Current Methods for Reliable Identification of Species in the Acinetobacter calcoaceticus–Acinetobacter baumannii Complex
Abstract
1. Introduction
2. Literature Search
3. Historical Background of the Taxonomy of Genus Acinetobacter
4. Phenotypic Versus Molecular Tests, Rapid Versus High-Resolution Tools
5. Current Phenotypic Methods for Species Identification in the Acinetobacter calcoaceticus–Acinetobacter baumannii Complex—Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS)
6. Current Molecular-Genetic Methods for Species Identification in the Acinetobacter calcoaceticus–Acinetobacter baumannii Complex
- DNA–DNA hybridization (DDH).
- Restriction analysis of DNA (genomic fingerprinting).
- PCR-based methods targeting specific genes.
- Methods based on DNA-sequence analysis.
6.1. DNA–DNA Hybridization (DDH)
6.2. Restriction Analysis of DNA (Genomic Fingerprinting)
6.3. PCR-Based Methods
6.4. Methods Based on the Analysis of DNA Sequences
- Challenges in de novo assembly due to the limited length of read fragments (≤500 bp);
- Difficulty in accurately sequencing genomic regions with high or low GC content, tandem repeats, or interspersed repetitive elements;
- Incomplete de novo assemblies potentially omitting essential genomic regions or genes as a result of DNA fragmentation during library preparation [99].
- Data cleaning: quality assessment, trimming of low-quality reads, removal of contaminants;
- De novo assembly: construction of contiguous sequences from raw reads;
- Scaffolding: ordering and orienting contigs using paired-end information;
- Assembly quality assessment: evaluation of metrics such as N50, genome completeness, and contamination;
- Annotation: identification of functional genomic elements along the sequence of the genome;
- Read mapping: alignment of sequence reads to a reference genome;
- Variant calling: detection of single-nucleotide polymorphisms (SNPs), insertions, and deletions;
- Core genome analysis: identification of conserved genes shared among strains;
- Strain typing: determination of sequence types often using MLST
- Antimicrobial resistance prediction
- Phylogenetic analysis
- Tree visualization
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jesudason, T. WHO Publishes Updated List of Bacterial Priority Pathogens. Lancet Microbe 2024, 5, 100940. [Google Scholar] [CrossRef]
- Liu, Y.-M.; Lee, Y.-T.; Kuo, S.-C.; Chen, T.-L.; Liu, C.-P.; Liu, C.-E. Comparison between Bacteremia Caused by Acinetobacter pittii and Acinetobacter nosocomialis. J. Microbiol. Immunol. Infect. 2017, 50, 62–67. [Google Scholar] [CrossRef]
- Lee, Y.-T.; Kuo, S.-C.; Yang, S.-P.; Lin, Y.-T.; Chiang, D.-H.; Tseng, F.-C.; Chen, T.-L.; Fung, C.-P. Bacteremic Nosocomial Pneumonia Caused by Acinetobacter baumannii and Acinetobacter nosocomialis: A Single or Two Distinct Clinical Entities? Clin. Microbiol. Infect. 2013, 19, 640–645. [Google Scholar] [CrossRef]
- Howard, A.; O’Donoghue, M.; Feeney, A.; Sleator, R.D. Acinetobacter baumannii: An Emerging Opportunistic Pathogen. Virulence 2012, 3, 243–250. [Google Scholar] [CrossRef]
- Vijayakumar, S.; Biswas, I.; Veeraraghavan, B. Accurate Identification of Clinically Important Acinetobacter spp.: An Update. Future Sci. OA 2019, 5, FSO395. [Google Scholar] [CrossRef]
- Higgins, P.G.; Lehmann, M.; Wisplinghoff, H.; Seifert, H. gyrB Multiplex PCR to Differentiate between Acinetobacter calcoaceticus and Acinetobacter Genomic Species 3. J. Clin. Microbiol. 2010, 48, 4592–4594. [Google Scholar] [CrossRef]
- Peleg, A.Y.; Seifert, H.; Paterson, D.L. Acinetobacter baumannii: Emergence of a Successful Pathogen. Clin. Microbiol. Rev. 2008, 21, 538–582. [Google Scholar] [CrossRef] [PubMed]
- Beijerinck, M. Pigmenten Als Oxidatieproducten Gevormd Door Bacterien. Versl K. Akad Wetensch Amst. 1911, 19, 1092–1103. Available online: https://dwc.knaw.nl/DL/publications/PU00013339.pdf (accessed on 13 July 2024).
