Resistance of Gram-Negative Bacteria to Cefepime-Enmetazobactam: A Systematic Review
Abstract
1. Introduction
2. Methods
2.1. Sources and Eligibility Criteria
2.2. Search Strategy
2.3. Screening of Studies
2.4. Breakpoints of Susceptibility Testing
2.5. Data Extraction
2.6. Data Tabulation
3. Results
Selection of Relevant Articles
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ALT | alanine aminotransferase |
AmpC | AmpC β-lactamase enzyme |
AST | aspartate aminotransferase |
CFU | colony-forming units |
cIAI | complicated intra-abdominal infection |
CLSI | Clinical and Laboratory Standards Institute |
cUTIs | complicated urinary tract infections |
DOI | digital object identifier |
ELF | epithelial lining fluid |
EMA | European Medicines Agency |
ESBL | extended-spectrum β-lactamase |
EUCAST | European Committee on Antimicrobial Susceptibility Testing |
FDA | Food and Drug Administration |
HAP | hospital-acquired pneumonia |
KPC | Klebsiella pneumoniae carbapenemase |
MBL | metallo-β-lactamase |
MIC | minimum inhibitory concentration |
NDM | New Delhi metallo-β-lactamase |
PD | pharmacodynamic |
PK/PD | pharmacokinetic/pharmacodynamic |
PK | pharmacokinetic |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
VAP | including ventilator-associated pneumonia |
VIM | Verona integron-encoded metallo-β-lactamase |
XDR | extensively drug-resistant |
β-lactams | Beta-lactams |
References
- Papp-Wallace, K.M. The latest advances in β-lactam/β-lactamase inhibitor combinations for the treatment of Gram-negative bacterial infections. Expert Opin. Pharmacother. 2019, 20, 2169–2184. [Google Scholar] [CrossRef] [PubMed]
- Bergan, T. Pharmacokinetics of beta-lactam antibiotics. Scand. J. Infect. Dis. Suppl. 1984, 42, 83–98. [Google Scholar]
- Sargianou, M.; Stathopoulos, P.; Vrysis, C.; Tzvetanova, I.D.; Falagas, M.E. New β-Lactam/β-Lactamase Inhibitor Combination Antibiotics. Pathogens 2025, 14, 307. [Google Scholar] [CrossRef] [PubMed]
- Bhowmick, T.; Canton, R.; Pea, F.; Quevedo, J.; Santerre Henriksen, A.; Timsit, J.-F.; Kaye, K.S. Cefepime-enmetazobactam: First approved cefepime-β- lactamase inhibitor combination for multi-drug resistant Enterobacterales. Future Microbiol. 2025, 20, 277–286. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration Exblifep®. (Cefepime and Enmetazobactam) for Injection, for Intravenous Use: Highlights of Prescribing Information. 2024. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/216165s000lbl.pdf (accessed on 11 July 2025).
- Exblifep European Medicines Agency (EMA). 2024. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/exblifep (accessed on 11 July 2025).
- Johnson, A.; McEntee, L.; Farrington, N.; Kolamunnage-Dona, R.; Franzoni, S.; Vezzelli, A.; Massimiliano, M.; Knechtle, P.; Belley, A.; Dane, A.; et al. Pharmacodynamics of Cefepime Combined with the Novel Extended-Spectrum-β-Lactamase (ESBL) Inhibitor Enmetazobactam for Murine Pneumonia Caused by ESBL-Producing Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2020, 64, e00180-20. [Google Scholar] [CrossRef]
- Das, S.; Fitzgerald, R.; Ullah, A.; Bula, M.; Collins, A.M.; Mitsi, E.; Reine, J.; Hill, H.; Rylance, J.; Ferreira, D.M.; et al. Intrapulmonary Pharmacokinetics of Cefepime and Enmetazobactam in Healthy Volunteers: Towards New Treatments for Nosocomial Pneumonia. Antimicrob. Agents Chemother. 2020, 65, e01468-20. [Google Scholar] [CrossRef]
- Darlow, C.A.; Hope, W.; Dubey, V. Cefepime/Enmetazobactam: A microbiological, pharmacokinetic, pharmacodynamic, and clinical evaluation. Expert Opin. Drug Metab. Toxicol. 2025, 21, 115–123. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 34th ed.; CLSI supplement M100; Report No.: Μ100; CLSI: Wayne, PA, USA, 2024; p. 64. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Belley, A.; Morrissey, I.; Hawser, S.; Kothari, N.; Knechtle, P. Third-generation cephalosporin resistance in clinical isolates of Enterobacterales collected between 2016–2018 from USA and Europe: Genotypic analysis of β-lactamases and comparative in vitro activity of cefepime/enmetazobactam. J. Glob. Antimicrob. Resist. 2021, 25, 93–101. [Google Scholar] [CrossRef]
- Bonnin, R.A.; Jeannot, K.; Santerre Henriksen, A.; Quevedo, J.; Dortet, L. In vitro activity of cefepime-enmetazobactam on carbapenem-resistant Gram negatives. Clin. Microbiol. Infect. 2025, 31, 240–249. [Google Scholar] [CrossRef] [PubMed]
- Carlos Vázquez-Ucha, J.; Lasarte-Monterrubio, C.; Guijarro-Sánchez, P.; Oviaño, M.; Álvarez-Fraga, L.; Alonso-García, I.; Arca-Suárez, J.; Bou, G.; Beceiro, A.; Instituto de Investigación Biomédica de A Coruña La Corogne; et al. Assessment of Activity and Resistance Mechanisms to Cefepime in Combination with the Novel b-Lactamase Inhibitors Zidebactam, Taniborbactam, and Enmetazobactam Against a Multicenter Collection of Carbapenemase-Producing Enterobacterales. 2022. Available online: https://agris.fao.org/search/en/providers/122439/records/67dad517677d8be0233bfede (accessed on 10 July 2025).
