Predisposing Factors Associated with Third-Generation Cephalosporin-Resistant Escherichia coli in a Rural Community Hospital in Thailand
Abstract
1. Introduction
2. Results
2.1. E. coli and K. pneumoniae Isolates by Specimen Type
2.2. Multidrug Resistance Patterns of E. coli and K. pneumoniae
2.3. Analysis of Clinical Characteristics
3. Discussion
4. Materials and Methods
4.1. Study Design and Data Collection
- (1)
- Were admitted to Thatphanom Crown Prince Hospital for more than 24 h;
- (2)
- Had positive microbial culture results for Escherichia coli or Klebsiella pneumoniae;
- (3)
- Underwent antimicrobial susceptibility testing (AST).
- (1)
- Incomplete biological or geographic data;
- (2)
- No recorded medical history at Thatphanom Crown Prince Hospital during the study period;
- (3)
- A hospital stay of less than 24 h.
4.2. Statistical Analysis
4.3. Ethical Approval
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MDR | Multidrug-resistant |
MDRE | Multidrug-resistant Enterobacteriaceae |
E. coli | Escherichia coli |
K. pneumoniae | Klebsiella pneumoniae |
OR | Crude odds ratio |
ORadj | Adjusted odds ratio |
95%CI | 95% confidence interval |
References
- World Health Organization. Antimicrobial Resistance. Available online: https://www.who.int/europe/news-room/fact-sheets/item/antimicrobial-resistance (accessed on 14 April 2025).
- Foudraine, D.E.; Strepis, N.; Stingl, C.; ten Kate, M.T.; Verbon, A.; Klaassen, C.H.W.; Goessens, W.H.F.; Luider, T.M.; Dekker, L.J.M. Exploring antimicrobial resistance to beta-lactams, aminoglycosides and fluoroquinolones in E. coli and K. pneumoniae using proteogenomics. Sci. Rep. 2021, 11, 12472. [Google Scholar] [CrossRef]
- Mouanga-Ndzime, Y.; Bisseye, C.; Longo-Pendy, N.-M.; Bignoumba, M.; Dikoumba, A.-C.; Onanga, R. Trends in Escherichia coli and Klebsiella pneumoniae Urinary Tract Infections and Antibiotic Resistance over a 5-Year Period in Southeastern Gabon. Antibiotics 2025, 14, 14. [Google Scholar] [CrossRef] [PubMed]
- Abualrahi, A. The Effect of Proteolytic Queues on Antibiotic Tolerance and The Effect of Proteolytic Queues on Antibiotic Tolerance and Persistence Cells Population in Escherichia coli Persistence Cells Population in Escherichia coli. Master’s Thesis, South Dakota State University, Brookings, SG, USA, 2019. [Google Scholar]
- Intahphuak, S.; Apidechkul, T.; Kuipiaphum, P. Antibiotic resistance among the Lahu hill tribe people, northern Thailand: A cross-sectional study. BMC Infect. Dis. 2021, 21, 385. [Google Scholar] [CrossRef]
- Sangsuwan, T.; Jariyasoonthornkit, K.; Jamulitrat, S. Antimicrobial Resistance Patterns Amid Community-Acquired Uropathogens in Outpatient Settings of a Tertiary Care Hospital in Thailand. Siriraj Med. J. 2021, 73, 501–509. [Google Scholar] [CrossRef]
- Li, Y.; Kumar, S.; Zhang, L.; Wu, H.; Wu, H. Characteristics of antibiotic resistance mechanisms and genes of Klebsiella pneumoniae. Open Med. 2023, 18, 20230707. [Google Scholar] [CrossRef]
- Kot, B.; Piechota, M.; Szweda, P.; Mitrus, J.; Wicha, J.; Grużewska, A.; Witeska, M. Virulence analysis and antibiotic resistance of Klebsiella pneumoniae isolates from hospitalised patients in Poland. Sci. Rep. 2023, 13, 4448. [Google Scholar] [CrossRef] [PubMed]
