Fluorescent Peptides Internalize HeLa Cells and Kill Multidrug-Resistant Clinical Bacterial Isolates
Abstract
1. Introduction
2. Results
2.1. Synthesis of Peptides
2.2. Antibacterial Activity of the Conjugates in Reference Strains
2.3. Characterization and Susceptibility Profile of Clinical Isolates
2.4. Antibacterial Activity Against Isolates of E. coli, S. aureus, and E. faecalis
2.5. Rhodamine B Conjugation Increases Cytotoxic Activity of Palindromic and Dimeric Peptides
2.6. Rhb-1 and RhB-2 Peptides Are Localized in the Nucleus and Cytoplasm of HeLa Cells
2.7. Cytotoxic Effect of RhB-1 Peptide in MCF-7 Cells
2.8. Hemolytic Activity of Fluorolabeled Peptides
3. Discussion
3.1. Fluorolabeled Peptides Synthesis and Characterization
3.2. Characterization and Susceptibility Profiles of Clinical Isolates
3.3. Antibacterial Activity
3.4. Anticancer Activity
3.5. Hemolytic Activity
4. Materials and Methods
4.1. Reagents and Materials
4.2. Synthesis of Peptides Protocol
4.3. Peptide Purification by RP-SPE
4.4. Characterization by RP-HPLC and High-Resolution LC-MS
4.5. Bacterial Strains and Culture Conditions
4.6. Minimum Inhibitory Concentration
4.7. Minimum Bactericidal Concentration
4.8. Fluorescence Confocal Microscopy Imaging
4.9. Competition Assay in MCF-7 Cells
4.10. Hemolysis Assay
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization Antimicrobial Resistance. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 24 February 2025).
- World Health Organization Cancer. Available online: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 24 February 2025).
- Peng, F.; Liao, M.; Qin, R.; Zhu, S.; Peng, C.; Fu, L.; Chen, Y.; Han, B. Regulated Cell Death (RCD) in Cancer: Key Pathways and Targeted Therapies. Signal Transduct. Target. Ther. 2022, 7, 286. [Google Scholar] [CrossRef]
- Hadjigeorgiou, A.G.; Stylianopoulos, T. Hybrid Model of Tumor Growth, Angiogenesis and Immune Response Yields Strategies to Improve Antiangiogenic Therapy. NPJ Biol. Phys. Mech. 2024, 1, 4. [Google Scholar] [CrossRef]
- Kim, S.K.; Cho, S.W. The Evasion Mechanisms of Cancer Immunity and Drug Intervention in the Tumor Microenvironment. Front. Pharmacol. 2022, 13, 868695. [Google Scholar] [CrossRef] [PubMed]
- Patel, H.; Wu, Z.-X.; Chen, Y.; Bo, L.; Chen, Z.-S. Drug Resistance: From Bacteria to Cancer. Mol. Biomed. 2021, 2, 27. [Google Scholar] [CrossRef] [PubMed]
- Danielsen, A.S.; Franconeri, L.; Page, S.; Myhre, A.E.; Tornes, R.A.; Kacelnik, O.; Bjørnholt, J.V. Clinical Outcomes of Antimicrobial Resistance in Cancer Patients: A Systematic Review of Multivariable Models. BMC Infect. Dis. 2023, 23, 247. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.; Satlin, M.J.; Yu, K.C.; Martei, Y.; Sung, L.; Westblade, L.F.; Howard, S.; Ai, C.; Flayhart, D.C. Incidence and Prevalence of Antimicrobial Resistance in Outpatients with Cancer: A Multicentre, Retrospective, Cohort Study. Lancet Oncol. 2025, 26, 620–628. [Google Scholar] [CrossRef]