- Emeraud, C.; De Swardt, H.; Bernabeu, S.; Latour, L.; Pages, A.; Ronsin, S.; Bonnin, R.A.; Dortet, L. Comparative evaluation of disc diffusion and LiofilchemTM MTS strip methods with broth microdilution for cefepime/enmetazobactam susceptibility testing. J. Antimicrob. Chemother. 2025, 80, 1220–1223. [Google Scholar] [CrossRef] [PubMed]
- Kadry, A.A.; El-Antrawy, M.A.; El-Ganiny, A.M. Management of clinical infections of Escherichia coli by new β-lactam/β-lactamase inhibitor combinations. Iran. J. Microbiol. 2022, 14, 466–474. [Google Scholar] [CrossRef]
- Lee, Y.-L.; Ko, W.-C.; Lee, W.-S.; Lu, P.-L.; Chen, Y.-H.; Cheng, S.-H.; Lu, M.-C.; Lin, C.-Y.; Wu, T.-S.; Yen, M.-Y.; et al. In-vitro activity of cefiderocol, cefepime/zidebactam, cefepime/enmetazobactam, omadacycline, eravacycline and other comparative agents against carbapenem-nonsusceptible Enterobacterales: Results from the Surveillance of Multicenter Antimicrobial Resistance in Taiwan (SMART) in 2017–2020. Int. J. Antimicrob. Agents 2021, 58, 106377. [Google Scholar] [CrossRef]
- Liu, P.-Y.; Ko, W.-C.; Lee, W.-S.; Lu, P.-L.; Chen, Y.-H.; Cheng, S.-H.; Lu, M.-C.; Lin, C.-Y.; Wu, T.-S.; Yen, M.-Y.; et al. In vitro activity of cefiderocol, cefepime/enmetazobactam, cefepime/zidebactam, eravacycline, omadacycline, and other comparative agents against carbapenem-non-susceptible Pseudomonas aeruginosa and Acinetobacter baumannii isolates associated from bloodstream infection in Taiwan between 2018–2020. J. Microbiol. Immunol. Infect. 2022, 55, 888–895. [Google Scholar] [CrossRef] [PubMed]
- Morrissey, I.; Hawser, S.; Kothari, N.; Dunkel, N.; Quevedo, J.; Belley, A.; Henriksen, A.S.; Attwood, M. Evaluation of the activity of cefepime/enmetazobactam against Enterobacterales bacteria collected in Europe from 2019 to 2021, including third-generation cephalosporin-resistant isolates. J. Glob. Antimicrob. Resist. 2024, 38, 71–82. [Google Scholar] [CrossRef]
- Morrissey, I.; Magnet, S.; Hawser, S.; Shapiro, S.; Knechtle, P. In vitro Activity of Cefepime-Enmetazobactam against Gram-Negative Isolates Collected from U.S. and European Hospitals during 2014–2015. Antimicrob. Agents Chemother. 2019, 63, e00514-19. [Google Scholar] [CrossRef] [PubMed]
- Tselepis, L.; Langley, G.W.; Aboklaish, A.F.; Widlake, E.; Jackson, D.E.; Walsh, T.R.; Schofield, C.J.; Brem, J.; Tyrrell, J.M. In vitro efficacy of imipenem-relebactam and cefepime-AAI101 against a global collection of ESBL-positive and carbapenemase-producing Enterobacteriaceae. Int. J. Antimicrob. Agents 2020, 56, 105925. [Google Scholar] [CrossRef]
- Vasquez-Ponce, F.; Dantas, K.; Becerra, J.; Melocco, G.; Esposito, F.; Cardoso, B.; Rodrigues, L.; Lima, K.; de Lima, A.V.; Sellera, F.P.; et al. Detecting KPC-2 and NDM-1 Coexpression in Klebsiella pneumoniae Complex from Human and Animal Hosts in South America. Microbiol. Spectr. 2022, 10, e01159-22. [Google Scholar] [CrossRef]
- Falagas, M.E.; Kontogiannis, D.S.; Zidrou, M.; Filippou, C.; Tansarli, G.S. Global Epidemiology and Antimicrobial Resistance of Metallo-β-Lactamase (MBL)-Producing Acinetobacter Clinical Isolates: A Systematic Review. Pathogens 2025, 14, 557. [Google Scholar] [CrossRef]
