From Hue to Health: Exploring the Therapeutic Potential of Plant-Pigment-Enriched Extracts
Abstract
1. Introduction
2. Materials and Methods
2.1. Extraction of Plant Pigments
2.1.1. Chlorophyll Extraction
2.1.2. Carotenoid Extraction
2.1.3. Anthocyanin Extraction
2.2. Assessment of Antimicrobial Activity
2.2.1. Collection of Microbial Pathogens
2.2.2. Agar Diffusion Assay
2.2.3. Minimum Inhibitory Concentration (MIC) and Minimum Microbiocidal Concentration (MMC) Determination
2.3. Biofilm Formation and Antibiofilm Activity Assay
- Non-biofilm producer: OD ≤ ODc
- Weak biofilm producer: ODc < OD ≤ (2 × ODc)
- Moderate biofilm producer: (2 × ODc) < OD ≤ (4 × ODc)
- Strong biofilm producer: OD > (4 × ODc)
2.4. Quantitative Assessment of Pigment Extract Effects on Virulence Gene Expression Using qRT-PCR
2.5. HPLC Analysis
2.6. Gas Chromatography–Mass Spectrometry (GC-MS) Analysis
2.7. Molecular Docking
2.8. Cytotoxicity Assessment
2.8.1. Cell Culture
2.8.2. Anticancer Assay
2.8.3. Selectivity Index (SI) Calculation
2.9. Statistical Analysis
3. Results and Discussion
3.1. Pigment Content of Different Plants
3.2. Antimicrobial Efficacy
3.3. Biofilm Formation and Inhibition Profile of Tested Pathogens
3.4. Effect of Prune and Hibiscus Extracts on Virulence Gene Expression
3.5. Chemical Characterization of Hibiscus sabdariffa Extract
3.5.1. HPLC Analysis of Hibiscus Profile and Molecular Docking Insights
- Delphinidin-3-O-glucoside was observed at a retention time (RT) of 5.5 min with a concentration of 5.22 µg/mL, representing 17.57% of the total quantified anthocyanins.
- Pelargonidin-3-O-glucoside eluted at 7.0 min, present at a concentration of 10.13 µg/mL, representing 34.09% of the total quantified anthocyanins.
- Cyanidin-3-O-glucoside was identified at an RT of 9.0 min, showing the highest concentration among the three at 14.36 µg/mL, representing 48.33% of the total quantified anthocyanins.
Molecular Docking of Identified Anthocyanins Against OmpA
3.5.2. GC-MS Identification of Non-Pigment Bioactive Compounds in Hibiscus sabdariffa Extract and Related Molecular Docking
Molecular Docking of Non-Pigment Compounds Against OmpA
3.5.3. Overall Phytochemical Profile and Bioactivity Nexus of Hibiscus sabdariffa Extract
3.6. Cytotoxicity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karimi-Maleh, H.; Darabi, R.; Shabani-Nooshabadi, M.; Baghayeri, M.; Karimi, F.; Rouhi, J.; Alizadeh, M.; Karaman, O.; Vasseghian, Y.; Karaman, C. Determination of D&C Red 33 and Patent Blue V Azo Dyes Using an Impressive Electrochemical Sensor Based on Carbon Paste Electrode Modified with ZIF-8/g-C3N4/Co and Ionic Liquid in Mouthwash and Toothpaste as Real Samples. Food Chem. Toxicol. 2022, 162, 112907. [Google Scholar] [CrossRef] [PubMed]
- Ebrahem, A.F.; El-Demerdash, A.S.; Orady, R.M.; Nabil, N.M. Modulatory Effect of Competitive Exclusion on the Transmission of ESBL E. coli in Chickens. Probiotics Antimicrob. Proteins 2023, 16, 1087–1098. [Google Scholar] [CrossRef]
- Buledi, J.A.; Mahar, N.; Mallah, A.; Solangi, A.R.; Palabiyik, I.M.; Qambrani, N.; Karimi, F.; Vasseghian, Y.; Karimi-Maleh, H. Electrochemical Quantification of Mancozeb through Tungsten Oxide/Reduced Graphene Oxide Nanocomposite: A Potential Method for Environmental Remediation. Food Chem. Toxicol. 2022, 161, 112843. [Google Scholar] [CrossRef]
- Gorlenko, C.L.; Kiselev, H.Y.; Budanova, E.V.; Zamyatnin, A.A.; Ikryannikova, L.N. Plant Secondary Metabolites in the Battle of Drugs and Drug-Resistant Bacteria: New Heroes or Worse Clones of Antibiotics? Antibiotics 2020, 9, 170. [Google Scholar] [CrossRef]