- Decollogny, M.; Rottenberg, S. Persisting Cancer Cells Are Different from Bacterial Persisters. Trends Cancer 2024, 10, 393–406. [Google Scholar] [CrossRef]
- Schorr, L.; Mathies, M.; Elinav, E.; Puschhof, J. Intracellular Bacteria in Cancer—Prospects and Debates. NPJ Biofilms Microbiomes 2023, 9, 76. [Google Scholar] [CrossRef]
- Duong, M.T.-Q.; Qin, Y.; You, S.-H.; Min, J.-J. Bacteria-Cancer Interactions: Bacteria-Based Cancer Therapy. Exp. Mol. Med. 2019, 51, 1–15. [Google Scholar] [CrossRef]
- Hou, T.; Huang, X.; Lai, J.; Zhou, D. Intra-Tumoral Bacteria in Breast Cancer and Intervention Strategies. Adv. Drug Deliv. Rev. 2025, 217, 115516. [Google Scholar] [CrossRef]
- Carrillo-Rodriguez, P.; Selheim, F.; Hernandez-Valladares, M. Mass Spectrometry-Based Proteomics Workflows in Cancer Research: The Relevance of Choosing the Right Steps. Cancers 2023, 15, 555. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, H.; Fujita, M. Whole Genome Sequencing Analysis for Cancer Genomics and Precision Medicine. Cancer Sci. 2018, 109, 513–522. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Fernandez, A.; Avlonitis, N.; Vande Velde, G.; Bradley, M.; Read, N.D.; Vendrell, M. Searching for the Optimal Fluorophore to Label Antimicrobial Peptides. ACS Comb. Sci. 2016, 18, 689–696. [Google Scholar] [CrossRef] [PubMed]
- Kravchenko, Y.; Sikora, K.; Wireko, A.A.; Lyndin, M. Fluorescence Visualization for Cancer DETECTION: EXPERIENCE and Perspectives. Heliyon 2024, 10, e24390. [Google Scholar] [CrossRef]
- Cai, M.-Z.; Wen, Z.; Li, H.-Z.; Yang, Y.; Liang, J.-X.; Liao, Y.-S.; Wang, J.-Y.; Wang, L.-Y.; Zhang, N.-Y.; Kamei, K.; et al. Peptide-Based Fluorescent Probes for the Diagnosis of Tumor and Image-Guided Surgery. Biosens. Bioelectron. 2025, 276, 117255. [Google Scholar] [CrossRef]
- Shi, D. Cancer Cell Surface Negative Charges: A Bio-Physical Manifestation of the Warburg Effect. Nano Life 2017, 7, 1771001. [Google Scholar] [CrossRef]
- Zheng, S.; Bawazir, M.; Dhall, A.; Kim, H.-E.; He, L.; Heo, J.; Hwang, G. Implication of Surface Properties, Bacterial Motility, and Hydrodynamic Conditions on Bacterial Surface Sensing and Their Initial Adhesion. Front. Bioeng. Biotechnol. 2021, 9, 643722. [Google Scholar] [CrossRef]
- Varela-Quitián, Y.F.; Mendez-Rivera, F.E.; Bernal-Estévez, D.A. Cationic Antimicrobial Peptides: Potential Templates for Anticancer Agents. Front. Med. 2025, 12, 1548603. [Google Scholar] [CrossRef]
- Zare-Zardini, H.; Saberian, E.; Jenča, A.; Ghanipour-Meybodi, R.; Jenča, A.; Petrášová, A.; Jenčová, J. From Defense to Offense: Antimicrobial Peptides as Promising Therapeutics for Cancer. Front. Oncol. 2024, 14, 1463088. [Google Scholar] [CrossRef]
- Fuchigami, T.; Nakayama, T.; Miyanari, Y.; Nozaki, I.; Ishikawa, N.; Tagawa, A.; Yoshida, S.; Munekane, M.; Nakayama, M.; Ogawa, K. Peptide-Based Turn-On Fluorescent Probes for Highly Specific Detection of Survivin Protein in the Cancer Cells. Chem. Biomed. Imaging 2024, 2, 374–383. [Google Scholar] [CrossRef]