- Lang, P.A.; Raj, R.; Tumber, A.; Lohans, C.T.; Rabe, P.; Robinson, C.V.; Brem, J.; Schofield, C.J. Studies on enmetazobactam clarify mechanisms of widely used β-lactamase inhibitors. Proc. Natl. Acad. Sci. USA 2022, 119, e2117310119. [Google Scholar] [CrossRef]
- Bernhard, F.; Odedra, R.; Sordello, S.; Cardin, R.; Franzoni, S.; Charrier, C.; Belley, A.; Warn, P.; Machacek, M.; Knechtle, P. Pharmacokinetics-pharmacodynamics of enmetazobactam combined with cefepime in a neutropenic murine thigh infection model. Antimicrob. Agents Chemother. 2020, 64, e00078-20. [Google Scholar] [CrossRef]
- Karaiskos, I.; Giamarellou, H. Carbapenem-Sparing Strategies for ESBL Producers: When and How. Antibiotics 2020, 9, 61. [Google Scholar] [CrossRef]
- Falagas, M.E.; Kastoris, A.C.; Kapaskelis, A.M.; Karageorgopoulos, D.E. Fosfomycin for the treatment of multidrug-resistant, including extended-spectrum beta-lactamase producing, Enterobacteriaceae infections: A systematic review. Lancet Infect. Dis. 2010, 10, 43–50. [Google Scholar] [CrossRef]
- Falagas, M.E.; Vouloumanou, E.K.; Samonis, G.; Vardakas, K.Z. Fosfomycin. Clin. Microbiol. Rev. 2016, 29, 321–347. [Google Scholar] [CrossRef]
- Carmeli, Y.; Cisneros, J.M.; Paul, M.; Daikos, G.L.; Wang, M.; Torre-Cisneros, J.; Singer, G.; Titov, I.; Gumenchuk, I.; Zhao, Y.; et al. Aztreonam–avibactam versus meropenem for the treatment of serious infections caused by Gram-negative bacteria (REVISIT): A descriptive, multinational, open-label, phase 3, randomised trial. Lancet Infect. Dis. 2025, 25, 218–230. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.; Zhong, N.; Pachl, J.; Timsit, J.-F.; Kollef, M.; Chen, Z.; Song, J.; Taylor, D.; Laud, P.J.; Stone, G.G.; et al. Ceftazidime-avibactam versus meropenem in nosocomial pneumonia, including ventilator-associated pneumonia (REPROVE): A randomised, double-blind, phase 3 non-inferiority trial. Lancet Infect. Dis. 2018, 18, 285–295. [Google Scholar] [CrossRef]
- Solomkin, J.; Hershberger, E.; Miller, B.; Popejoy, M.; Friedland, I.; Steenbergen, J.; Yoon, M.; Collins, S.; Yuan, G.; Barie, P.S.; et al. Ceftolozane/Tazobactam Plus Metronidazole for Complicated Intra-abdominal Infections in an Era of Multidrug Resistance: Results from a Randomized, Double-Blind, Phase 3 Trial (ASPECT-cIAI). Clin. Infect. Dis. 2015, 60, 1462–1471. [Google Scholar] [CrossRef] [PubMed]
- Kollef, M.H.; Nováček, M.; Kivistik, Ü.; Réa-Neto, Á.; Shime, N.; Martin-Loeches, I.; Timsit, J.-F.; Wunderink, R.G.; Bruno, C.J.; Huntington, J.A.; et al. Ceftolozane–tazobactam versus meropenem for treatment of nosocomial pneumonia (ASPECT-NP): A randomised, controlled, double-blind, phase 3, non-inferiority trial. Lancet Infect. Dis. 2019, 19, 1299–1311. [Google Scholar] [CrossRef]
- Sahni, R.D.; Balaji, V.; Varghese, R.; John, J.; Tansarli, G.S.; Falagas, M.E. Evaluation of fosfomycin activity against uropathogens in a fosfomycin-naive population in South India: A prospective study. Future Microbiol. 2013, 8, 675–680. [Google Scholar] [CrossRef] [PubMed]
- Falagas, M.E.; Maraki, S.; Karageorgopoulos, D.E.; Kastoris, A.C.; Mavromanolakis, E.; Samonis, G. Antimicrobial susceptibility of multidrug-resistant (MDR) and extensively drug-resistant (XDR) Enterobacteriaceae isolates to fosfomycin. Int. J. Antimicrob. Agents 2010, 35, 240–243. [Google Scholar] [CrossRef]