- Brisou, J.; Prevot, A.R. Studies on bacterial taxonomy. X. The revision of species under Acromobacter group. Ann. Inst. Pasteur 1954, 86, 722–728. [Google Scholar]
- Baumann, P.; Doudoroff, M.; Stanier, R.Y. A Study of the Moraxella Group. II. Oxidative-Negative Species (Genus Acinetobacter). J. Bacteriol. 1968, 95, 1520–1541. [Google Scholar] [CrossRef] [PubMed]
- Bouvet, P.J.M.; Grimont, P.A.D. Taxonomy of the Genus Acinetobacter with the Recognition of Acinetobacter baumannii sp. Nov., Acinetobacter haemolyticus sp. Nov., Acinetobacter johnsonii sp. Nov., and Acinetobacter junii sp. Nov. and Emended Descriptions of Acinetobacter calcoaceticus and Acinetobacter lwoffii. Int. J. Syst. Evol. Microbiol. 1986, 36, 228–240. [Google Scholar] [CrossRef]
- Parte, A.C.; Sardà Carbasse, J.; Meier-Kolthoff, J.P.; Reimer, L.C.; Göker, M. List of Prokaryotic Names with Standing in Nomenclature (LPSN) Moves to the DSMZ. Int. J. Syst. Evol. Microbiol. 2020, 70, 5607–5612. [Google Scholar] [CrossRef]
- Gerner-Smidt, P.; Tjernberg, I.; Ursing, J. Reliability of Phenotypic Tests for Identification of Acinetobacter Species. J. Clin. Microbiol. 1991, 29, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Tjernberg, I.; Ursing, J. Clinical Strains of Acinetobacter Classified by DNA-DNA Hybridization. APMIS 1989, 97, 595–605. [Google Scholar] [CrossRef] [PubMed]
- Nemec, A.; Krizova, L.; Maixnerova, M.; van der Reijden, T.J.K.; Deschaght, P.; Passet, V.; Vaneechoutte, M.; Brisse, S.; Dijkshoorn, L. Genotypic and Phenotypic Characterization of the Acinetobacter calcoaceticus–Acinetobacter baumannii Complex with the Proposal of Acinetobacter pittii sp. Nov. (Formerly Acinetobacter Genomic Species 3) and Acinetobacter nosocomialis sp. Nov. (Formerly Acinetobacter Genomic Species 13TU). Res. Microbiol. 2011, 162, 393–404. [Google Scholar] [CrossRef]
- Gerner-Smidt, P.; Tjernberg, I. Acinetobacter in Denmark: II. Molecular Studies of the Acinetobacter calcoaceticus–Acinetobacter baumannii Complex. APMIS 1993, 101, 826–832. [Google Scholar] [CrossRef]
- Karah, N.; Haldorsen, B.; Hegstad, K.; Simonsen, G.S.; Sundsfjord, A.; Samuelsen, Ø.; Norwegian Study Group of Acinetobacter. Species Identification and Molecular Characterization of Acinetobacter spp. Blood Culture Isolates from Norway. J. Antimicrob. Chemother. 2011, 66, 738–744. [Google Scholar] [CrossRef]
- Kim, D.H.; Park, Y.K.; Choi, J.Y.; Ko, K.S. Identification of Genetic Recombination between Acinetobacter Species Based on Multilocus Sequence Analysis. Diagn. Microbiol. Infect. Dis. 2012, 73, 284–286. [Google Scholar] [CrossRef] [PubMed]
- Nemec, A.; Janda, L.; Melter, O.; Dijkshoorn, L. Genotypic and Phenotypic Similarity of Multiresistant Acinetobacter baumannii Isolates in the Czech Republic. J. Med. Microbiol. 1999, 48, 287–296. [Google Scholar] [CrossRef]
- Nemec, A.; Krizova, L.; Maixnerova, M.; Sedo, O.; Brisse, S.; Higgins, P.G. Acinetobacter seifertii sp. Nov., a Member of the Acinetobacter calcoaceticus–Acinetobacter baumannii Complex Isolated from Human Clinical Specimens. Int. J. Syst. Evol. Microbiol. 2015, 65, 934–942. [Google Scholar] [CrossRef]
- Cosgaya, C.; Marí-Almirall, M.; Van Assche, A.; Fernández-Orth, D.; Mosqueda, N.; Telli, M.; Huys, G.; Higgins, P.G.; Seifert, H.; Lievens, B.; et al. Acinetobacter dijkshoorniae sp. Nov., a Member of the Acinetobacter calcoaceticus–Acinetobacter baumannii Complex Mainly Recovered from Clinical Samples in Different Countries. Int. J. Syst. Evol. Microbiol. 2016, 66, 4105–4111. [Google Scholar] [CrossRef] [PubMed]
- Turton, J.F.; Woodford, N.; Glover, J.; Yarde, S.; Kaufmann, M.E.; Pitt, T.L. Identification of Acinetobacter baumannii by Detection of the blaOXA-51-like Carbapenemase Gene Intrinsic to This Species. J. Clin. Microbiol. 2006, 44, 2974–2976. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Gaind, R. Development of Loop-Mediated Isothermal Amplification Assay for Detection of Clinically Significant Members of Acinetobacter calcoaceticus–Baumannii Complex and Associated Carbapenem Resistance. Front. Mol. Biosci. 2021, 8, 659256. [Google Scholar] [CrossRef]