- Rajavenkatesh, K.; Padmaja, M.; Janani, I.; Aishwarya, S.; Purna Sai, K.; Thennarasu, S. Design and Synthesis of a Novel Peptide for Selective Detection of Cancer Cells. Chem. Biol. Drug Des. 2020, 95, 610–623. [Google Scholar] [CrossRef] [PubMed]
- Leite, Â.B.M.P.; Martins, C.D.F.; Raposo, M.M.M.; Costa, S.P.G. Preparation of a Fluorescent Peptide Substrate to Target Tumor-Associated Macrophages. Chem. Proc. 2023, 14, 63. [Google Scholar] [CrossRef]
- Boaro, A.; Ageitos, L.; Torres, M.; Bartoloni, F.H.; de la Fuente-Nunez, C. Light-Emitting Probes for Labeling Peptides. Cell Rep. Phys. Sci. 2020, 1, 100257. [Google Scholar] [CrossRef]
- Cavaco, M.; Pérez-Peinado, C.; Valle, J.; Silva, R.D.M.; Correia, J.D.G.; Andreu, D.; Castanho, M.A.R.B.; Neves, V. To What Extent Do Fluorophores Bias the Biological Activity of Peptides? A Practical Approach Using Membrane-Active Peptides as Models. Front. Bioeng. Biotechnol. 2020, 8, 552035. [Google Scholar] [CrossRef]
- Barragán-Cárdenas, A.C.; Insuasty-Cepeda, D.S.; Cárdenas-Martínez, K.J.; López-Meza, J.; Ochoa-Zarzosa, A.; Umaña-Pérez, A.; Rivera-Monroy, Z.J.; García-Castañeda, J.E. LfcinB-Derived Peptides: Specific and Punctual Change of an Amino Acid in Monomeric and Dimeric Sequences Increase Selective Cytotoxicity in Colon Cancer Cell Lines. Arab. J. Chem. 2022, 15, 103998. [Google Scholar] [CrossRef]
- Cárdenas-Martínez, K.J.; Grueso-Mariaca, D.; Vargas-Casanova, Y.; Bonilla-Velásquez, L.; Estupiñán, S.M.; Parra-Giraldo, C.M.; Leal, A.L.; Rivera-Monroy, Z.J.; García-Castañeda, J.E. Effects of Substituting Arginine by Lysine in Bovine Lactoferricin Derived Peptides: Pursuing Production Lower Costs, Lower Hemolysis, and Sustained Antimicrobial Activity. Int. J. Pept. Res. Ther. 2021, 27, 1751–1762. [Google Scholar] [CrossRef]
- Insuasty-Cepeda, D.S.; Barragán-Cárdenas, A.C.; Ardila-Chantre, N.; Cárdenas-Martínez, K.J.; Rincón-Quiñones, I.; Vargas-Casanova, Y.; Ochoa-Zarzosa, A.; Lopez-Meza, J.E.; Parra-Giraldo, C.M.; Ospina-Giraldo, L.F.; et al. Non-Natural Amino Acids into LfcinB-Derived Peptides: Effect in Their (i) Proteolytic Degradation and (Ii) Cytotoxic Activity against Cancer Cells. R. Soc. Open Sci. 2023, 10, 221493. [Google Scholar] [CrossRef]
- Ardila-Chantré, N.; Parra-Giraldo, C.M.; Vargas-Casanova, Y.; Barragán-Cardenas, A.C.; Fierro-Medina, R.; Rivera-Monroy, Z.J.; Rivera-Monroy, J.E.; García-Castañeda, J.E. Hybrid Peptides Inspired by the RWQWRWQWR Sequence Inhibit Cervical Cancer Cells Growth In Vitro. Explor. Drug Sci. 2024, 2, 614–631. [Google Scholar] [CrossRef]
- Barragán-Cárdenas, A.; Urrea-Pelayo, M.; Niño-Ramírez, V.A.; Umaña-Pérez, A.; Vernot, J.P.; Parra-Giraldo, C.M.; Fierro-Medina, R.; Rivera-Monroy, Z.; García-Castañeda, J. Selective Cytotoxic Effect against the MDA-MB-468 Breast Cancer Cell Line of the Antibacterial Palindromic Peptide Derived from Bovine Lactoferricin. RSC Adv. 2020, 10, 17593–17601. [Google Scholar] [CrossRef] [PubMed]