- El-Demerdash, A.S.; Mohamady, S.N.; Megahed, H.M.; Ali, N.M. Evaluation of Gene Expression Related to Immunity, Apoptosis, and Gut Integrity That Underlies Artemisia’s Therapeutic Effects in Necrotic Enteritis-Challenged Broilers. 3 Biotech 2023, 13, 181. [Google Scholar] [CrossRef]
- Hashem, N.M.; Essawi, W.M.; El-Demerdash, A.S.; El-Raghi, A.A. Biomolecule-Producing Probiotic Bacterium Lactococcus lactis in Free or Nanoencapsulated Form for Endometritis Treatment and Fertility Improvement in Buffaloes. J. Funct. Biomater. 2024, 15, 138. [Google Scholar] [CrossRef] [PubMed]
- El-Demerdash, A.S.; Kamel, S.A.; Elariny, E.Y.T.; Henidi, H.; Mahran, Y.; Alahdal, H.; Saleh, A.M.; Ibrahim, R.A. Natural Inhibitors of Salmonella MDR Efflux Pumps AcrAB and AcrD: An Integrated In Silico, Molecular, and In Vitro Investigation. Int. J. Mol. Sci. 2024, 25, 12949. [Google Scholar] [CrossRef]
- Iqbal, Z.; Iqbal, M.S.; Hashem, A.; Abd_Allah, E.F.; Ansari, M.I. Plant Defense Responses to Biotic Stress and Its Interplay with Fluctuating Dark/Light Conditions. Front. Plant Sci. 2021, 12, 631810. [Google Scholar] [CrossRef]
- Singh, S.; Bhatt, P.; Kumar, V.; Singh, N.P. Phytonutrients, Anthocyanidins, and Anthocyanins: Dietary and Medicinal Pigments with Possible Health Benefits. In Advances in Flavonoids for Human Health and Prevention of Diseases; Apple Academic Press: Palm Bay, FL, USA, 2024. [Google Scholar]
- Ma, Y.; Ding, S.; Fei, Y.; Liu, G.; Jang, H.; Fang, J. Antimicrobial Activity of Anthocyanins and Catechins against Foodborne Pathogens Escherichia coli and Salmonella. Food Control 2019, 106, 106712. [Google Scholar] [CrossRef]
- Dong, Y.; Yang, C.; Zhong, W.; Shu, Y.; Zhang, Y.; Yang, D. Antibacterial Effect and Mechanism of Anthocyanin from Lycium ruthenicum Murr. Front. Microbiol. 2022, 13, 974602. [Google Scholar] [CrossRef]
- Porra, R.J. The Chequered History of the Development and Use of Simultaneous Equations for the Accurate Determination of Chlorophylls a and b. Photosynth. Res. 2002, 73, 149–156. [Google Scholar] [CrossRef]
- Alraof, A.M.A.; Ismaeil, F.H.M.; Elnabarway, A.A.E.; Eldesouky, H.S.A. Improvement of Squash Plants Growth Growing under Cold Stress Conditions by Using Calcium and Phosphorus Forms. Benha J. Appl. Sci. 2024, 9, 43–53. [Google Scholar] [CrossRef]
- Jeyanthi Rebecca, L.; Sharmila, S.; Das, M.P.; Seshiah, C. Extraction and Purification of Carotenoids from Vegetables. J. Chem. Pharm. Res. 2014, 6, 594–598. [Google Scholar]
- Shehata, W.A.; Akhtar, S.; Alam, T. Extraction and Estimation of Anthocyanin Content and Antioxidant Activity of Some Common Fruits. Trends Appl. Sci. Res. 2020, 15, 179–186. [Google Scholar] [CrossRef]
- Lohachoompol, V.; Mulholland, M.; Srzednicki, G.; Craske, J. Determination of Anthocyanins in Various Cultivars of Highbush and Rabbiteye Blueberries. Food Chem. 2008, 111, 249–254. [Google Scholar] [CrossRef]
- Essawi, W.M.; El-Demerdash, A.S.; El-Mesalamy, M.M.; Abonorag, M.A. Validation of Camel’s Fetal Fluids as Antimicrobial Agents. Curr. Microbiol. 2020, 77, 1399–1404. [Google Scholar] [CrossRef]
- El-Demerdash, A.S.; Orady, R.M.; Matter, A.A.; Ebrahem, A.F. An Alternative Approach Using Nano-Garlic Emulsion and Its Synergy with Antibiotics for Controlling Biofilm-Producing Multidrug-Resistant Salmonella in Chicken. Indian J. Microbiol. 2023, 63, 632–644. [Google Scholar] [CrossRef]