- Katsarou, A.; Stathopoulos, P.; Tzvetanova, I.D.; Asimotou, C.-M.; Falagas, M.E. β-Lactam/β-Lactamase Inhibitor Combination Antibiotics Under Development. Pathogens 2025, 14, 168. [Google Scholar] [CrossRef]
- Bassetti, M.; Giacobbe, D.R. Cefepime-taniborbactam and CERTAIN-1: Can we treat carbapenem-resistant infections? Med 2024, 5, 380–382. [Google Scholar] [CrossRef]
- Roach, E.J.; Uehara, T.; Daigle, D.M.; Six, D.A.; Khursigara, C.M. The Next-Generation β-Lactamase Inhibitor Taniborbactam Restores the Morphological Effects of Cefepime in KPC-Producing Escherichia coli. Microbiol. Spectr. 2021, 9, e00918-21. [Google Scholar] [CrossRef]
- Moya, B.; Barcelo, I.M.; Bhagwat, S.; Patel, M.; Bou, G.; Papp-Wallace, K.M.; Bonomo, R.A.; Oliver, A. WCK 5107 (Zidebactam) and WCK 5153 Are Novel Inhibitors of PBP2 Showing Potent “β-Lactam Enhancer” Activity against Pseudomonas aeruginosa, Including Multidrug-Resistant Metallo-β-Lactamase-Producing High-Risk Clones. Antimicrob. Agents Chemother. 2017, 61, e02529-16. [Google Scholar] [CrossRef]
- Wockhardt. A Phase 3, Randomized, Double-Blind, Multicenter, Comparative Study to Determine the Efficacy and Safety of Cefepime-Zidebactam vs. Meropenem in the Treatment of Complicated Urinary Tract Infection or Acute Pyelonephritis in Adults; Report No.: NCT04979806; National Library of Medicine: Bethesda, MD, USA, 2025. Available online: https://clinicaltrials.gov/study/NCT04979806 (accessed on 17 July 2025).
- Romanos, L.T.; Kontogiannis, D.S.; Tsiampali, C.; Tzvetanova, I.D.; Falagas, M.E. Antibiotics and non-traditional antimicrobial agents for Pseudomonas aeruginosa in clinical phases 1, 2, and 3 trials. Expert Opin. Investig. Drugs 2025, 25, 32443. [Google Scholar] [CrossRef] [PubMed]
- Kaye, K.S.; Belley, A.; Barth, P.; Lahlou, O.; Knechtle, P.; Motta, P.; Velicitat, P. Effect of Cefepime/Enmetazobactam vs Piperacillin/Tazobactam on Clinical Cure and Microbiological Eradication in Patients With Complicated Urinary Tract Infection or Acute Pyelonephritis: A Randomized Clinical Trial. JAMA 2022, 328, 1304–1314. [Google Scholar] [CrossRef] [PubMed]
- Allecra. A Phase 1, Open-Label, Single-Dose Study to Assess the Mass Balance, Pharmacokinetics and Metabolism of Intravenously Administered 14C-AAI101 in Healthy Male Subjects; Report No.: NCT03775668; National Library of Medicine: Bethesda, MD, USA, 2019. Available online: https://clinicaltrials.gov/study/NCT03775668 (accessed on 11 July 2025).
- Allecra. Phase 1, Open-Label, Parallel Group, Single-Dose Study to Evaluate the Pharmacokinetics, Safety and Tolerability of AAI101 With Cefepime in Subjects With Varying Degrees of Renal Function; Report No.: NCT03680352; National Library of Medicine: Bethesda, MD, USA, 2022. Available online: https://clinicaltrials.gov/study/NCT03680352 (accessed on 10 July 2025).
- Allecra. A Phase I Open-Label, Single-Centre Study to Assess the Concentration of AAI101 and Cefepime in Epithelial Lining Fluid and Plasma in Healthy Volunteers; Report No.: NCT03680378; National Library of Medicine: Bethesda, MD, USA, 2020. Available online: https://clinicaltrials.gov/study/NCT03680378 (accessed on 11 July 2025).