- Ayobami, O.; Brinkwirth, S.; Eckmanns, T.; Markwart, R. Antibiotic Resistance in Hospital-Acquired ESKAPE-E Infections in Low- and Lower-Middle-Income Countries: A Systematic Review and Meta-Analysis. Emerg. Microbes Infect. 2022, 11, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Barragán-Cárdenas, A.; Castellar-Almonacid, D.; Vargas-Casanova, Y.; Parra-Giraldo, C.; Umaña-Pérez, A.; López-Meza, J.; Rivera-Monroy, Z.; García-Castañeda, J. Enhanced Breast Cancer Cell Targeting: RGD Integrin Ligand Potentiates RWQWRWQWR’s Cytotoxicity and Inhibits Migration. Explor. Drug Sci. 2024, 2, 369–388. [Google Scholar] [CrossRef]
- Birtalan, E.; Rudat, B.; Kölmel, D.K.; Fritz, D.; Vollrath, S.B.L.; Schepers, U.; Bräse, S. Investigating Rhodamine B-labeled Peptoids: Scopes and Limitations of Its Applications. Pept. Sci. 2011, 96, 694–701. [Google Scholar] [CrossRef] [PubMed]
- Hintzen, J.C.J.; Devrani, S.; Carrod, A.J.; Bayik, M.B.; Tietze, D.; Tietze, A.A. Fluorescence Labeling of Peptides: Finding the Optimal Protocol for Coupling Various Dyes to ATCUN-like Structures. ACS Org. Inorg. Au 2024, 4, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Pormohammad, A.; Nasiri, M.J.; Azimi, T. Prevalence of Antibiotic Resistance in Escherichia Coli Strains Simultaneously Isolated from Humans, Animals, Food, and the Environment: A Systematic Review and Meta-Analysis. Infect. Drug Resist. 2019, 12, 1181–1197. [Google Scholar] [CrossRef]
- Poirel, L.; Madec, J.-Y.; Lupo, A.; Schink, A.-K.; Kieffer, N.; Nordmann, P.; Schwarz, S. Antimicrobial Resistance in Escherichia Coli. Microbiol. Spectr. 2018, 6, 10–1128. [Google Scholar] [CrossRef]
- Mlynarczyk-Bonikowska, B.; Kowalewski, C.; Krolak-Ulinska, A.; Marusza, W. Molecular Mechanisms of Drug Resistance in Staphylococcus Aureus. Int. J. Mol. Sci. 2022, 23, 8088. [Google Scholar] [CrossRef]
- Hollenbeck, B.L.; Rice, L.B. Intrinsic and Acquired Resistance Mechanisms in Enterococcus. Virulence 2012, 3, 421–569. [Google Scholar] [CrossRef]
- Denissen, J.; Reyneke, B.; Waso-Reyneke, M.; Havenga, B.; Barnard, T.; Khan, S.; Khan, W. Prevalence of ESKAPE Pathogens in the Environment: Antibiotic Resistance Status, Community-Acquired Infection and Risk to Human Health. Int. J. Hyg. Environ. Health 2022, 244, 114006. [Google Scholar] [CrossRef]
- Vargas Casanova, Y.; Rodríguez Mayor, A.V.; Cardenas, K.J.; Leal Castro, A.L.; Muñoz Molina, L.C.; Fierro Medina, R.; Rivera Monroy, Z.J.; García Castañeda, J.E. Synergistic Bactericide and Antibiotic Effects of Dimeric, Tetrameric, or Palindromic Peptides Containing the RWQWR Motif against Gram-Positive and Gram-Negative Strains. R. Soc. Chem. Adv. 2019, 9, 7239–7245. [Google Scholar] [CrossRef]
- Chan, D.I.; Prenner, E.J.; Vogel, H.J. Tryptophan- and Arginine-Rich Antimicrobial Peptides: Structures and Mechanisms of Action. Biochim. Biophys. Acta Biomembr. 2006, 1758, 1184–1202. [Google Scholar] [CrossRef]
