamase (MBL)-producing isolates (reaching 87.5% in one study), especially those producing New Delhi metallo-β-lactamase (NDM) and Verona integron-encoded metallo-β-lactamase (VIM), which had the highest rates of resistance. The high activity of cefepime-enmetazobactam against Enterobacterales and selected lactose non-fermenting Gram-negative pathogens, including ESBL-producing and AmpC-producing isolates, makes it a potential carbapenem-sparing agent. The drug should be used after in vitro antimicrobial susceptibility testing in patients with infections caused by OXA-48, KPC, and MBL-producing isolates. Full article
Show Figures

Figure 1

12 pages, 2722 KiB  
Article
Uniform Cu-Based Metal–Organic Framework Micrometer Cubes with Synergistically Enhanced Photodynamic/Photothermal Properties for Rapid Eradication of Multidrug-Resistant Bacteria
by Xiaomei Wang, Ting Zou, Weiqi Wang, Keqiang Xu and Handong Zhang
Pharmaceutics 2025, 17(8), 1018; https://doi.org/10.3390/pharmaceutics17081018 - 6 Aug 2025
Abstract
Background/Objectives: The rapid emergence of multidrug-resistant bacterial infections demands innovative non-antibiotic therapeutic strategies. Dual-modal photoresponse therapy integrating photodynamic (PDT) and photothermal (PTT) effects offers a promising rapid antibacterial approach, yet designing single-material systems with synergistic enhancement remains challenging. This study aims to [...] Read more.
Background/Objectives: The rapid emergence of multidrug-resistant bacterial infections demands innovative non-antibiotic therapeutic strategies. Dual-modal photoresponse therapy integrating photodynamic (PDT) and photothermal (PTT) effects offers a promising rapid antibacterial approach, yet designing single-material systems with synergistic enhancement remains challenging. This study aims to develop uniform Cu-based metal–organic framework micrometer cubes (Cu-BN) for efficient PDT/PTT synergy. Methods: Cu-BN cubes were synthesized via a one-step hydrothermal method using Cu(NO3)2 and 2-amino-p-benzoic acid. The material’s dual-mode responsiveness to visible light (420 nm) and near-infrared light (808 nm) was characterized through UV–Vis spectroscopy, photothermal profiling, and reactive oxygen species (ROS) generation assays. Antibacterial efficacy against multidrug-resistant Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was quantified via colony counting under dual-light irradiation. Results: Under synergistic 420 + 808 nm irradiation for 15 min, Cu-BN (200 μg/mL) achieved rapid eradication of multidrug-resistant E. coli (99.94%) and S. aureus (99.83%). The material reached 58.6 °C under dual-light exposure, significantly exceeding single-light performance. Photodynamic analysis confirmed a 78.7% singlet oxygen (1O2) conversion rate. This enhancement stems from PTT-induced membrane permeabilization accelerating ROS diffusion, while PDT-generated ROS sensitized bacteria to thermal damage. Conclusions: This integrated design enables spatiotemporal PDT/PTT synergy within a single Cu-BN system, establishing a new paradigm for rapid-acting, broad-spectrum non-antibiotic antimicrobials. The work provides critical insights for developing light-responsive biomaterials against drug-resistant infections. Full article
Show Figures