- Al Siraj, S.S.; Abd El-Tawab, A.A.; El-Hofy, F.L.; Elmasry, D.M.A. Comparison between Antimicrobial Activity of Thymus and Cumin Extracts and Their Nanoparticle on Salmonella Enteritidis. Benha Vet. Med. J. 2022, 43, 51–59. [Google Scholar]
- Stepanović, S.; Vuković, D.; Dakić, I.; Savić, B.; Švabić-Vlahović, M. A Modified Microtiter-Plate Test for Quantification of Staphylococcal Biofilm Formation. J. Microbiol. Methods 2000, 40, 175–179. [Google Scholar] [CrossRef]
- Sewid, A.H.; Sharaf, M.; El-Demerdash, A.S.; Ragab, S.M.; Al-Otibi, F.O.; Taha Yassin, M.; Liu, C.G. Hexagonal Zinc Oxide Nanoparticles: A Novel Approach to Combat Multidrug-Resistant Enterococcus faecalis Biofilms in Feline Urinary Tract Infections. Front. Cell Infect. Microbiol. 2024, 14, 1505469. [Google Scholar] [CrossRef]
- Yuan, J.S.; Reed, A.; Chen, F.; Stewart, C.N. Statistical Analysis of Real-Time PCR Data. BMC Bioinform. 2006, 7, 85. [Google Scholar] [CrossRef]
- Ali, N.M.; Mohamed, G.A.E.; El-Demerdash, A.S. Impact of Oral Administration of Chitosan—Nanoparticles on Oxidative Stress Index and Gut Microbiota of Heat Stressed Broilers. J. Adv. Vet. Res. 2023, 13, 997–1003. [Google Scholar]
- Ghadaksaz, A.; Fooladi, A.A.I.; Hosseini, H.M.; Amin, M. The Prevalence of Some Pseudomonas Virulence Genes Related to Biofilm Formation and Alginate Production among Clinical Isolates. J. Appl. Biomed. 2015, 13, 61–68. [Google Scholar] [CrossRef]
- Talukder, K.A.; Mondol, A.S.; Islam, M.A.; Islam, Z.; Dutta, D.K.; Khajanchi, B.K.; Azmi, I.J.; Hossain, M.A.; Rahman, M.; Cheasty, T.; et al. A Novel Serovar of Shigella Dysenteriae from Patients with Diarrhoea in Bangladesh. J. Med. Microbiol. 2007, 56, 654–658. [Google Scholar] [CrossRef]
- Klima, C.L.; Alexander, T.W.; Hendrick, S.; McAllister, T.A. Characterization of Mannheimia Haemolytica Isolated from Feedlot Cattle That Were Healthy or Treated for Bovine Respiratory Disease. Can. J. Vet. Res. 2014, 78, 38–45. [Google Scholar]
- Mason, W.J.; Blevins, J.S.; Beenken, K.; Wibowo, N.; Ojha, N.; Smeltzer, M.S. Multiplex PCR Protocol for the Diagnosis of Staphylococcal Infection. J. Clin. Microbiol. 2001, 39, 3332–3338. [Google Scholar] [CrossRef]
- Bugarel, M.; Granier, S.A.; Weill, F.X.; Fach, P.; Brisabois, A. A Multiplex Real-Time PCR Assay Targeting Virulence and Resistance Genes in Salmonella Enterica Serotype Typhimurium. BMC Microbiol. 2011, 11, 151. [Google Scholar] [CrossRef]
- Morse, D.J.; Wilson, M.J.; Wei, X.; Lewis, M.A.O.; Bradshaw, D.J.; Murdoch, C.; Williams, D.W. Denture-Associated Biofilm Infection in Three-Dimensional Oral Mucosal Tissue Models. J. Med. Microbiol. 2018, 67, 364. [Google Scholar] [CrossRef]
- Alameri, K.; A Al-Ameri, K.H.; Kadhim Al-Shibly, M. Studying the gene expression of virulence factors in aspergillus (flavus and niger) associated with the diabetic foot. Biochem. Cell. Arch. 2019, 19, 849–852. [Google Scholar]
- Dassault Systèmes BIOVIA. Discovery Studio Visualizer, V21.1.0.20298; Dassault Systèmes BIOVIA: San Diego, CA, USA.
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- Dallakyan, S.; Olson, A.J. Small-Molecule Library Screening by Docking with PyRx. Methods Mol. Biol. 2015, 1263, 243–250. [Google Scholar] [CrossRef]
- Razali, N.M.; Wah, Y.B. Power Comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling Tests. J. Stat. Model. Anal. 2011, 2, 21–33. [Google Scholar]
- Al Aboody, M.S.; Mickymaray, S. Anti-Fungal Efficacy and Mechanisms of Flavonoids. Antibiotics 2020, 9, 45. [Google Scholar] [CrossRef]