- Awoke, T.; Teka, B.; Seman, A.; Sebre, S.; Yeshitela, B.; Aseffa, A.; Mihret, A.; Abebe, T. High Prevalence of Multidrug-Resistant Klebsiella pneumoniae in a Tertiary Care Hospital in Ethiopia. Antibiotics 2021, 10, 1007. [Google Scholar] [CrossRef] [PubMed]
- Division of Epidemiology; Ministry of Public Health Thailand. Antimicrobial Resistance Surveillance and Investigation Guidelines; Division of Epidemiology, Department of Disese Control, Ministry of Public Health Thailand: Nonthaburi, Thailand, 2022; Volume 1, p. 98. [Google Scholar]
- Kongnakorn, T.; Tichy, E.; Kengkla, K.; Kanokwanvimol, N.; Suthipinijtham, P.; Phuripakathorn, C.; Al Taie, A. Economic burden of antimicrobial resistance and inappropriate empiric treatment in Thailand. Antimicrob. Steward. Healthc. Epidemiol. 2023, 3, e109. [Google Scholar] [CrossRef] [PubMed]
- Chanvatik, S.; Kosiyaporn, H.; Lekagul, A.; Kaewkhankhaeng, W.; Vongmongkol, V.; Thunyahan, A.; Tangcharoensathien, V. Knowledge and use of antibiotics in Thailand: A 2017 national household survey. PLoS ONE 2019, 14, e0220990. [Google Scholar] [CrossRef]
- Salawudeen, A.; Raji, Y.E.; Jibo, G.G.; Desa, M.N.M.; Neoh, H.M.; Masri, S.N.; Di Gregorio, S.; Jamaluddin, T. Epidemiology of multidrug-resistant Klebsiella pneumoniae infection in clinical setting in South-Eastern Asia: A systematic review and meta-analysis. Antimicrob. Resist. Infect. Control 2023, 12, 142. [Google Scholar] [CrossRef]
- Hernández-Jiménez, P.; López-Medrano, F.; Fernández-Ruiz, M.; Silva, J.T.; Corbella, L.; San-Juan, R.; Lizasoain, M.; Díaz-Regañón, J.; Viedma, E.; Aguado, J.M. Risk Factors and Outcomes for Multidrug Resistant Pseudomonas aeruginosa Infection in Immunocompromised Patients. Antibiotics 2022, 11, 1459. [Google Scholar] [CrossRef]
- Abdelaziz Abdelmoneim, S.; Mohamed Ghazy, R.; Anwar Sultan, E.; Hassaan, M.A.; Anwar Mahgoub, M. Antimicrobial resistance burden pre and post-COVID-19 pandemic with mapping the multidrug resistance in Egypt: A comparative cross-sectional study. Sci. Rep. 2024, 14, 7176. [Google Scholar] [CrossRef]
- Bastidas-Caldes, C.; Guerrero-Freire, S.; Ortuño-Gutiérrez, N.; Sunyoto, T.; Gomes-Dias, C.A.; Ramírez, M.S.; Calero-Cáceres, W.; Harries, A.D.; Rey, J.; de Waard, J.H.; et al. Colistin resistance in Escherichia coli and Klebsiella pneumoniae in humans and backyard animals in Ecuador. Rev. Panam. Salud Publica 2023, 47, e48. [Google Scholar] [CrossRef]
- Urban-Chmiel, R.; Marek, A.; Stępień-Pyśniak, D.; Wieczorek, K.; Dec, M.; Nowaczek, A.; Osek, J. Antibiotic Resistance in Bacteria—A Review. Antibiotics 2022, 11, 1079. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Lin, R.; Zhou, Z.; Ma, J.; Lin, H.; Zheng, X.; Wang, J.; Wu, J.; Dong, Y.; Jiang, H.; et al. Antimicrobial resistance and genomic characterization of Escherichia coli from pigs and chickens in Zhejiang, China. Front. Microbiol. 2022, 13, 1018682. [Google Scholar] [CrossRef] [PubMed]
- Nada, H.G.; El-Tahan, A.S.; El-Didamony, G.; Askora, A. Detection of multidrug-resistant Shiga toxin-producing Escherichia coli in some food products and cattle faeces in Al-Sharkia, Egypt: One health menace. BMC Microbiol. 2023, 23, 127. [Google Scholar] [CrossRef] [PubMed]