- Strateva, T.V.; Sirakov, I.; Stoeva, T.J.; Stratev, A.; Peykov, S. Phenotypic and Molecular Characteristics of Carbapenem-Resistant Acinetobacter baumannii Isolates from Bulgarian Intensive Care Unit Patients. Microorganisms 2023, 11, 875. [Google Scholar] [CrossRef] [PubMed]
- Espinal, P.; Seifert, H.; Dijkshoorn, L.; Vila, J.; Roca, I. Rapid and Accurate Identification of Genomic Species from the Acinetobacter baumannii (Ab) Group by MALDI-TOF MS. Clin. Microbiol. Infect. 2012, 18, 1097–1103. [Google Scholar] [CrossRef]
- Sousa, C.; Botelho, J.; Silva, L.; Grosso, F.; Nemec, A.; Lopes, J.; Peixe, L. MALDI-TOF MS and Chemometric Based Identification of the Acinetobacter calcoaceticus–Acinetobacter baumannii Complex Species. Int. J. Med. Microbiol. 2014, 304, 669–677. [Google Scholar] [CrossRef]
- Ge, M.-C.; Kuo, A.-J.; Liu, K.-L.; Wen, Y.-H.; Chia, J.-H.; Chang, P.-Y.; Lee, M.-H.; Wu, T.-L.; Chang, S.-C.; Lu, J.-J. Routine Identification of Microorganisms by Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry: Success Rate, Economic Analysis, and Clinical Outcome. J. Microbiol. Immunol. Infect. 2017, 50, 662–668. [Google Scholar] [CrossRef]
- Anhalt, J.P.; Fenselau, C. Identification of Bacteria Using Mass Spectrometry. Anal. Chem. 1975, 47, 219–225. [Google Scholar] [CrossRef]
- Seng, P.; Drancourt, M.; Gouriet, F.; La Scola, B.; Fournier, P.; Rolain, J.M.; Raoult, D. Ongoing Revolution in Bacteriology: Routine Identification of Bacteria by Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry. Clin. Infect. Dis. 2009, 49, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, H.; Zhao, Y.-P.; Xu, Y.-C.; Hsueh, P.-R. Evaluation of the Bruker Biotyper Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry System for Identification of Aspergillus Species Directly from Growth on Solid Agar Media. Front. Microbiol. 2017, 8, 1209. [Google Scholar] [CrossRef]
- Marí-Almirall, M.; Cosgaya, C.; Higgins, P.G.; Van Assche, A.; Telli, M.; Huys, G.; Lievens, B.; Seifert, H.; Dijkshoorn, L.; Roca, I.; et al. MALDI-TOF/MS Identification of Species from the Acinetobacter baumannii (Ab) Group Revisited: Inclusion of the Novel A. Seifertii and A. Dijkshoorniae Species. Clin. Microbiol. Infect. 2017, 23, 210.e1–210.e9. [Google Scholar] [CrossRef]
- Sousa, C.; Botelho, J.; Grosso, F.; Silva, L.; Lopes, J.; Peixe, L. Unsuitability of MALDI-TOF MS to Discriminate Acinetobacter baumannii Clones under Routine Experimental Conditions. Front. Microbiol. 2015, 6, 481. [Google Scholar] [CrossRef]
- Alvarez-Buylla, A.; Culebras, E.; Picazo, J.J. Identification of Acinetobacter Species: Is Bruker Biotyper MALDI-TOF Mass Spectrometry a Good Alternative to Molecular Techniques? Infect. Genet. Evol. 2012, 12, 345–349. [Google Scholar] [CrossRef]
- Jeong, S.; Hong, J.S.; Kim, J.O.; Kim, K.-H.; Lee, W.; Bae, I.K.; Lee, K.; Jeong, S.H. Identification of Acinetobacter Species Using Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. Ann. Lab. Med. 2016, 36, 325–334. [Google Scholar] [CrossRef]
- Pailhoriès, H.; Daure, S.; Eveillard, M.; Joly-Guillou, M.-L.; Kempf, M. Using Vitek MALDI-TOF Mass Spectrometry to Identify Species Belonging to the Acinetobacter calcoaceticus–Acinetobacter baumannii Complex: A Relevant Alternative to Molecular Biology? Diagn. Microbiol. Infect. Dis. 2015, 83, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Šedo, O.; Nemec, A.; Křížová, L.; Kačalová, M.; Zdráhal, Z. Improvement of MALDI-TOF MS Profiling for the Differentiation of Species within the Acinetobacter calcoaceticus–Acinetobacter baumannii Complex. Syst. Appl. Microbiol. 2013, 36, 572–578. [Google Scholar] [CrossRef] [PubMed]
