Chimeric Antigen Receptor Immunotherapy for Infectious Diseases: Current Advances and Future Perspectives
Abstract
1. Introduction
2. HIV Infection
3. EBV and CMV Infections (EBV: Clinical Trial)
4. Hepatitis B and C Infections
5. SARS-CoV-2 Infection (Clinical Trials)
6. Invasive Fungal Diseases
7. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ACE2 | angiotensin-converting enzyme 2 |
Af-CAR | Aspergillus fumigatus-specific chimeric antigen receptor |
AIDS | acquired immunodeficiency syndrome |
allo-HCT | allogeneic hematopoietic cell transplantation |
ART | antiretroviral therapy |
BNAb | broadly neutralizing antibody |
CAR | chimeric antigen receptor |
cccDNA | covalently closed circular DNA |
CMV | cytomegalovirus |
COVID-19 | Coronavirus disease-19 |
CRS | cytokine release syndrome |
CXCR5 | C-X-C chemokine receptor type 5 |
D-CAR | chimeric antigen receptor targeting Dectin-1 receptor |
DNA | deoxyribonucleic acid |
E2 | E2 glycoprotein |
EBNA | Epstein–Barr nuclear antigen |
EBV | Epstein–Barr virus |
EGFRt | truncated epidermal growth factor receptor |
Fc | crystallizable fragment |
gp350 | glycoprotein 350 |
gp120 | glycoprotein 120 |
GXM | glucuronoxylomannan |
GXMR-CAR | glucuronoxylomannan-specific chimeric antigen receptor |
HBsAg | hepatitis B surface antigen |
HBV | hepatitis B virus |
HCV | hepatitis C virus |
HIV | human immunodeficiency virus |
HSV-TK | herpes simplex virus thymidine kinase |
iC9 | inducible caspase 9 |
IFDs | invasive fungal diseases |
IFN-γ | interferon-γ |
IL-12 | interleukin-12 |
IL-2 | interleukin-2 |
IPA | invasive pulmonary aspergillosis |
L | large surface proteins |
LMP1 | latent membrane protein 1 |
MERTK | Mer tyrosine kinase |
NK | natural killer |
PTLD | post-transplant lymphoproliferative disease |
RBD | receptor-binding domain |
RNA | ribonucleic acid |
S | small surface proteins |
S1 | spike protein |
scFv | functional single-chain variable fragment |
TCR | T-cell receptor |
TNF-a | tumor necrosis factor-α |
TRUCKs | T cells capable of universal cytokine-mediated killing |
References
- Feins, S.; Kong, W.; Williams, E.F.; Milone, M.C.; Fraietta, J.A. An Introduction to Chimeric Antigen Receptor (CAR) T-Cell Immunotherapy for Human Cancer. Am. J. Hematol. 2019, 94, S3–S9. [Google Scholar] [CrossRef]
- Gross, G.; Waks, T.; Eshhar, Z. Expression of Immunoglobulin-T-Cell Receptor Chimeric Molecules as Functional Receptors with Antibody-Type Specificity. Proc. Natl. Acad. Sci. USA 1989, 86, 10024–10028. [Google Scholar] [CrossRef]
- Tokarew, N.; Ogonek, J.; Endres, S.; von Bergwelt-Baildon, M.; Kobold, S. Teaching an Old Dog New Tricks: Next-Generation CAR T Cells. Br. J. Cancer 2019, 120, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhu, L.; Zhang, H.; Chen, S.; Xiao, Y. CAR-T Cell Therapy in Hematological Malignancies: Current Opportunities and Challenges. Front. Immunol. 2022, 13, 927153. [Google Scholar] [CrossRef] [PubMed]
- Sheykhhasan, M.; Ahmadieh-Yazdi, A.; Vicidomini, R.; Poondla, N.; Tanzadehpanah, H.; Dirbaziyan, A.; Mahaki, H.; Manoochehri, H.; Kalhor, N.; Dama, P. CAR T Therapies in Multiple Myeloma: Unleashing the Future. Cancer Gene Ther. 2024, 31, 667–686. [Google Scholar] [CrossRef]
- Gavriilaki, E.; Mallouri, D.; Bousiou, Z.; Demosthenous, C.; Vardi, A.; Dolgyras, P.; Batsis, I.; Stroggyli, E.; Karvouni, P.; Masmanidou, M.; et al. Molecular and Clinical Characteristics of Different Toxicity Rates in Anti-CD19 Chimeric Antigen Receptor T Cells: Real-World Experience. Cancers 2023, 15, 4253. [Google Scholar] [CrossRef]
- Gavriilaki, E.; Sakellari, I.; Gavriilaki, M.; Anagnostopoulos, A. A New Era in Endothelial Injury Syndromes: Toxicity of CAR-T Cells and the Role of Immunity. Int. J. Mol. Sci. 2020, 21, 3886. [Google Scholar] [CrossRef]
- Lee, D.W.; Santomasso, B.D.; Locke, F.L.; Ghobadi, A.; Turtle, C.J.; Brudno, J.N.; Maus, M.V.; Park, J.H.; Mead, E.; Pavletic, S.; et al. ASTCT Consensus Grading for Cytokine Release Syndrome and Neurologic Toxicity Associated with Immune Effector Cells. Biol. Blood Marrow Transplant. 2019, 25, 625–638. [Google Scholar] [CrossRef]