Figure 1

12 pages, 806 KiB  
Proceeding Paper
Enterococcus faecalis Biofilm: A Clinical and Environmental Hazard
by Bindu Sadanandan and Kavyasree Marabanahalli Yogendraiah
Med. Sci. Forum 2025, 35(1), 5; https://doi.org/10.3390/msf2025035005 - 5 Aug 2025
Abstract
This review explores the biofilm architecture and drug resistance of Enterococcus faecalis in clinical and environmental settings. The biofilm in E. faecalis is a heterogeneous, three-dimensional, mushroom-like or multilayered structure, characteristically forming diplococci or short chains interspersed with water channels for nutrient exchange [...] Read more.
This review explores the biofilm architecture and drug resistance of Enterococcus faecalis in clinical and environmental settings. The biofilm in E. faecalis is a heterogeneous, three-dimensional, mushroom-like or multilayered structure, characteristically forming diplococci or short chains interspersed with water channels for nutrient exchange and waste removal. Exopolysaccharides, proteins, lipids, and extracellular DNA create a protective matrix. Persister cells within the biofilm contribute to antibiotic resistance and survival. The heterogeneous architecture of the E. faecalis biofilm contains both dense clusters and loosely packed regions that vary in thickness, ranging from 10 to 100 µm, depending on the environmental conditions. The pathogenicity of the E. faecalis biofilm is mediated through complex interactions between genes and virulence factors such as DNA release, cytolysin, pili, secreted antigen A, and microbial surface components that recognize adhesive matrix molecules, often involving a key protein called enterococcal surface protein (Esp). Clinically, it is implicated in a range of nosocomial infections, including urinary tract infections, endocarditis, and surgical wound infections. The biofilm serves as a nidus for bacterial dissemination and as a reservoir for antimicrobial resistance. The effectiveness of first-line antibiotics (ampicillin, vancomycin, and aminoglycosides) is diminished due to reduced penetration, altered metabolism, increased tolerance, and intrinsic and acquired resistance. Alternative strategies for biofilm disruption, such as combination therapy (ampicillin with aminoglycosides), as well as newer approaches, including antimicrobial peptides, quorum-sensing inhibitors, and biofilm-disrupting agents (DNase or dispersin B), are also being explored to improve treatment outcomes. Environmentally, E. faecalis biofilms contribute to contamination in water systems, food production facilities, and healthcare environments. They persist in harsh conditions, facilitating the spread of multidrug-resistant strains and increasing the risk of transmission to humans and animals. Therefore, understanding the biofilm architecture and drug resistance is essential for developing effective strategies to mitigate their clinical and environmental impact. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Antibiotics)
Show Figures

Figure 1

17 pages, 1027 KiB  
Review
Chimeric Antigen Receptor Immunotherapy for Infectious Diseases: Current Advances and Future Perspectives
by Maria Kourti, Paschalis Evangelidis, Emmanuel Roilides and Elias Iosifidis
Pathogens 2025, 14(8), 774; https://doi.org/10.3390/pathogens14080774 - 5 Aug 2025
Abstract
Chimeric antigen receptor (CAR)-T immunotherapy has revolutionized the management of patients with relapsed/refractory B-cell hematological malignancies. There is emerging evidence that CAR-engineered cells—not only T cells, but also natural killers and macrophages—might have a crucial role in the treatment of autoimmune disorders and [...] Read more.
Chimeric antigen receptor (CAR)-T immunotherapy has revolutionized the management of patients with relapsed/refractory B-cell hematological malignancies. There is emerging evidence that CAR-engineered cells—not only T cells, but also natural killers and macrophages—might have a crucial role in the treatment of autoimmune disorders and solid tumors. Moreover, given the burden of chronic infectious diseases, the mortality and morbidity of infections in immunocompromised individuals, and the development of multidrug-resistant pathogens, including bacteria, fungi, and mycobacteria, a need for novel and personalized therapeutics in this field is emerging. To this end, the development of CAR cells for the management of chronic infections has been reported. In this literature review, we summarize the ongoing clinical and pre-clinical data about CAR cell products in the field of infectious diseases. Currently, clinical studies on CAR immunotherapy for infections mainly concern human immunodeficiency virus infection treatment, and data regarding other infections largely originate from preclinical in vitro and in vivo models. In the era of personalized medicine, effective and safe therapies for the management of chronic infections and infectious complications in immunocompromised patients are crucial. Full article
(This article belongs to the Special Issue Bacterial Resistance and Novel Therapeutic Approaches)
Show Figures

Figure 1

13 pages, 1769 KiB  
Article
Antimicrobial Photodynamic Activity of the Zn(II) Phthalocyanine RLP068/Cl Versus Antimicrobial-Resistant Priority Pathogens
by Ilaria Baccani, Sara Cuffari, Francesco Giuliani, Gian Maria Rossolini and Simona Pollini
Int. J. Mol. Sci. 2025, 26(15), 7545; https://doi.org/10.3390/ijms26157545 - 5 Aug 2025
Abstract
The emergence and spread of antimicrobial resistance among pathogens are significantly reducing available therapeutic options, highlighting the urgent need for novel and complementary treatment strategies. Antimicrobial photodynamic therapy (aPDT) is a promising alternative approach that can overcome antimicrobial resistance through a multitarget mechanism [...] Read more.
The emergence and spread of antimicrobial resistance among pathogens are significantly reducing available therapeutic options, highlighting the urgent need for novel and complementary treatment strategies. Antimicrobial photodynamic therapy (aPDT) is a promising alternative approach that can overcome antimicrobial resistance through a multitarget mechanism of action, exerting direct bactericidal and fungicidal effects with minimal risk of resistance development. Although aPDT has shown efficacy against a variety of pathogens, data on its activity against large collections of clinical multidrug-resistant strains are still limited. In this study, we assessed the antimicrobial activity of the photosensitizer RLP068/Cl combined with a red light-emitting LED source at 630 nm (Molteni Farmaceutici, Italy) against a large panel of Gram-negative and Gram-positive bacterial strains harboring relevant resistance traits and Candida species. Our results demonstrated the significant microbicidal activity of RLP068/Cl against all of the tested strains regardless of their resistance phenotype, with particularly prominent activity against Gram-positive bacteria (range of bactericidal concentrations 0.05–0.1 µM), which required significantly lower exposure to photosensitizer compared to Candida and Gram-negative species (range 5–20 µM). Overall, these findings support the potential use of RLP068/Cl-mediated aPDT as an effective therapeutic strategy for the management of localized infections caused by MDR organisms, particularly when conventional therapeutic options are limited. Full article
Show Figures