- Taviani, E.; van den Berg, H.; Nhassengo, F.; Nguluve, E.; Paulo, J.; Pedro, O.; Ferrero, G. Occurrence of waterborne pathogens and antibiotic resistance in water supply systems in a small town in Mozambique. BMC Microbiol. 2022, 22, 243. [Google Scholar] [CrossRef] [PubMed]
- Jesumirhewe, C.; Springer, B.; Allerberger, F.; Ruppitsch, W. Genetic Characterization of Antibiotic Resistant Enterobacteriaceae Isolates from Bovine Animals and the Environment in Nigeria. Front. Microbiol. 2022, 13, 793541. [Google Scholar] [CrossRef]
- Mohamed, A.H.; Sheikh Omar, N.M.; Osman, M.M.; Mohamud, H.A.; Eraslan, A.; Gur, M. Antimicrobial Resistance and Predisposing Factors Associated with Catheter-Associated UTI Caused by Uropathogens Exhibiting Multidrug-Resistant Patterns: A 3-Year Retrospective Study at a Tertiary Hospital in Mogadishu, Somalia. Trop. Med. Infect. Dis. 2022, 7, 42. [Google Scholar] [CrossRef]
- Mills, E.G.; Martin, M.J.; Luo, T.L.; Ong, A.C.; Maybank, R.; Corey, B.W.; Harless, C.; Preston, L.N.; Rosado-Mendez, J.A.; Preston, S.B.; et al. A one-year genomic investigation of Escherichia coli epidemiology and nosocomial spread at a large US healthcare network. Genome Med. 2022, 14, 147. [Google Scholar] [CrossRef]
- Medugu, N.; Aworh, M.K.; Iregbu, K.; Nwajiobi-Princewill, P.; Abdulraheem, K.; Hull, D.M.; Harden, L.; Singh, P.; Obaro, S.; Egwuenu, A.; et al. Molecular characterization of multi drug resistant Escherichia coli isolates at a tertiary hospital in Abuja, Nigeria. Sci. Rep. 2022, 12, 14822. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Sophonsri, A.; Kelsom, C.; Lou, M.; Nieberg, P.; Wong-Beringer, A. Risk factors and outcome associated with coinfection with carbapenem-resistant Klebsiella pneumoniae and carbapenem-resistant Pseudomonas aeruginosa or Acinetobacter baumanii: A descriptive analysis. Front. Cell. Infect. Microbiol. 2023, 13, 1231740. [Google Scholar] [CrossRef] [PubMed]
- Lv, D.; Zuo, Y.; Wang, Y.; Wang, Z.; Xu, Y. Predictors of Occurrence and 30-Day Mortality for Co-Infection of Carbapenem-Resistant Klebsiella pneumoniae and Carbapenem-Resistant Acinetobacter baumannii. Front. Cell. Infect. Microbiol. 2022, 12, 919414. [Google Scholar] [CrossRef]
- Samandika Saparamadu, A.; Ratnayake, L. Epidemiology of Escherichia coli and Klebsiella pneumoniae bloodstream infections in a general hospital in Singapore: A retrospective cohort study. Singapore Med. J. 2023, 64, 700–706. [Google Scholar] [CrossRef]
- Suhartono, S.; Hayati, Z.; Hayatunnida, R. Distribution of Multidrug Resistant Escherichia coli and Klebsiella pneumoniae Isolates among clinical specimens in the Zainoel Abidin General Hospital, Banda Aceh, Indonesia. Res. J. Pharm. Technol. 2023, 16, 2854–2858. [Google Scholar] [CrossRef]
- Hyle, E.P.; Lipworth, A.D.; Zaoutis, T.E.; Nachamkin, I.; Fishman, N.O.; Bilker, W.B.; Mao, X.; Lautenbach, E. Risk Factors for Increasing Multidrug Resistance among Extended-Spectrum β-Lactamase-Producing Escherichia coli and Klebsiella Species. Clin. Infect. Dis. 2005, 40, 1317–1324. [Google Scholar] [CrossRef]
- Ibrahim, M.E.; Bilal, N.E.; Hamid, M.E. Increased multi-drug resistant Escherichia coli from hospitals in Khartoum state, Sudan. Afr. Health Sci. 2012, 12, 368–375. [Google Scholar] [CrossRef] [PubMed]