- Rejeski, K.; Subklewe, M.; Aljurf, M.; Bachy, E.; Balduzzi, A.; Barba, P.; Bruno, B.; Benjamin, R.; Carrabba, M.G.; Chabannon, C.; et al. Immune Effector Cell–Associated Hematotoxicity: EHA/EBMT Consensus Grading and Best Practice Recommendations. Blood 2023, 142, 865–877. [Google Scholar] [CrossRef]
- Evangelidis, P.; Tragiannidis, K.; Vyzantiadis, A.; Evangelidis, N.; Kalmoukos, P.; Vyzantiadis, T.-A.; Tragiannidis, A.; Kourti, M.; Gavriilaki, E. Invasive Fungal Disease After Chimeric Antigen Receptor-T Immunotherapy in Adult and Pediatric Patients. Pathogens 2025, 14, 170. [Google Scholar] [CrossRef]
- Evangelidis, P.; Gavriilaki, E.; Tsakiris, D.A. Thrombotic Complications after Hematopoietic Stem Cell Transplantation and Other Cellular Therapies. Thromb. Update 2024, 16, 100186. [Google Scholar] [CrossRef]
- Strongyli, E.; Evangelidis, P.; Sakellari, I.; Gavriilaki, M.; Gavriilaki, E. Change in Neurocognitive Function in Patients Who Receive CAR-T Cell Therapies: A Steep Hill to Climb. Pharmaceuticals 2024, 17, 591. [Google Scholar] [CrossRef] [PubMed]
- Schett, G.; Müller, F.; Taubmann, J.; Mackensen, A.; Wang, W.; Furie, R.A.; Gold, R.; Haghikia, A.; Merkel, P.A.; Caricchio, R.; et al. Advancements and Challenges in CAR T Cell Therapy in Autoimmune Diseases. Nat. Rev. Rheumatol. 2024, 20, 531–544. [Google Scholar] [CrossRef] [PubMed]
- Albelda, S.M. CAR T Cell Therapy for Patients with Solid Tumours: Key Lessons to Learn and Unlearn. Nat. Rev. Clin. Oncol. 2024, 21, 47–66. [Google Scholar] [CrossRef] [PubMed]
- Bouabida, K.; Chaves, B.G.; Anane, E. Challenges and Barriers to HIV Care Engagement and Care Cascade: Viewpoint. Front. Reprod. Health 2023, 5, 1201087. [Google Scholar] [CrossRef]
- Salmanton-García, J.; Marchesi, F.; Farina, F.; Weinbergerová, B.; Itri, F.; Dávila-Valls, J.; Martín-Pérez, S.; Glenthøj, A.; Hersby, D.S.; Gomes da Silva, M.; et al. Decoding the Historical Tale: COVID-19 Impact on Haematological Malignancy Patients-EPICOVIDEHA Insights from 2020 to 2022. EClinicalMedicine 2024, 71, 102553. [Google Scholar] [CrossRef]
- Iosifidis, E.; Bradley, J.S. The Challenge of Extensively Drug-Resistant Gram-Negative Pathogens in Children: Newer Antibiotics and When to Use Them for Empiric and Definitive Therapy. Pediatr. Infect. Dis. J. 2023, 42, e483–e487. [Google Scholar] [CrossRef]
- Hupperetz, C.; Lah, S.; Kim, H.; Kim, C.H. CAR T Cell Immunotherapy Beyond Haematological Malignancy. Immune Netw. 2022, 22, e6. [Google Scholar] [CrossRef]
- Morte-Romea, E.; Pesini, C.; Pellejero-Sagastizábal, G.; Letona-Giménez, S.; Martínez-Lostao, L.; Aranda, S.L.; Toyas, C.; Redrado, S.; Dolader-Ballesteros, E.; Arias, M.; et al. CAR Immunotherapy for the Treatment of Infectious Diseases: A Systematic Review. Front. Immunol. 2024, 15, 1289303. [Google Scholar] [CrossRef]
- Yarchoan, R.; Uldrick, T.S. HIV-Associated Cancers and Related Diseases. N. Engl. J. Med. 2018, 378, 1029–1041. [Google Scholar] [CrossRef]
- Campos-Gonzalez, G.; Martinez-Picado, J.; Velasco-Hernandez, T.; Salgado, M. Opportunities for CAR-T Cell Immunotherapy in HIV Cure. Viruses 2023, 15, 789. [Google Scholar] [CrossRef]
- Namdari, H.; Rezaei, F.; Teymoori-Rad, M.; Mortezagholi, S.; Sadeghi, A.; Akbari, A. CAR T Cells: Living HIV Drugs. Rev. Med. Virol. 2020, 30, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Yang, O.O.; Tran, A.-C.; Kalams, S.A.; Johnson, R.P.; Roberts, M.R.; Walker, B.D. Lysis of HIV-1-Infected Cells and Inhibition of Viral Replication by Universal Receptor T Cells. Proc. Natl. Acad. Sci. USA 1997, 94, 11478–11483. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Kitchen, S.G.; Chen, I.S.Y.; Ng, H.L.; Zack, J.A.; Yang, O.O. HIV-1-Specific Chimeric Antigen Receptors Based on Broadly Neutralizing Antibodies. J. Virol. 2016, 90, 6999–7006. [Google Scholar] [CrossRef]
- Zhen, A.; Kamata, M.; Rezek, V.; Rick, J.; Levin, B.; Kasparian, S.; Chen, I.S.; Yang, O.O.; Zack, J.A.; Kitchen, S.G. HIV-Specific Immunity Derived from Chimeric Antigen Receptor-Engineered Stem Cells. Mol. Ther. 2015, 23, 1358–1367. [Google Scholar] [CrossRef] [PubMed]