- de Souza, C.M.; da Silva, Á.P.; Júnior, N.G.O.; Martínez, O.F.; Franco, O.L. Peptides as a Therapeutic Strategy against Klebsiella Pneumoniae. Trends Pharmacol. Sci. 2022, 43, 335–348. [Google Scholar] [CrossRef]
- Fleeman, R.M.; Macias, L.A.; Brodbelt, B.J.S.; Davies, B.W. Defining Principles That Influence Antimicrobial Peptide Activity against Capsulated Klebsiella Pneumoniae. Proc. Natl. Acad. Sci. USA 2020, 117, 27620–27626. [Google Scholar] [CrossRef] [PubMed]
- Masihzadeh, S.; Amin, M.; Farshadzadeh, Z. In Vitro and in Vivo Antibiofilm Activity of the Synthetic Antimicrobial Peptide WLBU2 against Multiple Drug Resistant Pseudomonas Aeruginosa Strains. BMC Microbiol. 2023, 23, 131. [Google Scholar] [CrossRef] [PubMed]
- Shang, D.; Han, X.; Du, W.; Kou, Z.; Jiang, F. Trp-Containing Antibacterial Peptides Impair Quorum Sensing and Biofilm Development in Multidrug-Resistant Pseudomonas Aeruginosa and Exhibit Synergistic Effects With Antibiotics. Front. Microbiol. 2021, 12, 611009. [Google Scholar] [CrossRef]
- Nguyen, A.H.; Hood, K.S.; Mileykovskaya, E.; Miller, W.R.; Tran, T.T. Bacterial Cell Membranes and Their Role in Daptomycin Resistance: A Review. Front. Mol. Biosci. 2022, 9, 1035574. [Google Scholar] [CrossRef]
- Malanovic, N.; Lohner, K. Antimicrobial Peptides Targeting Gram-Positive Bacteria. Pharmaceuticals 2016, 9, 59. [Google Scholar] [CrossRef]
- Cuero-Amu, K.; Daniela Bonilla-Velásquez, L.; Vargas-Casanova, Y.; Lucía Leal-Castro, A.; Marcela Parra-Giraldo, C.; Giselle López-Sánchez, A.; Fierro-Medina, R.; García-Castañeda, J.; Rivera-Monroy, Z. Linear and Polyvalent Peptides with Potent Antimicrobial Activity Against Sensitive and Multidrug-Resistant E. coli Clinical Isolates. Chem. Biodivers. 2025, 22, e202401734. [Google Scholar] [CrossRef]
- Vega, S.C.; Martínez, D.A.; Chalá, M.d.S.; Vargas, H.A.; Rosas, J.E. Design, Synthesis and Evaluation of Branched RRWQWR-Based Peptides as Antibacterial Agents against Clinically Relevant Gram-Positive and Gram-Negative Pathogens. Front. Microbiol. 2018, 9, 329. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Schibli, D.J.; Vogel, H.J. Structural Studies and Model Membrane Interactions of Two Peptides Derived from Bovine Lactoferricin. J. Pept. Sci. 2005, 11, 379–389. [Google Scholar] [CrossRef]
- Castillo-Rojas, G.; Mazari-Hiríart, M.; Ponce de León, S.; Amieva-Fernández, R.I.; Agis-Juárez, R.A.; Huebner, J.; López-Vidal, Y. Comparison of Enterococcus Faecium and Enterococcus Faecalis Strains Isolated from Water and Clinical Samples: Antimicrobial Susceptibility and Genetic Relationships. PLoS ONE 2013, 8, e59491. [Google Scholar] [CrossRef]
- Cárdenas-Martínez, K.J.; Barragán-Cárdenas, A.C.; de la Rosa-Arbeláez, M.; Parra-Giraldo, C.M.; Ochoa-Zarzosa, A.; Lopez-Meza, J.E.; Rivera-Monroy, Z.J.; Fierro-Medina, R.; García-Castañeda, J.E. Evaluating the In Vitro Activity and Safety of Modified LfcinB Peptides as Potential Colon Anticancer Agents: Cell Line Studies and Insect-Based Toxicity Assessments. ACS Omega 2023, 8, 37948–37957. [Google Scholar] [CrossRef]