- Toh, B.E.W.; Paterson, D.L.; Kamolvit, W.; Zowawi, H.; Kvaskoff, D.; Sidjabat, H.; Wailan, A.; Peleg, A.Y.; Huber, C.A. Species Identification within Acinetobacter calcoaceticus–Baumannii Complex Using MALDI-TOF MS. J. Microbiol. Methods 2015, 118, 128–132. [Google Scholar] [CrossRef]
- Šedo, O.; Radolfová-Křížová, L.; Nemec, A.; Zdráhal, Z. Limitations of Routine MALDI-TOF Mass Spectrometric Identification of Acinetobacter Species and Remedial Actions. J. Microbiol. Methods 2018, 154, 79–85. [Google Scholar] [CrossRef]
- Rim, J.H.; Lee, Y.; Hong, S.K.; Park, Y.; Kim, M.; D’Souza, R.; Park, E.S.; Yong, D.; Lee, K. Insufficient Discriminatory Power of Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry Dendrograms to Determine the Clonality of Multi-Drug-Resistant Acinetobacter baumannii Isolates from an Intensive Care Unit. Biomed. Res. Int. 2015, 2015, 535027. [Google Scholar] [CrossRef]
- Spinali, S.; van Belkum, A.; Goering, R.V.; Girard, V.; Welker, M.; Van Nuenen, M.; Pincus, D.H.; Arsac, M.; Durand, G. Microbial Typing by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry: Do We Need Guidance for Data Interpretation? J. Clin. Microbiol. 2015, 53, 760–765. [Google Scholar] [CrossRef]
- Busby, E.J.; Doyle, R.M.; Leboreiro Babe, C.; Harris, K.A.; Mack, D.; Méndez-Cervantes, G.; O’Sullivan, D.M.; Pang, V.; Sadouki, Z.; Solanki, P.; et al. Evaluation of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry for Molecular Typing of Acinetobacter baumannii in Comparison with Orthogonal Methods. Microbiol. Spectr. 2023, 11, e04995-22. [Google Scholar] [CrossRef]
- Dortet, L.; Potron, A.; Bonnin, R.A.; Plesiat, P.; Naas, T.; Filloux, A.; Larrouy-Maumus, G. Rapid Detection of Colistin Resistance in Acinetobacter baumannii Using MALDI-TOF-Based Lipidomics on Intact Bacteria. Sci. Rep. 2018, 8, 16910. [Google Scholar] [CrossRef]
- Florio, W.; Baldeschi, L.; Rizzato, C.; Tavanti, A.; Ghelardi, E.; Lupetti, A. Detection of Antibiotic-Resistance by MALDI-TOF Mass Spectrometry: An Expanding Area. Front. Cell. Infect. Microbiol. 2020, 10, 572909. [Google Scholar] [CrossRef]
- Sorensen, M.; Chandler, C.E.; Gardner, F.M.; Ramadan, S.; Khot, P.D.; Leung, L.M.; Farrance, C.E.; Goodlett, D.R.; Ernst, R.K.; Nilsson, E. Rapid Microbial Identification and Colistin Resistance Detection via MALDI-TOF MS Using a Novel on-Target Extraction of Membrane Lipids. Sci. Rep. 2020, 10, 21536. [Google Scholar] [CrossRef]
- Johnson, J.L.; Anderson, R.S.; Ordal, E.J. Nucleic Acid Homologies among Oxidase-Negative Moraxella Species. J. Bacteriol. 1970, 101, 568–573. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.Z.-M.; Halachev, M.R.; Loman, N.J.; Constantinidou, C.; Pallen, M.J. Defining Bacterial Species in the Genomic Era: Insights from the Genus Acinetobacter. BMC Microbiol. 2012, 12, 302. [Google Scholar] [CrossRef]
- Janssen, P.; Maquelin, K.; Coopman, R.; Tjernberg, I.; Bouvet, P.; Kersters, K.; Dijkshoorn, L. Discrimination of Acinetobacter Genomic Species by AFLP Fingerprinting. Int. J. Syst. Bacteriol. 1997, 47, 1179–1187. [Google Scholar] [CrossRef] [PubMed]
- Vaneechoutte, M.; Dijkshoorn, L.; Tjernberg, I.; Elaichouni, A.; de Vos, P.; Claeys, G.; Verschraegen, G. Identification of Acinetobacter Genomic Species by Amplified Ribosomal DNA Restriction Analysis. J. Clin. Microbiol. 1995, 33, 11–15. [Google Scholar] [CrossRef]
- Dijkshoorn, L.; van Harsselaar, B.; Tjernberg, I.; Bouvet, P.J.M.; Vaneechoutte, M. Evaluation of Amplified Ribosomal DNA Restriction Analysis for Identification of Acinetobacter Genomic Species. Syst. Appl. Microbiol. 1998, 21, 33–39. [Google Scholar] [CrossRef]
- Gerner-Smidt, P. Ribotyping of the Acinetobacter calcoaceticus–Acinetobacter baumannii Complex. J. Clin. Microbiol. 1992, 30, 2680–2685. [Google Scholar] [CrossRef]