- Allecra. Phase I, Single and Multiple Ascending Dose Study to Investigate the Safety, Tolerability and Pharmacokinetics of AAI101 Administered Intravenously Alone or in Combination With Piperacillin or Cefepime to Healthy Adult Subjects; Report No.: NCT03685084; National Library of Medicine: Bethesda, MD, USA, 2018. Available online: https://clinicaltrials.gov/study/NCT03685084 (accessed on 10 July 2025).
- Allecra. Randomized, Double-Blind, Multi-Center Study of Cefepime/AAI101 in Hospitalized Adults with Complicated Urinary Tract Infections, Including Acute Pyelonephritis; Report No.: NCT03680612; National Library of Medicine: Bethesda, MD, USA, 2018. Available online: https://clinicaltrials.gov/study/NCT03680612 (accessed on 10 July 2025).
- Allecra. Single Group Phase 2 Study to Investigate Pharmacokinetics, Safety and Tolerability of Cefepime-Enmetazobactam Administered by IV over 2 Hr in Male or Female Participants from Birth to Less Than 18 Years of Age Hospitalised with cUTI; Report No.: NCT05826990; National Library of Medicine: Bethesda, MD, USA, 2024. Available online: https://clinicaltrials.gov/study/NCT05826990 (accessed on 10 July 2025).
- Albac, S.; Anzala, N.; Chavanet, P.; Dunkel, N.; Quevedo, J.; Santerre Henriksen, A.; Croisier, D. In vivo efficacy of enmetazobactam combined with cefepime in a murine pneumonia model induced by OXA-48-producing Klebsiella pneumoniae. Microbiol. Spectr. 2024, 12, e02345-24. [Google Scholar] [CrossRef] [PubMed]
Author * | Year | Isolates | N | β-Lactamase Production (Number of Isolates) | MIC Value or Range (mg/L) | MIC50 (mg/L) | MIC90 (mg/L) | Resistance % (I: %) a [Breakpoint] b |
---|---|---|---|---|---|---|---|---|
Emeraud [15] | 2025 | CREs OXA-48-like producers AmpC overproduction/ ESBL + decreased outer membrane permeability NDM KPC VIM more than one β-lactamase K. pneumoniae E. coli E. cloacae complex C. freundii K. aerogenes K. oxytoca C. koseri M. morganii S. marcescens P. mirabilis R. ornithinolytica | 291 119 97 45 18 6 6 9169 67 23 14 14 5 4 2 1 1 | NA Hcase or ESBL + imperm. e (25), OXA-48-like (34), NDM (18), KPC (16) Hcase or ESBL + imperm. (10), OXA-48-like (48), NDM (11), KPC (1) Hcase or ESBL + imperm. (38), OXA-48-like (12), NDM (12), VIM (6) Hcase or ESBL + imperm. (3), OXA-48-like (1), NDM (5), VIM (1) Hcase or ESBL + imperm. (12), OXA-48-like (1), NDM (1) Hcase or ESBL + imperm. (6), OXA-48-like (7), KPC (1) Hcase or ESBL + imperm. (2), OXA-48-like (3) Hcase or ESBL + imperm. (1), OXA-48-like (1), NDM (2) OXA-48-like (1), NDM (1) OXA-48-like (1) OXA-48-like (1) | ≤0.06–>16 ≤0.06–>16 ≤0.06–>16 4–>16 2–>16 1–>16 >16 ≤0.06–>16 ≤0.06–>16 ≤0.06–>16 ≤0.06–4 ≤0.06–>16 ≤0.06–8 ≤0.06–0.5 ≤0.06–8 0.12–8 ≤0.06 0.25 | NA 0.12 2 >16 4 2 >16 0.12 >16 2 0.5 0.5 0.12 4 >16 1 NA NA | NA 1 8 >16 >16 >16 >16 1 >16 8 1 1 0.25 8 >16 2 NA NA | 26.5 [EUCAST] c, 18.2 [FDA] d 3.4 [EUCAST], 1.7 [FDA] 16.5 [EUCAST], 10.1 [FDA] 95.6 [EUCAST], 91.1 [FDA] 38.9 [EUCAST], 11.1 [FDA] 16.7 [EUCAST], 16.7 [FDA] 100 [EUCAST], 100 [FDA] 7.7 [EUCAST], 5.5 [FDA] 75.4 [EUCAST], 55 [FDA] 20.9 [EUCAST], 1.5 [FDA] 0 [EUCAST], 0 [FDA] 0 [EUCAST], 0 [FDA] 0 [EUCAST], 0 [FDA] 20 [EUCAST], 0 [FDA] 75 [EUCAST], 75 [FDA] 0 [EUCAST], 0 [FDA] 0 [EUCAST], 0 [FDA] 0 [EUCAST], 0 [FDA] |
Bonnin [13] | 2024 | CREs Total carbapenemase producers OXA-48-like producers NDM producers VIM producers KPC producers Non-carbapenemase producers | 2212 2089 1000 601 178 51 123 | OXA-48 (721), NDM-1 (325), NDM-5 (260), OXA-181 (133), OXA-244 (109), VIM-1 (88), VIM-4 (88), NDM-7 (65), KPC-3 (43), NDM-14 (36), CASE (31), ESBL (27), CASE ACQ (17), OXA-484 (18), HYPER SHV-1 (11), OXA-204 (10), NDM-4 (7), OXA-232 (7), KPC-2 (6), IMI-1 (3), HYPER OXA-10 (2), HYPER OXY (2), IMI-2 (2), IMI-6 (2), NDM-19 (2), NDM-9 (2), VIM-12 (2), VIM-19 (2), IMP-22 (1), HYPER OXA-1 (1), HYPER TEM-1 (1), IMI-4 (1), IMI-19 (1), KPC-130 (1), KPC-31 (1), OXA-1181 (1), OXA-162 (1). | NA ≤0.25–>16 4–>16 4–>16 1–>16 ≤0.25–>16 ≤0.25–>16 | NA NA ≤0.25 16 8 2 2 | NA 1 2 >16 >16 >16 >16 | NA c NA 1.2 99.1 39.4 36.7 21.5 |
Morrissey [19] | 2024 | Total isolates E. coli K. pneumoniae E. cloacae K. oxytoca K. aerogenes C. freundii S. marcescens P. mirabilis P. rettgeri P. stuartii Meropenem non-susceptible isolates K. pneumoniae E. cloacae C. freundii K. aerogenes K. oxytoca S. marcescens Total 3GC-R E. coli K. pneumoniae E. cloacae C. freundii Enterobacterales, ESBL gen. K. pneumoniae, ESBL gen. E. coli, ESBL gen. Enterobacterales, AmpC gen. E. cloacae, AmpC gen. C. freundii, AmpC gen. Enterobacterales, AmpC + ESBL gen. | 2627 925 772 307 153 150 82 82 80 41 35 72 63 4 2 1 1 1 320 96 119 60 29 206 102 89 85 40 25 17 | NA KPC-3 (36), CTX-M-1 (3), ACT (1), KPC-2 (1), OXA-48 (1), KPC-3 + CTX-M-1 (9), NDM-1 + CTX-M-1 (3), KPC-2 + CTX-M-1 (2), OXA-48 + CTX-M-1 (2), KPC-2 + SHV-ESBL (1), OXA-244 + CTX-M-1 (1), OXA-232 + CTX-M-1 (1), VIM-1 + ACT (1), VIM-1 + SHV-ESBL (1), VIM-1 + KPC-3 + CTX-M-1 (3), NDM-1 + CTX-M-1 + SHV-ESBL (1)VIM-1 + CTX-M-1 + KPC-27 (1), VIM-1 + ACT + SHV-ESBL (1), VIM-1 + CMY-2 + SHV-ESBL (1), VIM-1 + CMY-2 + CTX-M-9 + OXA-48 + SHV-ESBL (1) CTX-M-1 (183), CTX-M-9 (6), CTX-M-15 (2), SHV-ESBL (2), TEM-ESBL (1), CTX-M-1 + SHV-ESBL (7), CTX-M-9 + SHV-ESBL (2), CTX-M-1 + CTX-M-9 (1), CTX-M-1 + TEM-ESBL (1), SHV-ESBL + TEM-ESBL (1), ACT (38), CMY (30), MIR (9), DHA (6), ACC (1), CMY + CTX-M-1 (6), CTX-M-1 + OXA-48 (6), ACT + CTX-M-1 (5), MIR + CTX-M-1 (3), DHA + CTX-M-9 (2), ACT + CMY (1). DHA + CTX-M-1 (1), CTX-M-1 + OXA-48 + CMY (1), CTX-M-1 + TEM-ESBL + OXA-48 (1). | ≤0.015–>64 ≤0.015–2 ≤0.015–>64 ≤0.015–>64 ≤0.015–32 ≤0.015–4 ≤0.015–64 ≤0.015–4 ≤0.015–0.25 ≤0.015–0.12 0.03–0.5 NA 0.03–64 0.03–2 0.03–32 0.06–64 0.06–16 0.03–2 0.03–2 0.03–2 0.03–4 0.12–2 0.06–1 0.06–1 | 0.03 0.03 0.03 0.12 0.03 0.06 0.06 0.12 0.06 ≤0.015 0.06 NA 0.06 0.06 0.06 0.5 0.25 0.06 0.06 0.06 0.25 0.5 0.25 0.12 | 0.25 0.06 0.5 1 0.06 0.25 0.5 0.25 0.06 0.03 0.25 NA 0.5 0.12 0.5 1 1 0.25 0.25 0.25 1 1 0.5 1 | 2.1 c 0 6.1 1.3 0.6 0 3.7 0 0 0 0 27.8 0.9 0 0.8 1.7 3.4 0 0 0 0 0 0 0 |