- Shakeri, A.; Soheili, V.; Karimi, M.; Hosseininia, S.A.; Fazly Bazzaz, B.S. Biological Activities of Three Natural Plant Pigments and Their Health Benefits. J. Food Meas. Charact. 2018, 12, 356–361. [Google Scholar] [CrossRef]
- Riaz, G.; Chopra, R. A Review on Phytochemistry and Therapeutic Uses of Hibiscus sabdariffa L. Biomed. Pharmacother. 2018, 102, 575–586. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Shafi, S.; Al-Mohammadi, A.R.; Sitohy, M.; Mosa, B.; Ismaiel, A.; Enan, G.; Osman, A. Antimicrobial Activity and Chemical Constitution of the Crude, Phenolic-Rich Extracts of Hibiscus sabdariffa, Brassica Oleracea and Beta Vulgaris. Molecules 2019, 24, 4280. [Google Scholar] [CrossRef] [PubMed]
- Al-Hashimi, A. Antioxidant and Antibacterial Activities of Hibiscus sabdariffa L. Extracts. Afr. J. Food Sci. 2012, 6, 506–511. [Google Scholar]
- Da-Costa-Rocha, I.; Bonnlaender, B.; Sievers, H.; Pischel, I.; Heinrich, M. Hibiscus sabdariffa L.—A Phytochemical and Pharmacological Review. Food Chem. 2014, 165, 424–443. [Google Scholar] [CrossRef]
- Chowdhury, K.; Chowdhury, S.; Bari, L.; Yeasmin, S. Improved extraction of anthocyanins with antibacterial activity from fresh roselle (Hibiscus sabdariffa L.) calyces. Dhaka Univ. J. Biol. Sci. 2024, 33, 139–147. [Google Scholar] [CrossRef]
- Elashkar, E.; Alfaraj, R.; El-Borady, O.M.; Amer, M.M.; Algammal, A.M.; El-Demerdash, A.S. Novel Silver Nanoparticle-Based Biomaterials for Combating Klebsiella Pneumoniae Biofilms. Front. Microbiol. 2024, 15, 1507274. [Google Scholar] [CrossRef]
- Almatroudi, A. Biofilm Resilience: Molecular Mechanisms Driving Antibiotic Resistance in Clinical Contexts. Biology 2025, 14, 165. [Google Scholar] [CrossRef]
- Husnah, M.; Suhartono, S.; Ismail, Y.S. A Current Perspective on Antibacterial and Antibiofilm Properties of Waru (Hibiscus tiliaceus L.). IOP Conf. Ser. Earth Environ. Sci. 2021, 711, 012019. [Google Scholar] [CrossRef]
- Lahiri, D.; Dash, S.; Dutta, R.; Nag, M. Elucidating the Effect of Anti-Biofilm Activity of Bioactive Compounds Extracted from Plants. J. Biosci. 2019, 44, 52. [Google Scholar] [CrossRef]
- De Rossi, L.; Rocchetti, G.; Lucini, L.; Rebecchi, A. Antimicrobial Potential of Polyphenols: Mechanisms of Action and Microbial Responses—A Narrative Review. Antioxidants 2025, 14, 200. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Shafi, S.; El-Serwy, H.; El-Zawahry, Y.; Zaki, M.; Sitohy, B.; Sitohy, M. The Association between IcaA and IcaB Genes, Antibiotic Resistance and Biofilm Formation in Clinical Isolates of Staphylococci spp. Antibiotics 2022, 11, 389. [Google Scholar] [CrossRef] [PubMed]
- Los, F.C.O.; Randis, T.M.; Aroian, R.V.; Ratner, A.J. Role of Pore-Forming Toxins in Bacterial Infectious Diseases. Microbiol. Mol. Biol. Rev. 2013, 77, 173–207. [Google Scholar] [CrossRef]
- Li, Y.; Ni, M. Regulation of Biofilm Formation in Klebsiella Pneumoniae. Front. Microbiol. 2023, 14, 1238482. [Google Scholar] [CrossRef]
- El-Demerdash, A.S.; Alfaraj, R.; Fared, F.; Saleh, A.; Dawwam, G.E. Essential oils as Capsule Disruptors: Enhancing Antibiotic Efficacy Against Multidrug-Resistant Klebsiella Pneumoniae. Front. Microbiol. 2024, 15, 1467460. [Google Scholar] [CrossRef]
- Ghafoor, A.; Hay, I.D.; Rehm, B.H.A. Role of Exopolysaccharides in Pseudomonas aeruginosa Biofilm Formation and Architecture. Appl. Environ. Microbiol. 2011, 77, 5238–5246. [Google Scholar] [CrossRef]
- Saad, M.F.; Elsayed, M.M.; Khder, M.; Abdelaziz, A.S.; El-Demerdash, A.S. Biocontrol of Multidrug Resistant Pathogens Isolated from Fish Farms Using Silver Nanoparticles Combined with Hydrogen Peroxide Insight to Its Modulatory Effect. Sci. Rep. 2024, 14, 7971. [Google Scholar] [CrossRef]