- Chen, T.-L.; Siu, L.-K.; Wu, R.C.-C.; Shaio, M.-F.; Huang, L.-Y.; Fung, C.-P.; Lee, C.-M.; Cho, W.-L. Comparison of One-Tube Multiplex PCR, Automated Ribotyping and Intergenic Spacer (ITS) Sequencing for Rapid Identification of Acinetobacter baumannii. Clin. Microbiol. Infect. 2007, 13, 801–806. [Google Scholar] [CrossRef]
- Chen, T.-L.; Lee, Y.-T.; Kuo, S.-C.; Yang, S.-P.; Fung, C.-P.; Lee, S.-D. Rapid Identification of Acinetobacter baumannii, Acinetobacter Nosocomialis and Acinetobacter pittii with a Multiplex PCR Assay. J. Med. Microbiol. 2014, 63, 1154–1159. [Google Scholar] [CrossRef]
- Abhari, S.S.; Azizi, O.; Modiri, L.; Aslani, M.M.; Assmar, M.; Fereshteh, S.; Badmasti, F. Two New Rapid PCR-Based Methods for Identification of Acinetobacter baumannii Isolated from Clinical Samples. Mol. Cell Probes 2021, 58, 101732. [Google Scholar] [CrossRef] [PubMed]
- Higgins, P.G.; Wisplinghoff, H.; Krut, O.; Seifert, H. A PCR-Based Method to Differentiate between Acinetobacter baumannii and Acinetobacter Genomic Species 13TU. Clin. Microbiol. Infect. 2007, 13, 1199–1201. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.J.; Jang, S.J.; Li, X.M.; Park, G.; Kook, J.-K.; Kim, M.J.; Chang, Y.-H.; Shin, J.H.; Kim, S.H.; Kim, D.-M.; et al. Comparison of rpoB Gene Sequencing, 16S rRNA Gene Sequencing, gyrB Multiplex PCR, and the VITEK2 System for Identification of Acinetobacter Clinical Isolates. Diagn. Microbiol. Infect. Dis. 2014, 78, 29–34. [Google Scholar] [CrossRef]
- Soo, P.-C.; Tseng, C.-C.; Ling, S.-R.; Liou, M.-L.; Liu, C.-C.; Chao, H.-J.; Lin, T.-Y.; Chang, K.-C. Rapid and Sensitive Detection of Acinetobacter baumannii Using Loop-Mediated Isothermal Amplification. J. Microbiol. Methods 2013, 92, 197–200. [Google Scholar] [CrossRef]
- La Scola, B.; Gundi, V.A.K.B.; Khamis, A.; Raoult, D. Sequencing of the rpoB Gene and Flanking Spacers for Molecular Identification of Acinetobacter Species. J. Clin. Microbiol. 2006, 44, 827–832. [Google Scholar] [CrossRef]
- Gundi, V.A.K.B.; Dijkshoorn, L.; Burignat, S.; Raoult, D.; La Scola, B. Validation of Partial rpoB Gene Sequence Analysis for the Identification of Clinically Important and Emerging Acinetobacter Species. Microbiology 2009, 155, 2333–2341. [Google Scholar] [CrossRef]
- Chang, H.C.; Wei, Y.F.; Dijkshoorn, L.; Vaneechoutte, M.; Tang, C.T.; Chang, T.C. Species-Level Identification of Isolates of the Acinetobacter calcoaceticus–Acinetobacter baumannii Complex by Sequence Analysis of the 16S-23S rRNA Gene Spacer Region. J. Clin. Microbiol. 2005, 43, 1632–1639. [Google Scholar] [CrossRef]
- Didelot, X.; Bowden, R.; Wilson, D.J.; Peto, T.E.A.; Crook, D.W. Transforming Clinical Microbiology with Bacterial Genome Sequencing. Nat. Rev. Genet. 2012, 13, 601–612. [Google Scholar] [CrossRef]
- Mustafa, A.S. Whole Genome Sequencing: Applications in Clinical Bacteriology. Med. Princ. Pract. 2024, 33, 185–197. [Google Scholar] [CrossRef]
- Bouvet, P.J.; Jeanjean, S. Delineation of New Proteolytic Genomic Species in the Genus Acinetobacter. Res. Microbiol. 1989, 140, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Meier-Kolthoff, J.P.; Auch, A.F.; Klenk, H.-P.; Göker, M. Genome Sequence-Based Species Delimitation with Confidence Intervals and Improved Distance Functions. BMC Bioinform. 2013, 14, 60. [Google Scholar] [CrossRef] [PubMed]
- Chun, J.; Oren, A.; Ventosa, A.; Christensen, H.; Arahal, D.R.; da Costa, M.S.; Rooney, A.P.; Yi, H.; Xu, X.-W.; De Meyer, S.; et al. Proposed Minimal Standards for the Use of Genome Data for the Taxonomy of Prokaryotes. Int. J. Syst. Evol. Microbiol. 2018, 68, 461–466. [Google Scholar] [CrossRef]