Kadry [16] | 2022 | E. coli | 140 | ESBL (65) | ≥0.25–64 | NA | NA | 2.9 (I: 11.4) g |
Liu [18] | 2022 | Carbapenem non-susceptible P. aeruginosa A. baumannii | 405 150 255 | NA | NA 0.5–>64 ≤0.03–>64 | NA 8 >64 | NA 32 >64 | NA 16 (I: 26) h NA |
Vázquez-Ucha [14] | 2022 | Enterobacterales f No producing ESBLs Producing ESBLs OXA-48-producing isolates No producing ESBLs Producing ESBLs KPC-producing isolates No producing ESBLs Producing ESBLs MBL-producing isolates No producing ESBLs Producing ESBLs | 400 106 294 304 57 247 44 27 17 56 24 32 | CTXM-15 (358), OXA-1 (212), TEM-1 (196), SHV-11 (168), SHV-28 (85), KPC-3 (38), VIM-1 (40), SHV-12 (27), ACT-like (19), CTX-M9 (19), EC-like (17), ACT-24 (10), TEM-like (9), ACT-17 (8), ACT-16 (7), OXA-9 (7), OXY-2- like (7), SRT-like (7), SHV-76 (12), CMY-like (5), CTX-M1 (5), DHA-1 (5), NDM-1 (5), ACC-1 (5), KPC-2 (3), SHV-5 (3), TEM-40 (3), CTX-M14 (3), ACT-1 (2), E. coli AmpC β-lactamase (2), IMP-13 (2), OXA-2 (2), OXY-1-1 (2), OXY-2-7 (2), SHV-like (2), CMY-48 (2), NDM (1), NDM-23 (1), NDM-5 (1), NDM-7 (1), IMP-8 (1), SHV-155 (1), SHV-163 (1), SHV-55 (1), SHV-71 (1), TEM-163 (1), TEM-185 (1), TEM-95 (1), TEM112 (1), ACT-25 (1), CMY-117 (1), CMY-2 (1), CMY-75 (1), CTX-M58 (1), LEN-16 (1), MIR-like (4), OKP-B-like (1), OXA-10 (1), OXA162 (1), OXA320 (6), OXA663 (1), OXY-1- like (1), OXY-2-7 (1), OXY-6-like (1), OXY-6-2 (1) | ≤0.5–≥128 ≤0.5–≥128 ≤0.5–≥128 NA | 1 2 1 1 0.5 1 64 ≥128 ≤0.5 64 32 64 | ≥128 ≥128 32 16 4 16 ≥128 ≥128 1 ≥128 ≥128 ≥128 | 27.5, (I: 10.7) g 43.4(I: 5.7) 21.8(I: 12.5) 13.2 (I: 12.1) 5.3 (I: 7.0) 15 (I: 13.3) 56.8 (I: 2.3) 92.6 (I: 0) 0 (I: 5.9) 87.5 (I: 8.9) 83.3 (I: 8.4) 90.6 (I: 9.4) |
Belley [12] | 2021 | Enterobacterales, all Enterobacterales, 3GC-R Enterobacterales, ESBL gen. E. coli, all E. coli, 3GC-R subgroup E. coli, ESBL gen. K. pneumoniae K. pneumoniae, 3GC-R K. pneumoniae, ESBL gen. | 7168 1252 801 2516 451 418 2109 278 299 | ESBLs (854): CTX-M type (622), SHV type (92), TEM type (14), VEB type (8) AmpC (448): ACT type (261), CMY type (166), MIR type (12), DHA type (26), FOX type (4), ACC (2) KPC (86): KPC-3 (75), KPC-2 (10), KPC-29 (1) OXA (51): OXA-48 (46), OXA232 (4), OXA-181 (1) MBL (31): VIM1 (17), NDM-1 (13), IMP-13 (1) | ≤0.008–>64 ≤0.008–>64 0.015–32 ≤0.008–8 0.015–8 0.015–8 ≤0.008–>64 ≤0.008–32 0.015–32 | 0.03 0.12 0.06 0.03 0.06 0.06 0.03 0.06 0.06 | 0.25 0.5 0.5 0.03 0.25 0.25 0.25 0.25 0.5 | 1.7/1.2 [CLSI] g, 2.3 [EUCAST] i 1.2/0.4 [CLSI], 2.9 [EUCAST] 1.1/0.1 [CLSI], 2.4 [EUCAST] 0.3/0 [CLSI], 0.4 [EUCAST] 1.1/0 [CLSI], 1.6 [EUCAST] 1/0 [CLSI], 1.4 [EUCAST] 3.9/3.1 [CLSI], 4.5 [EUCAST] 0.4/0 [CLSI], 0.4 [EUCAST] 1.3/0.3 [CLSI], 3.7 [EUCAST] |