- Saputra, S.; Jordan, D.; Mitchell, T.; Wong, H.S.; Abraham, R.J.; Kidsley, A.; Turnidge, J.; Trott, D.J.; Abraham, S. Antimicrobial resistance in clinical Escherichia coli isolated from companion animals in Australia. Vet. Microbiol. 2017, 211, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Ballash, G.A.; Diaz-Campos, D.; van Balen, J.C.; Mollenkopf, D.F.; Wittum, T.E. Previous Antibiotic Exposure Reshapes the Population Structure of Infecting Uropathogenic Escherichia coli Strains by Selecting for Antibiotic Resistance over Urovirulence. Microbiol. Spectr. 2023, 11, e0524222. [Google Scholar] [CrossRef]
- Migliara, G.; Baccolini, V.; Isonne, C.; Cianfanelli, S.; Di Paolo, C.; Mele, A.; Lia, L.; Nardi, A.; Salerno, C.; Caminada, S.; et al. Prior Antibiotic Therapy and the Onset of Healthcare-Associated Infections Sustained by Multidrug-Resistant Klebsiella pneumoniae in Intensive Care Unit Patients: A Nested Case-Control Study. Antibiotics 2021, 10, 302. [Google Scholar] [CrossRef]
- Arana, D.M.; Rubio, M.; Alós, J.-I. Evolution of antibiotic multiresistance in Escherichia coli and Klebsiella pneumoniae isolates from urinary tract infections: A 12-year analysis (2003–2014). Enferm. Infecc. Microbiol. Clín. 2017, 35, 293–298. [Google Scholar] [CrossRef]
- Mączyńska, B.; Frej-Mądrzak, M.; Sarowska, J.; Woronowicz, K.; Choroszy-Król, I.; Jama-Kmiecik, A. Evolution of Antibiotic Resistance in Escherichia coli and Klebsiella pneumoniae Clinical Isolates in a Multi-Profile Hospital over 5 Years (2017–2021). J. Clin. Med. 2023, 12, 2414. [Google Scholar] [CrossRef]
- Moini, A.S.; Soltani, B.; Taghavi Ardakani, A.; Moravveji, A.; Erami, M.; Haji Rezaei, M.; Namazi, M. Multidrug-Resistant Escherichia coli and Klebsiella pneumoniae Isolated from Patients in Kashan, Iran. Jundishapur J. Microbiol. 2015, 8, e27517. [Google Scholar] [CrossRef] [PubMed]
- Siriphap, A.; Kitti, T.; Khuekankaew, A.; Boonlao, C.; Thephinlap, C.; Thepmalee, C.; Suwannasom, N.; Khoothiam, K. High prevalence of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates: A 5-year retrospective study at a Tertiary Hospital in Northern Thailand. Front. Cell. Infect. Microbiol. 2022, 12, 955774. [Google Scholar] [CrossRef] [PubMed]
- Kwanmuang, O.; Juntabua, P.; Kanjanayotin, A. Incidence and Factors Associated with Carbapenem-resistant Enterobacteriaceae and Vancomycin-resistant Enterococci in Rajavithi Hospital. J. Dep. Med. Serv. 2022, 47, 81–89. [Google Scholar]
- Kilinc, M. Antibiotic Resistance and Mortality in ICU Patients: A Retrospective Analysis of First Culture Growth Results. Antibiotics 2025, 14, 290. [Google Scholar] [CrossRef]
- Lee, S.; Han, S.W.; Kim, K.W.; Song, D.Y.; Kwon, K.T. Third-generation cephalosporin resistance of community-onset Escherichia coli and Klebsiella pneumoniae bacteremia in a secondary hospital. Korean J. Intern. Med. 2014, 29, 49–56. [Google Scholar] [CrossRef]
- Austraian Commission on Safety and Quality in Health Care. Australian Passive Antimicrobial Resistance Surveillance Third-Generation Cephalosporin Resistance in Escherichia coli and Klebsiella pneumoniae: Prevalence of Extended-Spectrum β-Lactamase (ESBL) Phenotype; Australian Commission on Safety and Quality in Health Care: Sydney, Australia, 2022.