- Goris, J.; Konstantinidis, K.T.; Klappenbach, J.A.; Coenye, T.; Vandamme, P.; Tiedje, J.M. DNA-DNA Hybridization Values and Their Relationship to Whole-Genome Sequence Similarities. Int. J. Syst. Evol. Microbiol. 2007, 57, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Oh, H.-S.; Park, S.-C.; Chun, J. Towards a Taxonomic Coherence between Average Nucleotide Identity and 16S rRNA Gene Sequence Similarity for Species Demarcation of Prokaryotes. Int. J. Syst. Evol. Microbiol. 2014, 64, 346–351. [Google Scholar] [CrossRef]
- Whitman, W.B. Genome Sequences as the Type Material for Taxonomic Descriptions of Prokaryotes. Syst. Appl. Microbiol. 2015, 38, 217–222. [Google Scholar] [CrossRef]
- Jain, C.; Rodriguez-R, L.M.; Phillippy, A.M.; Konstantinidis, K.T.; Aluru, S. High Throughput ANI Analysis of 90K Prokaryotic Genomes Reveals Clear Species Boundaries. Nat. Commun. 2018, 9, 5114. [Google Scholar] [CrossRef]
- Vos, P.; Hogers, R.; Bleeker, M.; Reijans, M.; van de Lee, T.; Hornes, M.; Frijters, A.; Pot, J.; Peleman, J.; Kuiper, M. AFLP: A New Technique for DNA Fingerprinting. Nucleic Acids Res. 1995, 23, 4407–4414. [Google Scholar] [CrossRef]
- Zarrilli, R.; Pournaras, S.; Giannouli, M.; Tsakris, A. Global Evolution of Multidrug-Resistant Acinetobacter baumannii Clonal Lineages. Int. J. Antimicrob. Agents 2013, 41, 11–19. [Google Scholar] [CrossRef]
- Ruiz de Alegría-Puig, C.; De-Malet-Pintos-Fonseca, A.; Angulo-López, I.; Agüero-Balbín, J.; Marco, F.; Cayô, R.; Roca, I.; Vila, J.; Martínez-Martínez, L. Evaluation of Vitek-MSTM and Microflex LTTM Commercial Systems for Identification of Acinetobacter calcoaceticus–Baumannii Complex. Enfermedades Infecc. Y Microbiol. Clin. 2021, 39, 9–13. [Google Scholar] [CrossRef]
- Mueller, U.G.; Wolfenbarger, L.L.; Mueller, U.G.; Wolfenbarger, L.L.; Mueller, U.G.; Wolfenbarger, L.L.; Mueller, U.G.; Wolfenbarger, L.L. AFLP Genotyping and Fingerprinting. Trends Ecol. Evol. 1999, 14, 389–394. [Google Scholar] [CrossRef]
- Clark, C.G.; Kruk, T.M.A.C.; Bryden, L.; Hirvi, Y.; Ahmed, R.; Rodgers, F.G. Subtyping of Salmonella Enterica Serotype Enteritidis Strains by Manual and Automated PstI-SphI Ribotyping. J. Clin. Microbiol. 2003, 41, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Sklarz, M.Y.; Angel, R.; Gillor, O.; Soares, M.I.M. Evaluating Amplified rDNA Restriction Analysis Assay for Identification of Bacterial Communities. Antonie Van Leeuwenhoek 2009, 96, 659–664. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-T.; Turton, J.F.; Chen, T.-L.; Wu, R.C.-C.; Chang, W.-C.; Fung, C.-P.; Chen, C.-P.; Cho, W.-L.; Huang, L.-Y.; Siu, L.K. First Identification of blaOXA-51-like in Non-Baumannii acinetobacter spp. J. Chemother. 2009, 21, 514–520. [Google Scholar] [CrossRef]
- Zander, E.; Higgins, P.G.; Fernández-González, A.; Seifert, H. Detection of Intrinsic blaOXA-51-like by Multiplex PCR on Its Own Is Not Reliable for the Identification of Acinetobacter baumannii. Int. J. Med. Microbiol. 2013, 303, 88–89. [Google Scholar] [CrossRef]
- Ahmadi, A.; Salimizand, H. Delayed Identification of Acinetobacter baumannii during an Outbreak Owing to Disrupted blaOXA-51-like by ISAba19. Int. J. Antimicrob. Agents 2017, 50, 119–122. [Google Scholar] [CrossRef] [PubMed]
- Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-Mediated Isothermal Amplification of DNA. Nucleic Acids Res. 2000, 28, E63. [Google Scholar] [CrossRef]
- Oscorbin, I.P.; Belousova, E.A.; Zakabunin, A.I.; Boyarskikh, U.A.; Filipenko, M.L. Comparison of Fluorescent Intercalating Dyes for Quantitative Loop-Mediated Isothermal Amplification (qLAMP). Biotechniques 2016, 61, 20–25. [Google Scholar] [CrossRef]
- Li, P.; Niu, W.; Li, H.; Lei, H.; Liu, W.; Zhao, X.; Guo, L.; Zou, D.; Yuan, X.; Liu, H.; et al. Rapid Detection of Acinetobacter baumannii and Molecular Epidemiology of Carbapenem-Resistant A. Baumannii in Two Comprehensive Hospitals of Beijing, China. Front. Microbiol. 2015, 6, 997. [Google Scholar] [CrossRef]
- Khirala, S.K.; Elthoqapy, A.A.; Awad, R.A.; Badr, G.A. Direct Detection of Acinetobacter baumannii by Loop-Mediated Isothermal Amplification in Patients with Respiratory Tract Infection. Sci. J. Al-Azhar Med. Fac. Girls 2020, 4, 345–351. [Google Scholar] [CrossRef]