Lee [17] | 2021 | E. coli K. pneumoniae | 26 175 | KPC (69), OXA-48 like (12), NDM (4), VIM (4), OXA-48 like + KPC (1), OXA-48 like + NDM (1) | ≤0.03–>64 ≤0.03–>64 | 1 4 | 4 >64 | NA g NA |
Tselepis [21] | 2020 | Total Enterobacterales KPC-positive ESBL-positive j OXA-positive k K. pneumoniae E. coli E. cloaceae C. koseri C. sedlakii P. stuartii | 264 117 107 33 163 94 4 1 1 1 | NA | NA | NA 32 ≤0.06 2 NA | NA 64 0.125 >64 NA | NA NA 2 67 NA |
Morrissey [20] | 2019 | Total Enterobacterales E. coli E. coli ESBL gen. K. pneumoniae K. pneumoniae ESBL gen. l K. pneumoniae KPC gen. m E. aerogenes E. cloacae P. aeruginosa | 1696 697 109 799 102 45 100 100 297 | ESBL-positive E. coli (from 114 genotyped) n: CTX-M (96), SHV (4), AmpC (2), KPC (2), TEM (1), VIM (1), CTX-M + CTX-M (2), TEM + CTX-M (1), KPC + CTX-M + AmpC (1), AmpC + CTX-M (4), SHV + AmpC (1) ESBL-positive K. pneumoniae (from 151 genotyped) n: CTX-M (75), KPC (30), SHV (10), VIM (1), CTX-M + KPC (5), CTX-M + KPC + OXA (1), AmpC + CTX-M (1), OXA + CTX-M (12), CTX-M + SHV (2), CTX-M + SHV + OXA (2), KPC + SHV(8), KPC + SHV +OXA (1), VIM + SHV (1), OXA + SHV (2) | 0.015–>64 0.015–32 0.015–32 0.015–>64 0.03–8 0.5–>64 0.015–2 0.03–>64 0.12–>64 | 0.06 0.06 0.06 0.06 0.12 16 0.06 0.12 4 | 0.25 0.12 0.12 0.5 1 >64 0.25 1 16 | 1.9 [EUCAST] i, 1.5 [CLSI] g 0.1 [EUCAST], 0.1 [CLSI] 0.9 [EUCAST], 0.9 [CLSI] 3.6 [EUCAST], 2.8 [CLSI] 0 [EUCAST], 0 [CLSI] 57.8 [EUCAST], 42.2 [CLSI] 0 [EUCAST], 0 [CLSI] 3 [EUCAST], 2 [CLSI] NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falagas, M.E.; Romanos, L.T.; Kontogiannis, D.S.; Tsiara, K.; Kakoullis, S.A. Resistance of Gram-Negative Bacteria to Cefepime-Enmetazobactam: A Systematic Review. Pathogens 2025, 14, 777. https://doi.org/10.3390/pathogens14080777
Falagas ME, Romanos LT, Kontogiannis DS, Tsiara K, Kakoullis SA. Resistance of Gram-Negative Bacteria to Cefepime-Enmetazobactam: A Systematic Review. Pathogens. 2025; 14(8):777. https://doi.org/10.3390/pathogens14080777
Chicago/Turabian StyleFalagas, Matthew E., Laura T. Romanos, Dimitrios S. Kontogiannis, Katerina Tsiara, and Stylianos A. Kakoullis. 2025. "Resistance of Gram-Negative Bacteria to Cefepime-Enmetazobactam: A Systematic Review" Pathogens 14, no. 8: 777. https://doi.org/10.3390/pathogens14080777
APA StyleFalagas, M. E., Romanos, L. T., Kontogiannis, D. S., Tsiara, K., & Kakoullis, S. A. (2025). Resistance of Gram-Negative Bacteria to Cefepime-Enmetazobactam: A Systematic Review. Pathogens, 14(8), 777. https://doi.org/10.3390/pathogens14080777