- Manninen, R.; Auvinen, H.; Huovinen, P. Resistance to second- and third-generation cephalosporins among Escherichia coli and Klebsiella species is rare in Finland. Clin. Microbiol. Infect. 1997, 3, 408–413. [Google Scholar] [CrossRef]
- Karpiński, T.M.; Andrzejewska, E.; Eder, P.; Linke, K.; Szkaradkiewicz, A. Evaluation of antimicrobial resistance of Helicobacter pylori in the last 15 years in West Poland. Acta Microbiol. Immunol. Hung. 2015, 62, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Abdelraouf, K.; Chavda, K.D.; Satlin, M.J.; Jenkins, S.G.; Kreiswirth, B.N.; Nicolau, D.P. Piperacillin-Tazobactam-Resistant/Third-Generation Cephalosporin-Susceptible Escherichia coli and Klebsiella pneumoniae Isolates: Resistance Mechanisms and In vitro-In vivo Discordance. Int. J. Antimicrob. Agents 2020, 55, 105885. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
Characteristic | E. coli Infection | Total | OR (95% CI) | p-Value | |
---|---|---|---|---|---|
Blood (n = 156) | Other (n = 265) | ||||
Gender | 0.569 | ||||
Male | 68 (43.6) | 108 (40.8) | 176 | ref | |
Female | 88 (56.4) | 157 (59.2) | 245 | 1.18 (0.77–1.80) | |
Age group | 0.181 | ||||
<60 | 71 (45.5) | 103 (38.9) | 174 | ref | |
≥60 | 85 (54.5) | 162 (61.1) | 247 | 1.47 (0.96–2.22) | |
DM | 0.353 | ||||
No | 125 (80.1) | 202 (76.2) | 327 | ref | |
Yes | 31 (19.9) | 63 (23.8) | 94 | 1.58 (0.90–2.77) | |
HT | 0.42 | ||||
No | 119 (76.3) | 211 (79.6) | 330 | ref | |
Yes | 37 (23.7) | 54 (20.4) | 91 | 0.66 (0.39–1.16) | |
COPD | 0.128 | ||||
No | 150 (96.2) | 261 (98.5) | 411 | ref | |
Yes | 6 (3.8) | 4 (1.5) | 10 | 0.47 (0.12–1.83) | |
CKD | 0.341 | ||||
No | 147 (94.2) | 255 (96.2) | 402 | ref | |
Yes | 9 (5.8) | 10 (3.8) | 19 | 0.62 (0.23–1.67) | |
Previous ATB | 0.008 * | ||||
Yes | 65 (41.7) | 77 (29.1) | 142 | 1.79 (1.17–2.74) | |
No | 91 (58.3) | 188 (70.9) | 279 | ref | |
ICU | 0.132 | ||||
No | 143 (91.7) | 252 (95.1) | 395 | 1.89 (0.83–4.31) | |
Yes | 13 (8.3) | 13 (4.9) | 26 | ref |
Specimen | E. coli (n = 421) n (%) | K. pneumoniae (n = 239) n (%) |
---|---|---|
Blood | 265 (63.0) | 77 (32.2) |
Urine | 113 (26.8) | 25 (10.5) |
Sputum | 25 (5.9) | 122 (51.0) |
Pus | 14 (3.3) | 9 (3.8) |
Fluid | 4 (1.0) | 6 (2.5) |
Antibiotic Type | E. coli (n = 211) | K. pneumoniae (n = 71) | p-Value | ||
---|---|---|---|---|---|
R | S | R | S | ||
Aminoglycosides | 117 (55.5) | 94 (44.5) | 36 (50.7) | 35 (49.3) | 0.487 |
Penicillin | 210 (99.5) | 1 (0.5) | 71(100.0) | 0 (0.0) | 0.561 |
3rd-generation Cephalosporins | 137 (64.9) | 74 (35.1) | 68 (95.8) | 3 (4.2) | <0.001 ** |
Quinolones | 160 (75.8) | 51 (24.2) | 59 (83.1) | 12 (16.9) | 0.203 |