- Yamamoto, N.; Hamaguchi, S.; Akeda, Y.; Santanirand, P.; Kerdsin, A.; Seki, M.; Ishii, Y.; Paveenkittiporn, W.; Bonomo, R.A.; Oishi, K.; et al. Clinical Specimen-Direct LAMP: A Useful Tool for the Surveillance of blaOXA-23-Positive Carbapenem-Resistant Acinetobacter baumannii. PLoS ONE 2015, 10, e0133204. [Google Scholar] [CrossRef] [PubMed]
- Garciglia Mercado, C.; Gaxiola Robles, R.; Ascencio, F.; Silva-Sanchez, J.; Estrada-Garcia, M.T.; Gomez-Anduro, G. Development of a LAMP Method for Detection of Carbapenem-Resistant Acinetobacter baumannii during a Hospital Outbreak. J. Infect. Dev. Ctries. 2020, 14, 494–501. [Google Scholar] [CrossRef]
- Patel, J.C.; Oberstaller, J.; Xayavong, M.; Narayanan, J.; DeBarry, J.D.; Srinivasamoorthy, G.; Villegas, L.; Escalante, A.A.; DaSilva, A.; Peterson, D.S.; et al. Real-Time Loop-Mediated Isothermal Amplification (RealAmp) for the Species-Specific Identification of Plasmodium Vivax. PLoS ONE 2013, 8, e54986. [Google Scholar] [CrossRef]
- Sharma, A.; Azam, M.; Verma, P.K.; Talwar, V.; Roy, S.; Veeraraghavan, B.; Singh, R.; Gaind, R. Application of LAMP Assay for Detection of Carbapenem-Resistant Acinetobacter calcoaceticus–Acinetobacter baumannii Complex in ICU Admitted Sepsis Patients: A Rapid and Cost-Effective Diagnostic Tool. Diagn. Microbiol. Infect. Dis. 2024, 110, 116398. [Google Scholar] [CrossRef] [PubMed]
- Lellouche, J.; Keren-Paz, A.; Rov, R.; Efrati Epchtien, R.; Frenk, S.; Hameir, A.; Temkin, E.; Schwartz, D.; Carmeli, Y. Carbapenem-Resistant Acinetobacter baumannii Carrier Detection: A Simple and Efficient Protocol. Microbiol. Spectr. 2024, 12, e04062-23. [Google Scholar] [CrossRef]
- Vergara, A.; Boutal, H.; Ceccato, A.; López, M.; Cruells, A.; Bueno-Freire, L.; Moreno-Morales, J.; Puig de la Bellacasa, J.; Castro, P.; Torres, A.; et al. Assessment of a Loop-Mediated Isothermal Amplification (LAMP) Assay for the Rapid Detection of Pathogenic Bacteria from Respiratory Samples in Patients with Hospital-Acquired Pneumonia. Microorganisms 2020, 8, 103. [Google Scholar] [CrossRef]
- Misbah, S.; Hassan, H.; Yusof, M.Y.; Hanifah, Y.A.; AbuBakar, S. Genomic Species Identification of Acinetobacter of Clinical Isolates by 16S rDNA Sequencing. Singap. Med. J. 2005, 46, 461–464. [Google Scholar]
- Vaneechoutte, M.; De Baere, T.; Nemec, A.; Musílek, M.; van der Reijden, T.J.K.; Dijkshoorn, L. Reclassification of Acinetobacter Grimontii Carr et al. 2003 as a Later Synonym of Acinetobacter junii Bouvet and Grimont 1986. Int. J. Syst. Evol. Microbiol. 2008, 58, 937–940. [Google Scholar] [CrossRef]
- Mitchell, K.E.; Turton, J.F.; Lloyd, D.H. Isolation and Identification of Acinetobacter spp. from Healthy Canine Skin. Vet. Dermatol. 2018, 29, 240-e87. [Google Scholar] [CrossRef]
- Meliani, S.; Djahoudi, A.; Menacer, R. Molecular Biology for the Identification and Diagnostic of Acinetobacter baumannii Infections. J. Mol. Pharm. Sci. 2023, 2, 45–56. [Google Scholar]
- Simmon, K.E.; Kommedal, Ø.; Saebo, Ø.; Karlsen, B.; Petti, C.A. Simultaneous Sequence Analysis of the 16S rRNA and rpoB Genes by Use of RipSeq Software to Identify Mycobacterium Species. J. Clin. Microbiol. 2010, 48, 3231–3235. [Google Scholar] [CrossRef] [PubMed]
- Sabat, A.J.; van Zanten, E.; Akkerboom, V.; Wisselink, G.; van Slochteren, K.; de Boer, R.F.; Hendrix, R.; Friedrich, A.W.; Rossen, J.W.A.; Kooistra-Smid, A.M.D. Targeted Next-Generation Sequencing of the 16S-23S rRNA Region for Culture-Independent Bacterial Identification—Increased Discrimination of Closely Related Species. Sci. Rep. 2017, 7, 3434. [Google Scholar] [CrossRef]
- Diancourt, L.; Passet, V.; Nemec, A.; Dijkshoorn, L.; Brisse, S. The Population Structure of Acinetobacter baumannii: Expanding Multiresistant Clones from an Ancestral Susceptible Genetic Pool. PLoS ONE 2010, 5, e10034. [Google Scholar] [CrossRef]