Figure 1

26 pages, 1978 KiB  
Article
Fluorescent Peptides Internalize HeLa Cells and Kill Multidrug-Resistant Clinical Bacterial Isolates
by Daniel Castellar-Almonacid, Kelin Johana Cuero-Amu, Jose David Mendoza-Mendoza, Natalia Ardila-Chantré, Fernando José Chavez-Salazar, Andrea Carolina Barragán-Cárdenas, Jhon Erick Rivera-Monroy, Claudia Parra-Giraldo, Zuly Jenny Rivera-Monroy, Javier García-Castañeda and Ricardo Fierro-Medina
Antibiotics 2025, 14(8), 793; https://doi.org/10.3390/antibiotics14080793 - 4 Aug 2025
Abstract
Palindromic antimicrobial peptides (PAMs) constitute versatile scaffolds for the design and optimization of anticancer agents with applications in therapy, diagnosis, and/or monitoring. In the present study, fluorolabeled peptides derived from the palindromic sequence RWQWRWQWR containing fluorescent probes, such as 2-Aminobenzoyl, 5(6)-Carboxyfluorescein, and Rhodamine [...] Read more.
Palindromic antimicrobial peptides (PAMs) constitute versatile scaffolds for the design and optimization of anticancer agents with applications in therapy, diagnosis, and/or monitoring. In the present study, fluorolabeled peptides derived from the palindromic sequence RWQWRWQWR containing fluorescent probes, such as 2-Aminobenzoyl, 5(6)-Carboxyfluorescein, and Rhodamine B, were obtained. RP-HPLC analysis revealed that the palindromic peptide conjugated to Rhodamine B (RhB-RWQWRWQWR) exhibited the presence of isomers, likely corresponding to the open-ring and spiro-lactam forms of the fluorescent probe. This equilibrium is dependent on the peptide sequence, as the RP-HPLC analysis of dimeric peptide (RhB-RRWQWR-hF-KKLG)2K-Ahx did not reveal the presence of isomers. The antibacterial activity of the fluorescent peptides depends on the probe attached to the sequence and the bacterial strain tested. Notably, some fluorescent peptides showed activity against reference strains as well as sensitive, resistant, and multidrug-resistant clinical isolates of E. coli, S. aureus, and E. faecalis. Fluorolabeled peptides 1-Abz (MIC = 62 µM), RhB-1 (MIC = 62 µM), and Abz-1 (MIC = 31 µM) exhibited significant activity against clinical isolates of E. coli, S. aureus, and E. faecalis, respectively. The RhB-1 (IC50 = 61 µM), Abz-1 (IC50 = 87 µM), and RhB-2 (IC50 = 35 µM) peptides exhibited a rapid, significant, and concentration-dependent cytotoxic effect on HeLa cells, accompanied by morphological changes characteristic of apoptosis. RhB-1 (IC50 = 18 µM) peptide also exhibited significant cytotoxic activity against breast cancer cells MCF-7. These conjugates remain valuable for elucidating the possible mechanisms of action of these novel anticancer peptides. Rhodamine-labeled peptides displayed cytotoxicity comparable to that of their unlabeled analogues, suggesting that cellular internalization constitutes a critical early step in their mechanism of action. These findings suggest that cell death induced by both unlabeled and fluorolabeled peptides proceeds predominantly via apoptosis and is likely contingent upon peptide internalization. Functionalization at the N-terminal end of the palindromic sequence can be evaluated to develop systems for transporting non-protein molecules into cancer cells. Full article
Show Figures