- Mitsuyasu, R.T.; Anton, P.A.; Deeks, S.G.; Scadden, D.T.; Connick, E.; Downs, M.T.; Bakker, A.; Roberts, M.R.; June, C.H.; Jalali, S.; et al. Prolonged Survival and Tissue Trafficking Following Adoptive Transfer of CD4ζ Gene-Modified Autologous CD4+ and CD8+ T Cells in Human Immunodeficiency Virus–Infected Subjects. Blood 2000, 96, 785–793. [Google Scholar] [CrossRef]
- Walker, R.E.; Bechtel, C.M.; Natarajan, V.; Baseler, M.; Hege, K.M.; Metcalf, J.A.; Stevens, R.; Hazen, A.; Blaese, R.M.; Chen, C.C.; et al. Long-Term in Vivo Survival of Receptor-Modified Syngeneic T Cells in Patients with Human Immunodeficiency Virus Infection. Blood 2000, 96, 467–474. [Google Scholar]
- Deeks, S.G.; Wagner, B.; Anton, P.A.; Mitsuyasu, R.T.; Scadden, D.T.; Huang, C.; Macken, C.; Richman, D.D.; Christopherson, C.; June, C.H.; et al. A Phase II Randomized Study of HIV-Specific T-Cell Gene Therapy in Subjects with Undetectable Plasma Viremia on Combination Antiretroviral Therapy. Mol. Ther. 2002, 5, 788–797. [Google Scholar] [CrossRef]
- Scholler, J.; Brady, T.L.; Binder-Scholl, G.; Hwang, W.-T.; Plesa, G.; Hege, K.M.; Vogel, A.N.; Kalos, M.; Riley, J.L.; Deeks, S.G.; et al. Decade-Long Safety and Function of Retroviral-Modified Chimeric Antigen Receptor T Cells. Sci. Transl. Med. 2012, 4, 132ra53. [Google Scholar] [CrossRef]
- Bar, K.J.; Sneller, M.C.; Harrison, L.J.; Justement, J.S.; Overton, E.T.; Petrone, M.E.; Salantes, D.B.; Seamon, C.A.; Scheinfeld, B.; Kwan, R.W.; et al. Effect of HIV Antibody VRC01 on Viral Rebound after Treatment Interruption. N. Engl. J. Med. 2016, 375, 2037–2050. [Google Scholar] [CrossRef]
- Scheid, J.F.; Horwitz, J.A.; Bar-On, Y.; Kreider, E.F.; Lu, C.-L.; Lorenzi, J.C.C.; Feldmann, A.; Braunschweig, M.; Nogueira, L.; Oliveira, T.; et al. HIV-1 Antibody 3BNC117 Suppresses Viral Rebound in Humans during Treatment Interruption. Nature 2016, 535, 556–560. [Google Scholar] [CrossRef]
- Mendoza, P.; Gruell, H.; Nogueira, L.; Pai, J.A.; Butler, A.L.; Millard, K.; Lehmann, C.; Suárez, I.; Oliveira, T.Y.; Lorenzi, J.C.C.; et al. Combination Therapy with Anti-HIV-1 Antibodies Maintains Viral Suppression. Nature 2018, 561, 479–484. [Google Scholar] [CrossRef] [PubMed]
- Caruana, I.; Diaconu, I.; Dotti, G. From Monoclonal Antibodies to Chimeric Antigen Receptors for the Treatment of Human Malignancies. Semin. Oncol. 2014, 41, 661–666. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zou, F.; Lu, L.; Chen, C.; He, D.; Zhang, X.; Tang, X.; Liu, C.; Li, L.; Zhang, H. Chimeric Antigen Receptor T Cells Guided by the Single-Chain Fv of a Broadly Neutralizing Antibody Specifically and Effectively Eradicate Virus Reactivated from Latency in CD4+ T Lymphocytes Isolated from HIV-1-Infected Individuals Receiving Suppressive Combined Antiretroviral Therapy. J. Virol. 2016, 90, 9712–9724. [Google Scholar] [CrossRef] [PubMed]
- Zou, F.; Lu, L.; Liu, J.; Xia, B.; Zhang, W.; Hu, Q.; Liu, W.; Zhang, Y.; Lin, Y.; Jing, S.; et al. Engineered Triple Inhibitory Receptor Resistance Improves Anti-Tumor CAR-T Cell Performance via CD56. Nat. Commun. 2019, 10, 4109. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, W.; Xia, B.; Jing, S.; Du, Y.; Zou, F.; Li, R.; Lu, L.; Chen, S.; Li, Y.; et al. Broadly Neutralizing Antibody–Derived CAR T Cells Reduce Viral Reservoir in Individuals Infected with HIV-1. J. Clin. Investig. 2021, 131, e150211. [Google Scholar] [CrossRef]
- Mao, Y.; Liao, Q.; Zhu, Y.; Bi, M.; Zou, J.; Zheng, N.; Zhu, L.; Zhao, C.; Liu, Q.; Liu, L.; et al. Efficacy and Safety of Novel Multifunctional M10 CAR-T Cells in HIV-1-Infected Patients: A Phase I, Multicenter, Single-Arm, Open-Label Study. Cell Discov. 2024, 10, 49. [Google Scholar] [CrossRef]
- NCT06880380: The Efficacy and Safety Study of CAR-T Cells for Functional Cure in HIV-1/AIDS Patients (HIV-CAR-T). Available online: https://clinicaltrials.gov/study/NCT06880380?cond=HIV&intr=CAR&rank=1 (accessed on 22 April 2025).
- NCT03240328: The Effect of Chimeric Antigen Receptor (CAR)-T Cell Therapy on the Reconstitution of HIV-Specific Immune Function. Available online: https://clinicaltrials.gov/study/NCT03240328 (accessed on 22 April 2025).