Carbapenems | 8 (3.8) | 203 (96.2) | 12 (6.9) | 59 (83.1) | <0.001 ** |
Antibiotic Type | E. coli | K. pneumoniae | Total | OR (95% CI) | p-Value |
---|---|---|---|---|---|
R | R | ||||
3rd generation Cephalosporins | 137 | 68 | 205 | 0.69 (0.48–1.00) | 0.052 |
Aminoglycosides and Quinolones | 277 | 95 | 372 | ref | |
Total | 414 | 163 | 577 | ||
3rd generation Cephalosporins | 137 | 68 | 205 | 3.02 (1.18–7.74) | 0.021 * |
Carbapenems | 8 | 12 | 20 | ref | |
Total | 145 | 80 |
Characteristics | MDR | OR (95% CI) | p-Value | |
---|---|---|---|---|
E. coli (n = 211) | K. pneumoniae (n = 71) | |||
Gender | ||||
Male | 99 (46.9) | 39 (54.9) | ref | 0.244 |
Female | 112 (53.1) | 32 (45.1) | 1.38 (0.80–2.37) | |
Age group (years) | ||||
<60 | 89 (42.2) | 34 (47.9) | ref | |
≥60 | 122 (57.8) | 37 (52.1) | 1.26 (0.73–2.16) | 0.402 |
DM | ||||
No | 160 (75.8) | 57 (80.3) | ref | |
Yes | 51 (24.2) | 14 (19.7) | 1.30 (0.67–2.52) | 0.442 |
HT | ||||
No | 165 (78.2) | 58 (81.7) | ref | |
Yes | 46 (21.8) | 13 (18.3) | 1.24 (0.62–2.47) | 0.532 |
COPD | ||||
No | 206 (97.6) | 68 (95.8) | ref | |
Yes | 5 (2.4) | 3 (4.2) | 0.55 (0.13–2.36) | 0.422 |
CKD | ||||
No | 203 (96.2) | 66 (93.0) | ref | |
Yes | 8 (3.8) | 5 (7.0) | 0.52 (0.16–1.65) | 0.266 |
Previous ATB | ||||
No | 135 (64.0) | 54 (76.1) | ref | |
Yes | 76 (36.0) | 17 (23.9) | 1.79 (0.97–3.30) | 0.063 |
ICU | ||||
No | 193 (91.5) | 58 (81.7) | ref | |
Yes | 18 (8.5) | 13 (18.3) | 2.40 (1.11–5.20) | 0.026 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ungcharoen, R.; Ponyon, J.; Yongyod, R.; Kerdsin, A. Predisposing Factors Associated with Third-Generation Cephalosporin-Resistant Escherichia coli in a Rural Community Hospital in Thailand. Antibiotics 2025, 14, 790. https://doi.org/10.3390/antibiotics14080790
Ungcharoen R, Ponyon J, Yongyod R, Kerdsin A. Predisposing Factors Associated with Third-Generation Cephalosporin-Resistant Escherichia coli in a Rural Community Hospital in Thailand. Antibiotics. 2025; 14(8):790. https://doi.org/10.3390/antibiotics14080790
Chicago/Turabian StyleUngcharoen, Ratchadaporn, Jindanoot Ponyon, Rapeepan Yongyod, and Anusak Kerdsin. 2025. "Predisposing Factors Associated with Third-Generation Cephalosporin-Resistant Escherichia coli in a Rural Community Hospital in Thailand" Antibiotics 14, no. 8: 790. https://doi.org/10.3390/antibiotics14080790
APA StyleUngcharoen, R., Ponyon, J., Yongyod, R., & Kerdsin, A. (2025). Predisposing Factors Associated with Third-Generation Cephalosporin-Resistant Escherichia coli in a Rural Community Hospital in Thailand. Antibiotics, 14(8), 790. https://doi.org/10.3390/antibiotics14080790