Figure 1

19 pages, 349 KiB  
Review
Current Methods for Reliable Identification of Species in the Acinetobacter calcoaceticusAcinetobacter baumannii Complex
by Teodora Vasileva Marinova-Bulgaranova, Hristina Yotova Hitkova and Nikolay Kirilov Balgaranov
Microorganisms 2025, 13(8), 1819; https://doi.org/10.3390/microorganisms13081819 - 4 Aug 2025
Abstract
Acinetobacter baumannii is one of the most challenging nosocomial pathogens associated with a variety of hospital infections, such as ventilator-associated pneumonia, wound and urinary tract infections, meningitis, and sepsis, primarily in patients treated in critical care settings. Its classification as a high-priority pathogen [...] Read more.
Acinetobacter baumannii is one of the most challenging nosocomial pathogens associated with a variety of hospital infections, such as ventilator-associated pneumonia, wound and urinary tract infections, meningitis, and sepsis, primarily in patients treated in critical care settings. Its classification as a high-priority pathogen is due to the emergence of multidrug-resistant strains in healthcare environments and its tendency to spread clonally. A. baumannii belongs to the Acinetobacter calcoaceticusAcinetobacter baumannii (Acb) complex, a group of genotypically and phenotypically similar species. Differentiating between the species is important because of their distinct clinical significance. However, conventional phenotypic methods, both manual and automated, often fail to provide accurate species-level identification. This review aims to summarize current phenotypic and genotypic methods for the identification of species within the Acb complex, evaluating their strengths and limitations to offer guidance for their appropriate application in diagnostic settings and epidemiological investigations. Full article
28 pages, 2282 KiB  
Article
From Hue to Health: Exploring the Therapeutic Potential of Plant-Pigment-Enriched Extracts
by Azza SalahEldin El-Demerdash, Amira E. Sehim, Abeer Altamimi, Hanan Henidi, Yasmin Mahran and Ghada E. Dawwam
Microorganisms 2025, 13(8), 1818; https://doi.org/10.3390/microorganisms13081818 - 4 Aug 2025
Abstract
The escalating global challenges of antimicrobial resistance (AMR) and cancer necessitate innovative therapeutic solutions from natural sources. This study investigated the multifaceted therapeutic potential of pigment-enriched plant extracts. We screened diverse plant extracts for antimicrobial and antibiofilm activity against multidrug-resistant bacteria and fungi. [...] Read more.
The escalating global challenges of antimicrobial resistance (AMR) and cancer necessitate innovative therapeutic solutions from natural sources. This study investigated the multifaceted therapeutic potential of pigment-enriched plant extracts. We screened diverse plant extracts for antimicrobial and antibiofilm activity against multidrug-resistant bacteria and fungi. Hibiscus sabdariffa emerged as the most promising, demonstrating potent broad-spectrum antimicrobial and significant antibiofilm activity. Sub-inhibitory concentrations of H. sabdariffa robustly downregulated essential bacterial virulence genes and suppressed aflatoxin gene expression. Comprehensive chemical profiling via HPLC identified major anthocyanin glucosides, while GC-MS revealed diverse non-pigment bioactive compounds, including fatty acids and alcohols. Molecular docking suggested favorable interactions of key identified compounds (Cyanidin-3-O-glucoside and 1-Deoxy-d-arabitol) with E. coli outer membrane protein A (OmpA), indicating potential antiadhesive and antimicrobial mechanisms. Furthermore, H. sabdariffa exhibited selective cytotoxicity against MCF-7 breast cancer cells. These findings establish H. sabdariffa pigment-enriched extract as a highly promising, multi-functional source of novel therapeutics, highlighting its potential for simultaneously addressing drug resistance and cancer challenges through an integrated chemical, biological, and computational approach. Full article
(This article belongs to the Special Issue Advanced Research on Antimicrobial Activity of Natural Products)
Show Figures