- NCT06252402: CMV-Specific HIV-CAR T Cells as Immunotherapy for HIV/AIDS. Available online: https://clinicaltrials.ucsd.edu/trial/NCT06252402 (accessed on 22 April 2025).
- NCT04863066: Third-Generation CAR-T-Cell Therapy in Individuals With HIV-1 Infection (TCTIWHI). Available online: https://clinicaltrials.gov/study/NCT04863066?term=AREA%5BBasicSearch%5D(AREA%5BInterventionSearch%5D(CAR-T%20cells))&rank=2 (accessed on 22 April 2025).
- NCT04648046: CAR-T Cells for HIV Infection. Available online: https://clinicaltrials.ucsf.edu/trial/NCT04648046 (accessed on 22 April 2025).
- Damania, B.; Kenney, S.C.; Raab-Traub, N. Epstein-Barr Virus: Biology and Clinical Disease. Cell 2022, 185, 3652–3670. [Google Scholar] [CrossRef]
- Wang, L.; Ning, S. New Look of EBV LMP1 Signaling Landscape. Cancers 2021, 13, 5451. [Google Scholar] [CrossRef]
- de Silva, J.M.; de Alves, C.E.C.; Pontes, G.S. Epstein-Barr Virus: The Mastermind of Immune Chaos. Front. Immunol. 2024, 15, 1297994. [Google Scholar] [CrossRef]
- Zhang, Y.; Lyu, H.; Guo, R.; Cao, X.; Feng, J.; Jin, X.; Lu, W.; Zhao, M. Epstein–Barr Virus–Associated Cellular Immunotherapy. Cytotherapy 2023, 25, 903–912. [Google Scholar] [CrossRef]
- Tang, X.; Zhou, Y.; Li, W.; Tang, Q.; Chen, R.; Zhu, J.; Feng, Z. T Cells Expressing a LMP1-Specific Chimeric Antigen Receptor Mediate Antitumor Effects against LMP1-Positive Nasopharyngeal Carcinoma Cells in Vitro and in Vivo. J. Biomed. Res. 2014, 28, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Vardi, A.; Sakellari, I.; Lazaridou, A.; Papalexandri, A.; Batsis, I.; Mallouri, D.; Marvaki, A.; Touloumenidou, T.; Yannaki, E.; Iskas, M.; et al. EBV-Related Post-Transplant Lymphoproliferative Disease in Allogeneic Hematopoietic Cell Transplantation: Single-Center Experience and Considerations Regarding CNS Involvement. Blood 2018, 132, 5706. [Google Scholar] [CrossRef]
- Papalexandri, A.; Gavriilaki, E.; Vardi, A.; Kotsiou, N.; Demosthenous, C.; Constantinou, N.; Touloumenidou, T.; Zerva, P.; Kika, F.; Iskas, M.; et al. Pre-Emptive Use of Rituximab in Epstein-Barr Virus Reactivation: Incidence, Predictive Factors, Monitoring, and Outcomes. Int. J. Mol. Sci. 2023, 24, 16029. [Google Scholar] [CrossRef]
- Dragon, A.C.; Zimmermann, K.; Nerreter, T.; Sandfort, D.; Lahrberg, J.; Klöß, S.; Kloth, C.; Mangare, C.; Bonifacius, A.; Tischer-Zimmermann, S.; et al. CAR-T Cells and TRUCKs That Recognize an EBNA-3C-Derived Epitope Presented on HLA-B*35 Control Epstein-Barr Virus-Associated Lymphoproliferation. J. Immunother. Cancer 2020, 8, e000736. [Google Scholar] [CrossRef]
- Sun, C.; Fang, X.-Y.; Bu, G.-L.; Zhong, L.-Y.; Xie, C.; Zhao, G.-X.; Sui, S.-F.; Liu, Z.; Zeng, M.-S. Structural Basis of Epstein-Barr Virus Gp350 Receptor Recognition and Neutralization. Cell Rep. 2025, 44, 115168. [Google Scholar] [CrossRef] [PubMed]
- Slabik, C.; Kalbarczyk, M.; Danisch, S.; Zeidler, R.; Klawonn, F.; Volk, V.; Krönke, N.; Feuerhake, F.; Ferreira de Figueiredo, C.; Blasczyk, R.; et al. CAR-T Cells Targeting Epstein-Barr Virus Gp350 Validated in a Humanized Mouse Model of EBV Infection and Lymphoproliferative Disease. Mol. Ther. Oncolytics 2020, 18, 504–524. [Google Scholar] [CrossRef]
- Wang, J.; Wang, H.; Ding, Y.; Cao, N.; Nan, F.; Wu, F.; Li, C.; Liang, X.; Xiao, M.; Guo, J.; et al. Gp350-Targeted CAR-T Therapy in EBV-Positive Burkitt Lymphoma: Pre-Clinical Development of Gp350 CAR-T. J. Transl. Med. 2025, 23, 171. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, H.; Ma, Y.; Zhang, X.; Han, D.; Thiery, J.P. 899P Safety and Efficacy of a Novel CAR-T Cell Therapy (BRG01) Targeting the Epstein-Barr Virus Envelope Glycoprotein in Advanced Metastatic Nasopharyngeal Cancer Patients. Ann. Oncol. 2024, 35, S636. [Google Scholar] [CrossRef]
- NCT03617198: CD4 CAR+ ZFN-Modified T Cells in HIV Therapy. Available online: https://clinicaltrials.gov/study/NCT03617198 (accessed on 22 April 2025).