- Sebák, F.; Horváth, L.B.; Kovács, D.; Szolomájer, J.; Tóth, G.K.; Babiczky, Á.; Bősze, S.; Bodor, A. Novel Lysine-Rich Delivery Peptides of Plant Origin ERD and Human S100: The Effect of Carboxyfluorescein Conjugation, Influence of Aromatic and Proline Residues, Cellular Internalization, and Penetration Ability. ACS Omega 2021, 6, 34470–34484. [Google Scholar] [CrossRef]
- Luzi, C.; Brisdelli, F.; Iorio, R.; Bozzi, A.; Carnicelli, V.; Di Giulio, A.; Lizzi, A.R. Apoptotic Effects of Bovine Apo-lactoferrin on HeLa Tumor Cells. Cell Biochem. Funct. 2017, 35, 33–41. [Google Scholar] [CrossRef]
- Agoni, C.; Stavropoulos, I.; Kirwan, A.; Mysior, M.M.; Holton, T.; Kranjc, T.; Simpson, J.C.; Roche, H.M.; Shields, D.C. Cell-Penetrating Milk-Derived Peptides with a Non-Inflammatory Profile. Molecules 2023, 28, 6999. [Google Scholar] [CrossRef]
- Beloor, J.; Zeller, S.; Choi, C.S.; Lee, S.-K.; Kumar, P. Cationic Cell-Penetrating Peptides as Vehicles for SiRNA Delivery. Ther. Deliv. 2015, 6, 491–507. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Bi, Y.; Zhang, H.; Dong, S.; Teng, L.; Lee, R.J.; Yang, Z. Cell-Penetrating Peptides in Diagnosis and Treatment of Human Diseases: From Preclinical Research to Clinical Application. Front. Pharmacol. 2020, 11, 697. [Google Scholar] [CrossRef]
- Almeida, J.R.; Mendes, B.; Lancellotti, M.; Franchi, G.C.; Passos, Ó.; Ramos, M.J.; Fernandes, P.A.; Alves, C.; Vale, N.; Gomes, P.; et al. Lessons from a Single Amino Acid Substitution: Anticancer and Antibacterial Properties of Two Phospholipase A2-Derived Peptides. Curr. Issues Mol. Biol. 2021, 44, 46–62. [Google Scholar] [CrossRef] [PubMed]
- Gruden, Š.; Poklar Ulrih, N. Diverse Mechanisms of Antimicrobial Activities of Lactoferrins, Lactoferricins, and Other Lactoferrin-Derived Peptides. Int. J. Mol. Sci. 2021, 22, 11264. [Google Scholar] [CrossRef] [PubMed]
Code | Sequence | HPLC | LC-MS Monoisotopic Mass | ||
---|---|---|---|---|---|
tR (min) | Purity (%) | Expected | Observed | ||
1 | RWQWRWQWR | 6.8 | 93.1 | 1485.7600 | 1485.7596 |
1-Abz | RWQWRWQWR-(2-Abz) | 7.5 | 88.4 | 1604.8000 | 1604.7980 |
Abz-1 | (2-Abz)-RWQWRWQWR | 7.3 | 89.7 | 1604.8000 | 1604.7992 |
FAM-1 | FAM-RWQWRWQWR | 8.2 | 94.2 | 1843.8100 | 1843.8112 |
RhB-1 | RhB-RWQWRWQWR | P1: 9.6 | 28.5 | 1910.9900 | P1: 1910.9830 P2: 1910.9830 |
P2: 9.9 | 65.4 | ||||
Overall purity: 93.4 | |||||
2 | (RRWQWR-hF-KKLG)2K-Ahx | 6.6 | 97.2 | 3370.0100 | 3370.0051 |
RhB-2 | (RhB-RRWQWR-hF-KKLG)2K-Ahx | 9.9 | 98.4 | 4220.4500 | 4220.4444 |
Code | Sequence | E. coli | P. aeruginosa | K. pneumoniae | S. aureus | E. faecalis |
---|---|---|---|---|---|---|
ATCC 25922 | ATCC 27853 | ATCC 700603 | ATCC 25923 | ATCC 29212 | ||
1 | RWQWRWQWR | 17/34 | 67/>135 | 67/135 | 17/34 | 135/>135 |
RhB-1 | RhB-RWQWRWQWR | >105/>105 | >105/>105 | >105/>105 | 26/52 | 52/52 |
1-Abz | RWQWRWQWR-Abz | 62/62 | 125/>125 | 125/125 | 31/52 | 125/>125 |
Abz-1 | 2-Abz-RWQWRWQWR | 62/125 | >125/>125 | >125/>125 | 16/31 | 62/62 |