- Bouteiller, M.; Dupont, C.; Bourigault, Y.; Latour, X.; Barbey, C.; Konto-ghiorghi, Y.; Merieau, A. Pseudomonas Flagella: Generalities and Specificities. Int. J. Mol. Sci. 2021, 22, 3337. [Google Scholar] [CrossRef]
- Maciel, J.F.; Matter, L.B.; Trindade, M.M.; Camillo, G.; Lovato, M.; de Ávila Botton, S.; Castagna de Vargas, A. Virulence Factors and Antimicrobial Susceptibility Profile of Extraintestinal Escherichia Coli Isolated from an Avian Colisepticemia Outbreak. Microb. Pathog. 2017, 103, 119–122. [Google Scholar] [CrossRef] [PubMed]
- Ruan, H.; Zhang, Z.; Tian, L.; Wang, S.; Hu, S.; Qiao, J.J. The Salmonella Effector SopB Prevents ROS-Induced Apoptosis of Epithelial Cells by Retarding TRAF6 Recruitment to Mitochondria. Biochem. Biophys. Res. Commun. 2016, 478, 618–623. [Google Scholar] [CrossRef] [PubMed]
- Retamal, P.; Castillo-Ruiz, M.; Mora, G.C. Characterization of MgtC, a Virulence Factor of Salmonella Enterica Serovar Typhi. PLoS ONE 2009, 4, e5551. [Google Scholar] [CrossRef] [PubMed]
- Confer, A.W.; Ayalew, S. Mannheimia Haemolytica in Bovine Respiratory Disease: Immunogens, Potential Immunogens, and Vaccines. Anim. Health Res. Rev. 2018, 19, 79–99. [Google Scholar] [CrossRef]
- Liu, H.; Zhu, J.; Hu, Q.; Rao, X. Morganella Morganii, a Non-Negligent Opportunistic Pathogen. Int. J. Infect. Dis. 2016, 50, 10–17. [Google Scholar] [CrossRef]
- Al-Maamory, E.H.; Al-Khafaji, J.K.; Al-Masoudi, H.K. Detection the Virulence-Associated Genes in Shigella Species Isolated from Diarrheal Samples in Babylon Province. J. Pharm. Sci. Res. 2018, 10, 3201–3206. [Google Scholar]
- Nikou, S.A.; Kichik, N.; Brown, R.; Ponde, N.O.; Ho, J.; Naglik, J.R.; Richardson, J.P. Candida Albicans Interactions with Mucosal Surfaces during Health and Disease. Pathogens 2019, 8, 53. [Google Scholar] [CrossRef]
- Liu, C.-Q.; Hu, K.-D.; Li, T.-T.; Yang, Y.; Yang, F.; Li, Y.-H.; Liu, H.-P.; Chen, X.-Y.; Zhang, H. Polygalacturonase Gene PgxB in Aspergillus Niger Is a Virulence Factor in Apple Fruit. PLoS ONE 2017, 12, e0173277. [Google Scholar] [CrossRef]
- Raruang, Y.; Omolehin, O.; Hu, D.; Wei, Q.; Promyou, S.; Parekattil, L.J.; Rajasekaran, K.; Cary, J.W.; Wang, K.; Chen, Z.Y. Targeting the Aspergillus Flavus P2c Gene through Host-Induced Gene Silencing Reduces A. Flavus Infection and Aflatoxin Contamination in Transgenic Maize. Front. Plant Sci. 2023, 14, 1150086. [Google Scholar] [CrossRef]
- Borrás-Linares, I.; Fernández-Arroyo, S.; Arráez-Roman, D.; Palmeros-Suárez, P.A.; Del Val-Díaz, R.; Andrade-Gonzáles, I.; Fernández-Gutiérrez, A.; Gómez-Leyva, J.F.; Segura-Carretero, A. Characterization of Phenolic Compounds, Anthocyanidin, Antioxidant and Antimicrobial Activity of 25 Varieties of Mexican Roselle (Hibiscus sabdariffa). Ind. Crops Prod. 2015, 69, 385–394. [Google Scholar] [CrossRef]
- Rasheed, D.M.; Porzel, A.; Frolov, A.; El Seedi, H.R.; Wessjohann, L.A.; Farag, M.A. Comparative Analysis of Hibiscus sabdariffa (Roselle) Hot and Cold Extracts in Respect to Their Potential for α-Glucosidase Inhibition. Food Chem. 2018, 250, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Shahrajabian, M.H.; Cheng, Q.; Sun, W. The Importance of Neglected and Underutilized Medicinal Plants from South America in Modern Pharmaceutical Sciences. Lett. Drug Des. Discov. 2022, 20, 1688–1706. [Google Scholar] [CrossRef]
- Reusch, R.N. Insights into the Structure and Assembly of Escherichia Coli Outer Membrane Protein A. FEBS J. 2012, 279, 894–909. [Google Scholar] [CrossRef]