- Jakharia, N.; Howard, D.; Riedel, D.J. CMV Infection in Hematopoietic Stem Cell Transplantation: Prevention and Treatment Strategies. Curr. Treat. Options Infect. Dis. 2021, 13, 123–140. [Google Scholar] [CrossRef]
- Cantoni, N.; Hirsch, H.H.; Khanna, N.; Gerull, S.; Buser, A.; Bucher, C.; Halter, J.; Heim, D.; Tichelli, A.; Gratwohl, A.; et al. Evidence for a Bidirectional Relationship between Cytomegalovirus Replication and Acute Graft-versus-Host Disease. Biol Blood Marrow Transpl. 2010, 16, 1309–1314. [Google Scholar] [CrossRef] [PubMed]
- Ljungman, P.; de la Camara, R.; Robin, C.; Crocchiolo, R.; Einsele, H.; Hill, J.A.; Hubacek, P.; Navarro, D.; Cordonnier, C.; Ward, K.N.; et al. Guidelines for the Management of Cytomegalovirus Infection in Patients with Haematological Malignancies and after Stem Cell Transplantation from the 2017 European Conference on Infections in Leukaemia (ECIL 7). Lancet Infect. Dis. 2019, 19, e260–e272. [Google Scholar] [CrossRef] [PubMed]
- Einsele, H.; Ljungman, P.; Boeckh, M. How I Treat CMV Reactivation after Allogeneic Hematopoietic Stem Cell Transplantation. Blood 2020, 135, 1619–1629. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulou, A.; Koukoulias, K.; Alvanou, M.; Papadopoulos, V.K.; Bousiou, Z.; Kalaitzidou, V.; Kika, F.S.; Papalexandri, A.; Mallouri, D.; Batsis, I.; et al. Patient Risk Stratification and Tailored Clinical Management of Post-Transplant CMV-, EBV-, and BKV-Infections by Monitoring Virus-Specific T-Cell Immunity. EJHaem 2021, 2, 428–439. [Google Scholar] [CrossRef]
- Bao, L.; Cowan, M.J.; Dunham, K.; Horn, B.; McGuirk, J.; Gilman, A.; Lucas, K.G. Adoptive Immunotherapy with CMV-Specific Cytotoxic T Lymphocytes for Stem Cell Transplant Patients with Refractory CMV Infections. J. Immunother. 2012, 35, 293–298. [Google Scholar] [CrossRef]
- Bednar, C.; Ensser, A. CARs-A New Perspective to HCMV Treatment. Viruses 2021, 13, 1563. [Google Scholar] [CrossRef]
- Lee, B.-J.; Min, C.-K.; Hancock, M.; Streblow, D.N.; Caposio, P.; Goodrum, F.D.; Yurochko, A.D. Human Cytomegalovirus Host Interactions: EGFR and Host Cell Signaling Is a Point of Convergence Between Viral Infection and Functional Changes in Infected Cells. Front. Microbiol. 2021, 12, 660901. [Google Scholar] [CrossRef]
- Full, F.; Lehner, M.; Thonn, V.; Goetz, G.; Scholz, B.; Kaufmann, K.B.; Mach, M.; Abken, H.; Holter, W.; Ensser, A. T Cells Engineered with a Cytomegalovirus-Specific Chimeric Immunoreceptor. J. Virol. 2010, 84, 4083–4088. [Google Scholar] [CrossRef]
- Proff, J.; Walterskirchen, C.; Brey, C.; Geyeregger, R.; Full, F.; Ensser, A.; Lehner, M.; Holter, W. Cytomegalovirus-Infected Cells Resist T Cell Mediated Killing in an HLA-Recognition Independent Manner. Front. Microbiol. 2016, 7, 844. [Google Scholar] [CrossRef]
- Olbrich, H.; Theobald, S.J.; Slabik, C.; Gerasch, L.; Schneider, A.; Mach, M.; Shum, T.; Mamonkin, M.; Stripecke, R. Adult and Cord Blood-Derived High-Affinity GB-CAR-T Cells Effectively React Against Human Cytomegalovirus Infections. Hum. Gene Ther. 2020, 31, 423–439. [Google Scholar] [CrossRef]
- Ali, A.; Chiuppesi, F.; Nguyen, M.; Hausner, M.A.; Nguyen, J.; Kha, M.; Iniguez, A.; Wussow, F.; Diamond, D.J.; Yang, O.O. Chimeric Antigen Receptors Targeting Human Cytomegalovirus. J. Infect. Dis. 2020, 222, 853–862. [Google Scholar] [CrossRef]
- GBD 2019 Hepatitis B Collaborators Global, Regional, and National Burden of Hepatitis B, 1990-2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet Gastroenterol. Hepatol. 2022, 7, 796–829. [CrossRef]
- Brunner, N.; Bruggmann, P. Trends of the Global Hepatitis C Disease Burden: Strategies to Achieve Elimination. J. Prev. Med. Public. Health 2021, 54, 251–258. [Google Scholar] [CrossRef]
- Bohne, F.; Chmielewski, M.; Ebert, G.; Wiegmann, K.; Kürschner, T.; Schulze, A.; Urban, S.; Krönke, M.; Abken, H.; Protzer, U. T Cells Redirected Against Hepatitis B Virus Surface Proteins Eliminate Infected Hepatocytes. Gastroenterology 2008, 134, 239–247. [Google Scholar] [CrossRef]
- Kruse, R.L.; Shum, T.; Tashiro, H.; Barzi, M.; Yi, Z.; Whitten-Bauer, C.; Legras, X.; Bissig-Choisat, B.; Garaigorta, U.; Gottschalk, S.; et al. HBsAg-Redirected T Cells Exhibit Antiviral Activity in HBV-Infected Human Liver Chimeric Mice. Cytotherapy 2018, 20, 697–705. [Google Scholar] [CrossRef]