Figure 1

35 pages, 698 KiB  
Review
Mechanistic Role of Heavy Metals in Driving Antimicrobial Resistance: From Rhizosphere to Phyllosphere
by Rahul Kumar, Tanja P. Vasić, Sanja P. Živković, Periyasamy Panneerselvam, Gustavo Santoyo, Sergio de los Santos Villalobos, Adeyemi Nurudeen Olatunbosun, Aditi Pandit, Leonard Koolman, Debasis Mitra and Pankaj Gautam
Appl. Microbiol. 2025, 5(3), 79; https://doi.org/10.3390/applmicrobiol5030079 - 4 Aug 2025
Abstract
Heavy metal pollution represents a pervasive environmental challenge that significantly exacerbates the ever-increasing crisis of antimicrobial resistance and the capacity of microorganisms to endure and proliferate despite antibiotic interventions. This review examines the intricate relationship between heavy metals and AMR, with an emphasis [...] Read more.
Heavy metal pollution represents a pervasive environmental challenge that significantly exacerbates the ever-increasing crisis of antimicrobial resistance and the capacity of microorganisms to endure and proliferate despite antibiotic interventions. This review examines the intricate relationship between heavy metals and AMR, with an emphasis on the underlying molecular mechanisms and ecological ramifications. Common environmental metals, including arsenic, mercury, cadmium, and lead, exert substantial selective pressures on microbial communities. These induce oxidative stress and DNA damage, potentially leading to mutations that enhance antibiotic resistance. Key microbial responses include the overexpression of efflux pumps that expel both metals and antibiotics, production of detoxifying enzymes, and formation of protective biofilms, all of which contribute to the emergence of multidrug-resistant strains. In the soil environment, particularly the rhizosphere, heavy metals disrupt plant–microbe interactions by inhibiting beneficial organisms, such as rhizobacteria, mycorrhizal fungi, and actinomycetes, thereby impairing nutrient cycling and plant health. Nonetheless, certain microbial consortia can tolerate and detoxify heavy metals through sequestration and biotransformation, rendering them valuable for bioremediation. Advances in biotechnology, including gene editing and the development of engineered metal-resistant microbes, offer promising solutions for mitigating the spread of metal-driven AMR and restoring ecological balance. By understanding the interplay between metal pollution and microbial resistance, we can more effectively devise strategies for environmental protection and public health. Full article
Show Figures

Graphical abstract

13 pages, 2630 KiB  
Article
Photodynamic Therapy in the Management of MDR Candida spp. Infection Associated with Palatal Expander: In Vitro Evaluation
by Cinzia Casu, Andrea Butera, Alessandra Scano, Andrea Scribante, Sara Fais, Luisa Ladu, Alessandra Siotto-Pintor and Germano Orrù
Photonics 2025, 12(8), 786; https://doi.org/10.3390/photonics12080786 - 4 Aug 2025
Abstract
The aim of this work is to evaluate the effectiveness of antimicrobial photodynamic therapy (aPDT) against oral MDR (multi-drug-resistant) Candida spp. infections related to orthodontic treatment with palatal expanders through in vitro study. Methods: PDT protocol: Curcumin + H2O2 was [...] Read more.
The aim of this work is to evaluate the effectiveness of antimicrobial photodynamic therapy (aPDT) against oral MDR (multi-drug-resistant) Candida spp. infections related to orthodontic treatment with palatal expanders through in vitro study. Methods: PDT protocol: Curcumin + H2O2 was used as a photosensitizer activated by a 460 nm diode LED lamp, with an 8 mm blunt tip for 2 min in each spot of interest. In vitro simulation: A palatal expander sterile device was inserted into a custom-designed orthodontic bioreactor, realized with 10 mL of Sabouraud dextrose broth plus 10% human saliva and infected with an MDR C. albicans clinical isolate CA95 strain to reproduce an oral palatal expander infection. After 48 h of incubation at 37 °C, the device was treated with the PDT protocol. Two samples before and 5 min after the PDT process were taken and used to contaminate a Petri dish with a Sabouraud field to evaluate Candida spp. CFUs (colony-forming units). Results: A nearly 99% reduction in C. albicans colonies in the palatal expander biofilm was found after PDT. Conclusion: The data showed the effectiveness of using aPDT to treat palatal infection; however, specific patient oral micro-environment reproduction (Ph values, salivary flow, mucosal adhesion of photosensitizer) must be further analyzed. Full article
(This article belongs to the Section Biophotonics and Biomedical Optics)
Show Figures