- Pautsch, A.; Schulz, G.E. High-Resolution Structure of the OmpA Membrane Domain. J. Mol. Biol. 2000, 298, 273–282. [Google Scholar] [CrossRef]
- McNair, H.M.; Miller, J.M.; Snow, N.H. Basic Gas Chromatography; John Wiley & Sons: New York, NY, USA, 2019. [Google Scholar]
- Orata, F. Derivatization Reactions and Reagents for Gas Chromatography Analysis, Advanced Gas Chromatography—Progress in Agricultural, Biomedical and Industrial Applications; InTech: Rijeka, Croatia, 2012; Volume 11, pp. 83–156. [Google Scholar]
- Wang, L.S.; Stoner, G.D. Anthocyanins and Their Role in Cancer Prevention. Cancer Lett. 2008, 269, 281–290. [Google Scholar] [CrossRef]
- Soni, D.K.; Shahi, S.K.; Khandel, P.; Mahobiya, D.; Singh, R.; Yadaw, R.K.; Kanwar, L. Extraction and Estimation of Chlorophylls from Epiphytic Orchids and Their Antioxidants Scavenging Activity analysis. Plant Arch. 2018, 18, 2448–2452. [Google Scholar]
- Rahman, M.M.; Rahaman, M.S.; Islam, M.R.; Hossain, M.E.; Mithi, F.M.; Ahmed, M.; Saldías, M.; Akkol, E.K.; Sobarzo-Sánchez, E. Multifunctional Therapeutic Potential of Phytocomplexes and Natural Extracts for Antimicrobial Properties. Antibiotics 2021, 10, 1076. [Google Scholar] [CrossRef]
- Ahmadi, A.; Shahidi, S.A.; Safari, R.; Motamedzadegan, A.; Ghorbani-HasanSaraei, A. Evaluation of Stability and Antibacterial Properties of Extracted Chlorophyll from Alfalfa (Medicago sativa L.). Food Chem. Toxicol. 2022, 163, 112980. [Google Scholar] [CrossRef]
Pathogen | Target Gene | Primers Sequences | Annealing (T °C) | Reference |
---|---|---|---|---|
S. aureus | 16S rRNA | GAGGCAGCAGTAGGGAATCT | 60 | This study (Accession: LN794238.1) |
GATAACGCTTGCCACCTACG | ||||
icaA | AGCACAATGAAAACGAAAAGGT | 60 | This study (Accession: KU670830.1) | |
GCGACTATCAATAAAGAGTGCGA | ||||
hlg | GGTAATTTCCAATCAGCCCCA | 60 | This study (Accession: KM116014.1) | |
TGACCTGATTCAGTGGCGAA | ||||
Klebsiella species | 16S rRNA | TCCAGGTGTAGCGGTGAAAT | 60 | This study (Accession: PP094549.1) |
TGAGTTTTAACCTTGCGGCC | ||||
mrkD | CTCGAAACCTATCTGAGCGC | 58 | This study (Accession: KF777787.1) | |
ATTAAAATCCTTCCCGCCGG | ||||
rmpA | AGAGTATTGGTTGACTGCAGGATTT AAACATCAAGCCATATCCATTGG | 60 | This study (Accession: KF801503.1) | |
Pseudomonas species | 16S rRNA | GGGAGGAAGGGCAGTAAGTT | 60 | This study (Accession: FJ972538.1) |
ACCACCCTCTACCGTACTCT | ||||
pslA | TACCGGGCCTGGATGAAAC | 60 | This study (Accession: OM567545.1) | |
CGAGTTGTAGTTCTCCGGGA | ||||
fliC | TGAACGTGGCTACCAAGAACG | 60 | [24] | |
TCTGCAGTTGCTTCACTTCGC | ||||
E. coli | 16S rRNA | TGAGTTTTAACCTTGCGGCC | 58 | This study (Accession: LC848137.1) |
TCCAGGTGTAGCGGTGAAAT | ||||
ompA | CGGAAGTACAGACCAAGCAC | 58 | This study (Accession: MK941176.1) | |
CCCAGAACAACTACGGAACC | ||||
neuC | TCCCTCTGACGATTGCATTT | 58 | This study (Accession: OL778841.1) | |
GTGGGCTAATTGGGAACTCC | ||||
Shigella flexneri | 16S rRNA | TGGCGCATACAAAGAGAAGC | 58 | This study (Accession: LC521305.1) |
TTTTGCAACCCACTCCCATG | ||||
IpaH | TGCCCGGGATAAAGTCAGAA | 58 | This study (Accession: OR804338.1) | |
CGGAGGTCATTTGCTGTCAC | ||||
Ial | GCTATAGCAGTGACATGG | 58 | [25] | |
ACGAGTTCGAAGCACTC | ||||
Pasteurella haemolytica (Mannheimia) | 16S rRNA | ACCAAGCCGTCGATCTCTAG | 58 | This study (Accession: U57072.1) |
AAAACAACCACCTTCCTCGC | ||||
Gcp | CGCCCCTTTTGGTTTTCTAA | 58 | [26] | |
GTAAATGCCCTTCCATATGG | ||||
lktC | GGAAACATTACTTGGCTATGG | 58 | [26] | |
TGTTGCCAGCTCTTCTTGATA | ||||
Morganella morganii | 16S rRNA | GGCGTATACAAAGGGAAGCG | 60 | This study (Accession: AB680150.1) |