- Klopp, A.; Schreiber, S.; Kosinska, A.D.; Pulé, M.; Protzer, U.; Wisskirchen, K. Depletion of T Cells via Inducible Caspase 9 Increases Safety of Adoptive T-Cell Therapy Against Chronic Hepatitis B. Front. Immunol. 2021, 12, 734246. [Google Scholar] [CrossRef]
- Festag, M.M.; Festag, J.; Fräßle, S.P.; Asen, T.; Sacherl, J.; Schreiber, S.; Mück-Häusl, M.A.; Busch, D.H.; Wisskirchen, K.; Protzer, U. Evaluation of a Fully Human, Hepatitis B Virus-Specific Chimeric Antigen Receptor in an Immunocompetent Mouse Model. Mol. Ther. 2019, 27, 947–959. [Google Scholar] [CrossRef] [PubMed]
- Guo, G.; He, W.; Zhou, Z.; Diao, Y.; Sui, J.; Li, W. PreS1- Targeting Chimeric Antigen Receptor T Cells Diminish HBV Infection in Liver Humanized FRG Mice. Virology 2023, 586, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, Q.; Li, C.; Wang, C.; Wang, S.; Yuan, W.; Yu, D.; Zhang, K.; Shi, B.; Chen, X.; et al. Chimeric Antigen Receptors of HBV Envelope Proteins Inhibit Hepatitis B Surface Antigen Secretion. Gut 2024, 73, 668–681. [Google Scholar] [CrossRef] [PubMed]
- Sautto, G.A.; Wisskirchen, K.; Clementi, N.; Castelli, M.; Diotti, R.A.; Graf, J.; Clementi, M.; Burioni, R.; Protzer, U.; Mancini, N. Chimeric Antigen Receptor (CAR)-Engineered T Cells Redirected against Hepatitis C Virus (HCV) E2 Glycoprotein. Gut 2016, 65, 512–523. [Google Scholar] [CrossRef]
- Manns, M.P.; Maasoumy, B. Breakthroughs in Hepatitis C Research: From Discovery to Cure. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 533–550. [Google Scholar] [CrossRef]
- Gebru, A.A.; Birhanu, T.; Wendimu, E.; Ayalew, A.F.; Mulat, S.; Abasimel, H.Z.; Kazemi, A.; Tadesse, B.A.; Gebru, B.A.; Deriba, B.S.; et al. Global Burden of COVID-19: Situational Analyis and Review. Hum. Antibodies 2021, 29, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Baka, M.; Michos, A.; Alexopoulou, A.; Bouka, P.; Bouka, E.; Dana, E.; Dimitriou, G.; Grivea, I.; Ioannidou, M.; Kourti, M.; et al. COVID-19 among Children with Cancer in Greece (2020): Results from the Nationwide Registry of Childhood Hematological Malignancies and Solid Tumors (NARECHEM-ST). Pediatr. Blood Cancer 2021, 68, e29079. [Google Scholar] [CrossRef] [PubMed]
- Moss, P. The T Cell Immune Response against SARS-CoV-2. Nat. Immunol. 2022, 23, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulou, A.; Karavalakis, G.; Papadopoulou, E.; Xochelli, A.; Bousiou, Z.; Vogiatzoglou, A.; Papayanni, P.-G.; Georgakopoulou, A.; Giannaki, M.; Stavridou, F.; et al. SARS-CoV-2-Specific T Cell Therapy for Severe COVID-19: A Randomized Phase 1/2 Trial. Nat. Med. 2023, 29, 2019–2029. [Google Scholar] [CrossRef]
- Papayanni, P.-G.; Chasiotis, D.; Koukoulias, K.; Georgakopoulou, A.; Iatrou, A.; Gavriilaki, E.; Giannaki, C.; Bitzani, M.; Geka, E.; Tasioudis, P.; et al. Vaccinated and Convalescent Donor-Derived Severe Acute Respiratory Syndrome Coronavirus 2-Specific T Cells as Adoptive Immunotherapy for High-Risk Coronavirus Disease 2019 Patients. Clin. Infect. Dis. 2021, 73, 2073–2082. [Google Scholar] [CrossRef]
- Guo, X.; Kazanova, A.; Thurmond, S.; Saragovi, H.U.; Rudd, C.E. Effective Chimeric Antigen Receptor T Cells against SARS-CoV-2. iScience 2021, 24, 103295. [Google Scholar] [CrossRef]
- Dogan, M.; Kozhaya, L.; Placek, L.; Karabacak, F.; Yigit, M.; Unutmaz, D. Targeting SARS-CoV-2 Infection through CAR-T-like Bispecific T Cell Engagers Incorporating ACE2. Clin. Transl. Immunol. 2022, 11, e1421. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, C.; Fang, Y.; Chen, W.; Qiu, J.; Zhu, M.; Wei, W.; Tu, J. Developing CAR-Immune Cell Therapy against SARS-CoV-2: Current Status, Challenges and Prospects. Biochem. Pharmacol. 2024, 222, 116066. [Google Scholar] [CrossRef]
- Ma, M.T.; Badeti, S.; Chen, C.-H.; Kim, J.; Choudhary, A.; Honnen, B.; Reichman, C.; Calianese, D.; Pinter, A.; Jiang, Q.; et al. CAR-NK Cells Effectively Target SARS-CoV-2-Spike-Expressing Cell Lines In Vitro. Front. Immunol. 2021, 12, 652223. [Google Scholar] [CrossRef]
- Fu, W.; Lei, C.; Ma, Z.; Qian, K.; Li, T.; Zhao, J.; Hu, S. CAR Macrophages for SARS-CoV-2 Immunotherapy. Front. Immunol. 2021, 12, 669103. [Google Scholar] [CrossRef] [PubMed]
- NCT04324996: A Phase I/II Study of Off-the-Shelf NKG2D-ACE2 CAR-NK Cells for Therapy of COVID-19. Available online: https://ctv.veeva.com/study/a-phase-i-ii-study-of-universal-off-the-shelf-nkg2d-ace2-car-nk-cells-for-therapy-of-covid19 (accessed on 22 April 2025).