FAM-1 | FAM-RWQWRWQWR | 108/>108 | >108/>108 | >108/>108 | 108/>108 | 54/>108 |
Code | Sequence | Clinical Isolates | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
E. coli | S. aureus | E. faecalis | ||||||||
1004 | 129797 | 301755 | 109095 | 11719 | 124653 | 213 | 82 | 179 | ||
1 | RWQWRWQWR | 17/>135 | 34/34 | 34/67 | 135/135 | 135/>135 | 135/>135 | 135/135 | 67/67 | 135/135 |
RhB-1 | RhB-RWQWRWQWR | >105/>105 | >105/>105 | >105/>105 | 26/105 | 52/105 | 105/105 | >105/>105 | 26/105 | >105/>105 |
1-Abz | RWQWRWQWR-Abz | 62/125 | 62/125 | 62/125 | 125/125 | 125/125 | 125/>125 | >125/>125 | >125/>125 | >125/>125 |
Abz-1 | Abz-RWQWRWQWR | >125/>125 | >125/>125 | >125/>125 | 125/>125 | 125/>125 | 125/>125 | 31/62 | 31/62 | 31/62 |
FAM-1 | FAM-RWQWRWQWR | 108/>108 | >108/>108 | 108/>108 | >108/>108 | >108/>108 | >108/>108 | 108/>108 | 54/>108 | >108/>108 |
Code | Sequence | Cytotoxic Activity (IC50) | |
---|---|---|---|
μg/mL | μM | ||
1 | RWQWRWQWR | 77 | 52 |
1-Abz | RWQWRWQWR-(2-Abz) | >200 | >125 |
Abz-1 | (2-Abz)-RWQWRWQWR | 140 | 87 |
FAM-1 | FAM-RWQWRWQWR | >200 | >108 |
RhB-1 | RhB-RWQWRWQWR | 117 | 61 |
2 | (RRWQWR-hF-KKLG)2K-Ahx | 109 | 32 |
RhB-2 | (RhB-RRWQWR-hF-KKLG)2K-Ahx | 151 | 35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castellar-Almonacid, D.; Cuero-Amu, K.J.; Mendoza-Mendoza, J.D.; Ardila-Chantré, N.; Chavez-Salazar, F.J.; Barragán-Cárdenas, A.C.; Rivera-Monroy, J.E.; Parra-Giraldo, C.; Rivera-Monroy, Z.J.; García-Castañeda, J.; et al. Fluorescent Peptides Internalize HeLa Cells and Kill Multidrug-Resistant Clinical Bacterial Isolates. Antibiotics 2025, 14, 793. https://doi.org/10.3390/antibiotics14080793
Castellar-Almonacid D, Cuero-Amu KJ, Mendoza-Mendoza JD, Ardila-Chantré N, Chavez-Salazar FJ, Barragán-Cárdenas AC, Rivera-Monroy JE, Parra-Giraldo C, Rivera-Monroy ZJ, García-Castañeda J, et al. Fluorescent Peptides Internalize HeLa Cells and Kill Multidrug-Resistant Clinical Bacterial Isolates. Antibiotics. 2025; 14(8):793. https://doi.org/10.3390/antibiotics14080793
Chicago/Turabian StyleCastellar-Almonacid, Daniel, Kelin Johana Cuero-Amu, Jose David Mendoza-Mendoza, Natalia Ardila-Chantré, Fernando José Chavez-Salazar, Andrea Carolina Barragán-Cárdenas, Jhon Erick Rivera-Monroy, Claudia Parra-Giraldo, Zuly Jenny Rivera-Monroy, Javier García-Castañeda, and et al. 2025. "Fluorescent Peptides Internalize HeLa Cells and Kill Multidrug-Resistant Clinical Bacterial Isolates" Antibiotics 14, no. 8: 793. https://doi.org/10.3390/antibiotics14080793
APA StyleCastellar-Almonacid, D., Cuero-Amu, K. J., Mendoza-Mendoza, J. D., Ardila-Chantré, N., Chavez-Salazar, F. J., Barragán-Cárdenas, A. C., Rivera-Monroy, J. E., Parra-Giraldo, C., Rivera-Monroy, Z. J., García-Castañeda, J., & Fierro-Medina, R. (2025). Fluorescent Peptides Internalize HeLa Cells and Kill Multidrug-Resistant Clinical Bacterial Isolates. Antibiotics, 14(8), 793. https://doi.org/10.3390/antibiotics14080793