TTTTGCAACCCACTCCCATG | ||||
ureC | CAACCTGAACCCGAATGTCC | 58 | This study (Accession: U69175.1) | |
GTTAGCGGTCTGGATCACAC | ||||
hdc | TACCTGGGCCGTGAAATCTT | 60 | This study (Accession: FJ469558.1) | |
TGCGCTTCTTTATCGTCAGC | ||||
Salmonella typhimurium | 16S rRNA | CAGAAGAAGCACCGGCTAACTC | 60 | [27] |
GCGCTTTACGCCCAGTAATT | ||||
sopB | TTTTCGGCAAAGAGGGAACG | 60 | This study (Accession: JQ067617.1) | |
GCCAGCTCATTAACACCCAC | ||||
mgtC | AAGAGGCCGCGATCTGTTTA | 60 | [28] | |
CGAATTTCTTTATAGCCCTGTTCCT | ||||
Candida albicans | ACT1 | TGCTGAACGTATGCAAAAGG | 60 | [29] |
TGAACAATGGATGGACCAGA | ||||
ALS3 | CTGGACCACCAGGAAACACT | 60 | [29] | |
GGTGGAGCGGTGACAGTAGT | ||||
PLD1 | GCCAAGAGAGCAAGGGTTAGCA | 60 | [29] | |
CGGATTCGTCATCCATTTCTCC | ||||
A. flavus | 18S rRNA | CGGAGACACCACGAACTCTG | 58 | [30] |
CCCTACCTGATCCGAGGTCA | ||||
Afla toxin Gene | TTGCTGCTTTTCGCTAGCAC | 58 | ||
TCATCAGGTTGCACGAACTG | ||||
A. niger | 18S rRNA | TTGTACCCTGTTGCTTCGGC | 58 | [30] |
TTCAGCGGGTATCCCTACCT | ||||
pgxB | TTGCGGCCGCTTTTGCGTCTTGATTGTGAG | 58 | ||
CGACAGACCCAAGCTTTGATGTGGGTAGATGCGTAG |
Microbial Isolates | Anthocyanin Pigment Diameter of the Inhibition Zone (cm) | p-Value | ||||
---|---|---|---|---|---|---|
Beet Roots (Beta vulgaris) | Eggplant Peels (Solanum melongena) | Prunes (Prunus domestica) | Red Cabbage (Brassica oleracea) | Roselle Petals (Hibiscus sabdariffa) | ||
S. aureus | 2.63 ± 0.11 | 0.0 | 2.2 ± 0.0 | 2.5 ± 0.0 | 3.5 ± 0.0 | <0.0001 |
Klebsiella pneumoniae | 0.0 | 0.0 | 1.3 ± 0.0 | 0.0 | 2.9 ± 0.0 | <0.0001 |
Klebsiella oxytoca | 2.43 ± 0.2 | 0.0 | 2.4 ± 0.0 | 2.5 ± 0.0 | 2.6 ± 0.0 | <0.0001 |
Pseudomonas fluorescens | 2.4 ± 0.05 | 0.0 | 1.9 ± 0.0 | 2.5 ± 0.0 | 3.7 ± 0.0 | <0.0001 |
Pseudomonas aeruginosa | 2.7 ± 0.2 | 0.0 | 2.1 ± 0.10 | 2.6 ± 0.05 | 3.6 ± 0.0 | <0.0001 |
E. coli | 3.2 ± 0.2 | 0.0 | 2.06 ± 0.05 | 2.4 ± 0.0 | 3.1 ± 0.0 | <0.0001 |
Salmonella typhimurium | 2.9 ± 0.17 | 0.0 | 2.2 ± 0.20 | 2.5 ± 0.0 | 2.9 ± 0.0 | <0.0001 |
Pasteurella haemolytica | 2 ± 0.0 | 0.0 | 2.2 ± 0.0 | 0.0 | 3 ± 0.0 | <0.0001 |
Morganella morganii | 3 ± 0.0 | 0.0 | 2.2 ± 0.0 | 2.7 ± 0.0 | 2.7 ± 0.0 | <0.0001 |
Shigella flexneri | 2.9 ± 0.0 | 0.0 | 2.5 ± 0.10 | 2.5 ± 0.0 | 2.5 ± 0.0 | <0.0001 |
Candida albicans | 2.8 ± 0.0 | 0.0 | 1.8 ± 0.10 | 1.4 ± 0. 0 | 2.5 ± 0.0 | <0.0001 |
Aspergillus flavus | 2.4 ± 0.0 | 0.0 | 2.1 ± 0.0 | 2.1 ± 0.0 | 2.5 ± 0.0 | <0.0001 |
Aspergillus niger | 2.4 ± 0.0 | 0.0 | 2 ± 0.0 | 1.7 ± 0.0 | 2.5 ± 0.0 | <0.0001 |
Microorganism | Concentration of SIC, MIC, MMC (µg/mL) | |||||
---|---|---|---|---|---|---|
Hibiscus Extracts | Prunes Extracts | |||||
SIC | MIC | MMC | SIC | MIC | MMC | |
S. aureus | 0.25 | 0.5 | 1 | 2 | 4 | 8 |
Klebsiella pneumoniae | 32 | 64 | 128 | 1 | 2 | 4 |
P. aeruginosa | 0.125 | 0.25 | 0.5 | 1 | 2 | 4 |
FP. Fluorescent | 0.125 | 0.25 | 0.5 | 1 | 2 | 4 |
Morganella morganii | 0.125 | 0.25 | 0.5 | 0.5 | 1 | 2 |
E. coli | 0.125 | 0.25 | 0.5 | 1 | 2 | 4 |
S. typhimurium | 0.5 | 1 | 2 | 0.5 | 1 | 2 |
Pasteurella haemolytica | 0.5 | 1 | 2 | 1 | 2 | 4 |
Klebsiella oxytoca | 0.5 | 1 | 2 | 0.5 | 1 | 2 |
Shigella flexneri | 0.25 | 0.5 | 1 | 1 | 2 | 4 |
Candida albicans | 2 | 4 | 8 | 2 | 4 | 8 |
Aspergillus flavus | 8 | 16 | 32 | 2 | 8 | 16 |
Aspergillus niger | 4 | 8 | 16 | 2 | 4 | 8 |
Ligand | H-Bond Interaction—Residue | H-Bond Interaction—Distance (Å) | Hydrophobic Interaction | Binding Energy (kcal/mol) |
---|---|---|---|---|
Cyanidin 3-glucoside | PHE51, MET53 | 2.25 | LEU79 (Pi–alkyl), PHE51 (Pi–alkyl) | −4.012 |