- Donnelly, J.P.; Chen, S.C.; Kauffman, C.A.; Steinbach, W.J.; Baddley, J.W.; Verweij, P.E.; Clancy, C.J.; Wingard, J.R.; Lockhart, S.R.; Groll, A.H.; et al. Revision and Update of the Consensus Definitions of Invasive Fungal Disease From the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium. Clin. Infect. Dis. 2020, 71, 1367–1376. [Google Scholar] [CrossRef] [PubMed]
- Kourti, M.; Chorafa, E.; Roilides, E.; Iosifidis, E. Antifungal Stewardship Programs in Children: Challenges and Opportunities. Pediatr. Infect. Dis. J. 2023, 42, e246–e248. [Google Scholar] [CrossRef] [PubMed]
- Gavriilaki, E.; Dolgyras, P.; Dimou-Mpesikli, S.; Poulopoulou, A.; Evangelidis, P.; Evangelidis, N.; Demosthenous, C.; Zachrou, E.; Siasios, P.; Mallouri, D.; et al. Risk Factors, Prevalence, and Outcomes of Invasive Fungal Disease Post Hematopoietic Cell Transplantation and Cellular Therapies: A Retrospective Monocenter Real-Life Analysis. Cancers 2023, 15, 3529. [Google Scholar] [CrossRef]
- Pyrpasopoulou, A.; Zarras, C.; Mouloudi, E.; Vakalis, G.; Ftergioti, A.; Kouroupis, D.; Papathanasiou, A.-I.; Iosifidis, E.; Goumperi, S.; Lampada, C.; et al. Changing Epidemiology of Candida spp. Causing Bloodstream Infections in a Tertiary Hospital in Northern Greece: Appearance of Candida auris. Pathogens 2025, 14, 161. [Google Scholar] [CrossRef]
- Nasiri-Jahrodi, A.; Barati, M.; Namdar Ahmadabad, H.; Badali, H.; Morovati, H. A Comprehensive Review on the Role of T Cell Subsets and CAR-T Cell Therapy in Aspergillus fumigatus Infection. Hum. Immunol. 2024, 85, 110763. [Google Scholar] [CrossRef]
- Kumaresan, P.R.; Manuri, P.R.; Albert, N.D.; Maiti, S.; Singh, H.; Mi, T.; Roszik, J.; Rabinovich, B.; Olivares, S.; Krishnamurthy, J.; et al. Bioengineering T Cells to Target Carbohydrate to Treat Opportunistic Fungal Infection. Proc. Natl. Acad. Sci. USA 2014, 111, 10660–10665. [Google Scholar] [CrossRef]
- Morrissey, C.O.; Kim, H.Y.; Duong, T.-M.N.; Moran, E.; Alastruey-Izquierdo, A.; Denning, D.W.; Perfect, J.R.; Nucci, M.; Chakrabarti, A.; Rickerts, V.; et al. Aspergillus fumigatus—A Systematic Review to Inform the World Health Organization Priority List of Fungal Pathogens. Med. Mycol. 2024, 62, myad129. [Google Scholar] [CrossRef]
- Seif, M.; Kakoschke, T.K.; Ebel, F.; Bellet, M.M.; Trinks, N.; Renga, G.; Pariano, M.; Romani, L.; Tappe, B.; Espie, D.; et al. CAR T Cells Targeting Aspergillus fumigatus Are Effective at Treating Invasive Pulmonary Aspergillosis in Preclinical Models. Sci. Transl. Med. 2022, 14, eabh1209. [Google Scholar] [CrossRef]
- da Silva, T.A.; Hauser, P.J.; Bandey, I.; Laskowski, T.; Wang, Q.; Najjar, A.M.; Kumaresan, P.R. Glucuronoxylomannan in the Cryptococcus Species Capsule as a Target for Chimeric Antigen Receptor T-Cell Therapy. Cytotherapy 2021, 23, 119–130. [Google Scholar] [CrossRef]
- Bauser, M.; Einsele, H.; Löffler, J.; Hudecek, M.; Seif, M. Engineering Chimeric Antigen Receptor-Natural Killer Cells Targeting Fungal Infections Using the Non-Viral Sleeping Beauty Transposon System. J. Vis. Exp. 2024, 212, e67424. [Google Scholar] [CrossRef]
- Yoon, H.; Pirofski, L.-A.; Boulware, D.R. Cryptococcal Meningitis Treatment Beyond HIV: Recognizing the Need for Individualized Immune-Based Strategies. Clin. Infect. Dis. 2025, ciaf218. [Google Scholar] [CrossRef]
- Esher, S.K.; Zaragoza, O.; Alspaugh, J.A. Cryptococcal Pathogenic Mechanisms: A Dangerous Trip from the Environment to the Brain. Mem. Inst. Oswaldo Cruz 2018, 113, e180057. [Google Scholar] [CrossRef]
- Luo, J.; Zhang, X. Challenges and Innovations in CAR-T Cell Therapy: A Comprehensive Analysis. Front. Oncol. 2024, 14, 1399544. [Google Scholar] [CrossRef]
First Author, Year of Publication, Reference | Number of Participants | Age of Participants (Years) | Phase | CAR-T Generation | Type of CAR-T | Significant Findings |
---|---|---|---|---|---|---|
Mitsuyasu, 2000, [26] | 24 | Mean (range): 40 (29–50) | II | 1st | Autologous CD4+, CD8+ CAR T-cells containing CD4ζ genes with or without IL-2 administration | Mean change in levels of HIV RNA or blood proviral DNA was not significant in either of the two groups (CAR-T+IL-2) |