Figure 1

13 pages, 1476 KiB  
Article
Molecular Detection and Antibiogram of Bacteria and Fungi in Table Eggs Under Different Storage Durations with Organoleptic Properties
by Md Shahab Uddin, Md Ahosanul Haque Shahid, Saiduzzaman, Marzia Rahman and K. H. M. Nazmul Hussain Nazir
Bacteria 2025, 4(3), 40; https://doi.org/10.3390/bacteria4030040 - 4 Aug 2025
Viewed by 30
Abstract
This study was undertaken to identify foodborne bacteria and fungi from different parts of eggs depending on their storage duration, organoleptic properties, total viable count, and antibiotic resistance profile. Thirty-two samples were randomly collected from commercial layer farms in Mymensingh. Following the protocol [...] Read more.
This study was undertaken to identify foodborne bacteria and fungi from different parts of eggs depending on their storage duration, organoleptic properties, total viable count, and antibiotic resistance profile. Thirty-two samples were randomly collected from commercial layer farms in Mymensingh. Following the protocol of sample preparation, outer-surface and inner-content samples were streaked onto various selective media. Isolation and identification were carried out by observing Gram staining and biochemical properties. Molecular detection was confirmed through a PCR assay using specific primers for Salmonella spp., E. coli, Staphylococcus spp., and fungus (Simplicillium spp. and Saccharomyces spp.). To determine the antibiotic resistance profile, the disk diffusion method was followed against nine antibiotic disks. The isolation rate of E. coli, Salmonella spp., and Staphylococcus spp. was 53.13%, 40.63%, and 40.63%, respectively, in the outer eggshell and 15.63%, 25%, and 15.63%, respectively, in the inner content of the eggs. Regarding the fungus content (yeast and mold), 100% was obtained in the outer eggshell, whereas there was an absence of fungus in the inner content. It was observed that all the isolates of E. coli, Salmonella spp., and Staphylococcus spp. were highly sensitive to either Ciprofloxacin or Levofloxacin and extremely resistant to Amoxicillin or Azithromycin drug disks or both. The data also shows that storage duration had a proportional relationship with TVC and an inversely proportional relationship with organoleptic properties. This study indicates that eggs harbor multidrug-resistant foodborne bacteria, which might constitute a public health hazard if these antibiotic-resistant bacteria are transferred to humans. Full article
Show Figures

Figure 1

12 pages, 244 KiB  
Article
Predisposing Factors Associated with Third-Generation Cephalosporin-Resistant Escherichia coli in a Rural Community Hospital in Thailand
by Ratchadaporn Ungcharoen, Jindanoot Ponyon, Rapeepan Yongyod and Anusak Kerdsin
Antibiotics 2025, 14(8), 790; https://doi.org/10.3390/antibiotics14080790 - 4 Aug 2025
Viewed by 112
Abstract
Background: Various predisposing factors contribute to the emergence and dissemination of the multidrug-resistant (MDR) phenotype in Escherichia coli and Klebsiella pneumoniae. Understanding these factors is crucial for guiding appropriate antimicrobial therapy and infection control strategies. This study investigated the predisposing factors contributing [...] Read more.
Background: Various predisposing factors contribute to the emergence and dissemination of the multidrug-resistant (MDR) phenotype in Escherichia coli and Klebsiella pneumoniae. Understanding these factors is crucial for guiding appropriate antimicrobial therapy and infection control strategies. This study investigated the predisposing factors contributing to the MDR characteristics of E. coli and K. pneumoniae isolated in a community hospital in northeastern Thailand. Methods: This case–control study utilized retrospective data from bacterial culture, as well as demographic, clinical, and antibiotic susceptibility records collected during 5 years (January 2016–December 2020). E. coli and K. pneumoniae isolates were analyzed from various clinical samples, including blood, urine, pus, sputum, and other body fluids. Data were analyzed using descriptive statistics and univariate logistic regression. Results: In total, 660 clinical isolates were analyzed (421 E. coli and 239 K. pneumoniae). Blood was the most common source of the detection of E. coli (63.0%) and sputum was the most common source of K. pneumoniae (51.0%). The median ages of patients were 67 and 63 years for E. coli and K. pneumoniae, respectively. E. coli cases were significantly associated with prior antibiotic use (OR = 1.79, 95% CI: 1.17–2.74 p = 0.008). MDR was observed in 50.1% of E. coli and 29.7% of K. pneumoniae (p < 0.001). E. coli compared to K. pneumoniae had lower resistance to third-gen cephalosporins (64.9% versus 95.8%) and carbapenems (8.0% versus 6.9%). ICU admission was the only factor significantly associated with MDR E. coli (OR = 2.40, 95% CI: 1.11–5.20 p = 0.026). No significant differences were observed in gender, age, or comorbidities between MDR cases. Antibiotic usage patterns also differed, with E. coli more likely to receive third-gen cephalosporins compared to carbapenems (OR = 3.02, 95% CI:1.18–7.74 p = 0.021). Conclusions: The use of third-generation cephalosporin may drive MDR E. coli more than K. pneumoniae. Prior antibiotic exposure was linked to E. coli bloodstream infections, while MDR E. coli showed greater clinical severity. These findings highlighted the need for improved antibiotic stewardship in rural hospitals. Full article
Back to TopTop