Delphinidin 3-O-glucoside | ASN46, ASP44, ASP42 | 4.11, 4.15, 3.59 | VAL45 (Pi–alkyl), ASN5 (van der Waals) | −3.967 |
Pelargonidin 3-glucoside | TYR43 | 5.81 | PHE51 (Pi–Pi Stacked, Pi–Cation) | −3.524 |
RT (Min) | Compound Name | Area % | Molecular Formula | Molecular Weight | Known Bioactivities/Relevance |
---|---|---|---|---|---|
5.75 | 1-Deoxy-d-arabitol | 12.45 | C5H12O4 | 136 | Sugar alcohol, potential antioxidant, and osmotic agent |
6.49 | 2,5-Methylene-d,l-rhamnitol | 13.52 | C7H12O6 | 192 | Sugar alcohol derivative; potential role in carbohydrate metabolism |
6.60 | BENZENE, 1,3,5-TRIMETHYL | 3.18 | C9H12 | 120 | Aromatic hydrocarbon; industrial solvent |
7.71 | 1-NONANOL | 2.92 | C9H20O | 144 | Long-chain primary alcohol; used in flavor/fragrance industries; mild antimicrobial potential |
8.30 | 1-DODECENE | 0.76 | C12H24 | 168 | Alkene hydrocarbon; limited direct bioactivity; used in surfactants or as an intermediate |
8.46 | 1-TETRADECANOL | 1.54 | C14H30O | 214 | Long-chain fatty alcohol; emollient and surfactant with possible antimicrobial effects |
9.32 | 2-Myristynoyl pantetheine | 1.77 | C25H44N2O5S | 484 | Pantetheine derivative; involved in coenzyme A biosynthesis; metabolic cofactor; also noted for anti-inflammatory activity |
11.03 | OCTADECANOIC ACID | 2.69 | C18H36O2 | 284 | Saturated fatty acid; commonly used in pharmaceuticals and cosmetics; mild antibacterial effect |
29.58 | 9-Octadecenoic acid | 1.35 | C18H34O2 | 282 | Oleic acid isomer; monounsaturated fatty acid with anti-inflammatory activity |
32.85 | Oleic acid | 3.92 | C18H34O2 | 282 | Well-known monounsaturated fatty acid; supports cardiovascular and skin health; exhibits antibacterial activity |
32.85 | 11-octadecenoic acid, methyl ester | 3.92 | C19H36O2 | 296 | Fatty acid ester; potential in antimicrobial or lipid metabolism studies |
34.67 | Trans-13-octadecenoic acid | 1.39 | C18H34O2 | 282 | Unsaturated fatty acid; investigated for lipid modulation and bioactivity |
34.67 | Cis-13-Eicosenoic acid | 1.39 | C20H38O2 | 310 | Monounsaturated fatty acid; limited data but structural analogs suggest anti-inflammatory roles |
34.74 | 9-Hexadecenoic acid | 2.29 | C16H30O2 | 254 | Palmitoleic acid; bioactive lipid with antimicrobial and anti-inflammatory effects |
Compound | IC50 * (µM) | ||
---|---|---|---|
IC50 MCF-7 | IC50 Mcf10A | Selectivity Index (SI) | |
Pigment | 62.075 ± 15.161 | >1000 | ND a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Demerdash, A.S.; Sehim, A.E.; Altamimi, A.; Henidi, H.; Mahran, Y.; Dawwam, G.E. From Hue to Health: Exploring the Therapeutic Potential of Plant-Pigment-Enriched Extracts. Microorganisms 2025, 13, 1818. https://doi.org/10.3390/microorganisms13081818
El-Demerdash AS, Sehim AE, Altamimi A, Henidi H, Mahran Y, Dawwam GE. From Hue to Health: Exploring the Therapeutic Potential of Plant-Pigment-Enriched Extracts. Microorganisms. 2025; 13(8):1818. https://doi.org/10.3390/microorganisms13081818
Chicago/Turabian StyleEl-Demerdash, Azza SalahEldin, Amira E. Sehim, Abeer Altamimi, Hanan Henidi, Yasmin Mahran, and Ghada E. Dawwam. 2025. "From Hue to Health: Exploring the Therapeutic Potential of Plant-Pigment-Enriched Extracts" Microorganisms 13, no. 8: 1818. https://doi.org/10.3390/microorganisms13081818
APA StyleEl-Demerdash, A. S., Sehim, A. E., Altamimi, A., Henidi, H., Mahran, Y., & Dawwam, G. E. (2025). From Hue to Health: Exploring the Therapeutic Potential of Plant-Pigment-Enriched Extracts. Microorganisms, 13(8), 1818. https://doi.org/10.3390/microorganisms13081818