Walker, 2000, [27] | 30 | NS | I | 1st | Single or multiple infusions of CD4+ and CD8+1 CAR-T cells from identical twin donors with CD4/CD3-z gene | -Sustained CAR-T cell survival in circulation, for at least 1 year, was achieved in patients who received both CD4+ and CD8+. -The presence of modified cells in lymphoid organs was lower or equivalent to that in circulation. -CAR-T cell therapy was safe. |
Deeks, 2002, [28] | 401 (20 modified and 20 unmodified T cells) | Mean age (range): -Gene modified group: 39 (28, 54) -Unmodified: 43 (28, 59) | II | 1st | Autologous CD4+, CD8+ CAR T-cells containing CD4ζ gene combined with HAART administration | -In both groups (gene-modified/unmodified), CD4+ T cells were increased post-infusion. -No significant differences in HIV reservoirs. -In patients who received gene-modified T cells, a significant decrease in two viral reservoirs was reported (quantitative HIV coculture, rectal biopsy HIV DNA). |
Liu, 2021, [36] | 15 | Median (range): 31 (26–47) | I | 3rd | CAR-T cells2 with endogenous BNAbs | -CAR-T cells were well-tolerated and safe. -6 patients discontinued HAART: the median time to the viremia rebound was 5.3 weeks. -Statistically significant decrease in HIV RNA levels post-infusion. |
Mao, 2024, [37] | 18 | Median (range): 31 (18–57) | I | 2nd | Allogeneic CAR-T cells, recognizing Env, with endogenous BNAbs and a follicle-homing receptor CXCR5 (M10 cells)3 | -In vitro, M10 cells were found to exhibit broad cytotoxic effects on HIV-infected cells, while neutralizing cell-free viruses and B-cell follicle homing. -74.3% of CAR-T cell recipients exhibited a significant viral rebound (after an initial decrease) -Average 67.1% decrease in viral load. -In 10/18 patients, persistently reduced cell-associated HIV-1 RNA levels (average decrease of 1.15 log10) were reported during the follow-up (150 days). -No significant treatment-related adverse events. |
Clinical Trial Registration Number | Country | Title | Phase, Status |
---|---|---|---|
NCT06880380 [38] | China | The Efficacy and Safety Study of CAR-T Cells for Functional Cure in HIV-1/AIDS Patients (HIV-CAR-T) | I, Not yet recruiting |
NCT03240328 [39] | China | The Effect of CAR-T Cell Therapy on the Reconstitution of HIV-specific Immune Function | I, Recruiting |
NCT06252402 [40] | United States | CMV-specific HIV-CAR T Cells as Immunotherapy for HIV/AIDS | Early I, Recruiting |
NCT04863066 [41] | China | Third-Generation CAR-T-cell Therapy in Individuals With HIV-1 Infection (TCTIWHI) | I, Unknown status |
NCT04648046 [42] | United states | CAR-T Cells for HIV Infection | I/II, Recruiting |
NCT03617198 | United States | CD4 CAR+ ZFN-modified T Cells in HIV Therapy | I, Active/Not Recruiting |
1st Generation CAR | 2nd Generation CAR | 3rd Generation CAR | |
---|---|---|---|
Structure-costimulatory domains | None (only CD3ζ) | One (such as CD28 or 4-1BB) | Two (such as CD28 and 4-1BB) |
Persistence | Low | Improved persistence due to costimulation | Enhanced persistence |
Exhaustion susceptibility | High–early exhaustion | Moderate–costimulation delays exhaustion | Lower–dual signaling mitigates exhaustion |
Immune escape risk | Higher–insufficient persistence | Moderate–improved antigen clearance | Lower–sustained immune pressure on pathogens |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kourti, M.; Evangelidis, P.; Roilides, E.; Iosifidis, E. Chimeric Antigen Receptor Immunotherapy for Infectious Diseases: Current Advances and Future Perspectives. Pathogens 2025, 14, 774. https://doi.org/10.3390/pathogens14080774
Kourti M, Evangelidis P, Roilides E, Iosifidis E. Chimeric Antigen Receptor Immunotherapy for Infectious Diseases: Current Advances and Future Perspectives. Pathogens. 2025; 14(8):774. https://doi.org/10.3390/pathogens14080774
Chicago/Turabian StyleKourti, Maria, Paschalis Evangelidis, Emmanuel Roilides, and Elias Iosifidis. 2025. "Chimeric Antigen Receptor Immunotherapy for Infectious Diseases: Current Advances and Future Perspectives" Pathogens 14, no. 8: 774. https://doi.org/10.3390/pathogens14080774
APA StyleKourti, M., Evangelidis, P., Roilides, E., & Iosifidis, E. (2025). Chimeric Antigen Receptor Immunotherapy for Infectious Diseases: Current Advances and Future Perspectives. Pathogens, 14(8), 774. https://doi.org/10.3390/pathogens14080774