- Pulami, D.; Schauss, T.; Eisenberg, T.; Blom, J.; Schwengers, O.; Bender, J.K.; Wilharm, G.; Kämpfer, P.; Glaeser, S.P. Acinetobacter stercoris sp. Nov. Isolated from Output Source of a Mesophilic German Biogas Plant with Anaerobic Operating Conditions. Antonie Van Leeuwenhoek 2021, 114, 235–251. [Google Scholar] [CrossRef]
- Margulies, M.; Egholm, M.; Altman, W.E.; Attiya, S.; Bader, J.S.; Bemben, L.A.; Berka, J.; Braverman, M.S.; Chen, Y.-J.; Chen, Z.; et al. Genome Sequencing in Microfabricated High-Density Picolitre Reactors. Nature 2005, 437, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Behjati, S.; Tarpey, P.S. What Is next Generation Sequencing? Arch. Dis. Child. Educ. Pract. Ed. 2013, 98, 236–238. [Google Scholar] [CrossRef] [PubMed]
- Slatko, B.E.; Gardner, A.F.; Ausubel, F.M. Overview of Next-Generation Sequencing Technologies. Curr. Protoc. Mol. Biol. 2018, 122, e59. [Google Scholar] [CrossRef]
- Amarasinghe, S.L.; Su, S.; Dong, X.; Zappia, L.; Ritchie, M.E.; Gouil, Q. Opportunities and Challenges in Long-Read Sequencing Data Analysis. Genome Biol. 2020, 21, 30. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Y.; Bollas, A.; Wang, Y.; Au, K.F. Nanopore Sequencing Technology, Bioinformatics and Applications. Nat. Biotechnol. 2021, 39, 1348–1365. [Google Scholar] [CrossRef]
- Chen, Z.; Erickson, D.L.; Meng, J. Benchmarking Hybrid Assembly Approaches for Genomic Analyses of Bacterial Pathogens Using Illumina and Oxford Nanopore Sequencing. BMC Genom. 2020, 21, 631. [Google Scholar] [CrossRef]
- Smith, M.G.; Gianoulis, T.A.; Pukatzki, S.; Mekalanos, J.J.; Ornston, L.N.; Gerstein, M.; Snyder, M. New Insights into Acinetobacter baumannii Pathogenesis Revealed by High-Density Pyrosequencing and Transposon Mutagenesis. Genes. Dev. 2007, 21, 601–614. [Google Scholar] [CrossRef] [PubMed]
- Fournier, P.-E.; Vallenet, D.; Barbe, V.; Audic, S.; Ogata, H.; Poirel, L.; Richet, H.; Robert, C.; Mangenot, S.; Abergel, C.; et al. Comparative Genomics of Multidrug Resistance in Acinetobacter baumannii. PLoS Genet. 2006, 2, e7. [Google Scholar] [CrossRef] [PubMed]
- Adams, M.D.; Goglin, K.; Molyneaux, N.; Hujer, K.M.; Lavender, H.; Jamison, J.J.; MacDonald, I.J.; Martin, K.M.; Russo, T.; Campagnari, A.A.; et al. Comparative Genome Sequence Analysis of Multidrug-Resistant Acinetobacter baumannii. J. Bacteriol. 2008, 190, 8053–8064. [Google Scholar] [CrossRef]
- Gallagher, L.A.; Ramage, E.; Weiss, E.J.; Radey, M.; Hayden, H.S.; Held, K.G.; Huse, H.K.; Zurawski, D.V.; Brittnacher, M.J.; Manoil, C. Resources for Genetic and Genomic Analysis of Emerging Pathogen Acinetobacter baumannii. J. Bacteriol. 2015, 197, 2027–2035. [Google Scholar] [CrossRef]
- Ou, H.-Y.; Kuang, S.N.; He, X.; Molgora, B.M.; Ewing, P.J.; Deng, Z.; Osby, M.; Chen, W.; Xu, H.H. Complete Genome Sequence of Hypervirulent and Outbreak-Associated Acinetobacter baumannii Strain LAC-4: Epidemiology, Resistance Genetic Determinants and Potential Virulence Factors. Sci. Rep. 2015, 5, 8643. [Google Scholar] [CrossRef]
- Frenk, S.; Temkin, E.; Lurie-Weinberger, M.N.; Keren-Paz, A.; Rov, R.; Rakovitsky, N.; Wullfhart, L.; Nutman, A.; Daikos, G.L.; Skiada, A.; et al. Large-Scale WGS of Carbapenem-Resistant Acinetobacter baumannii Isolates Reveals Patterns of Dissemination of ST Clades Associated with Antibiotic Resistance. J. Antimicrob. Chemother. 2022, 77, 934–943. [Google Scholar] [CrossRef] [PubMed]
- Valcek, A.; Nesporova, K.; Whiteway, C.; De Pooter, T.; De Coster, W.; Strazisar, M.; Van der Henst, C. Genomic Analysis of a Strain Collection Containing Multidrug-, Extensively Drug-, Pandrug-, and Carbapenem-Resistant Modern Clinical Isolates of Acinetobacter baumannii. Antimicrob. Agents Chemother. 2022, 66, e0089222. [Google Scholar] [CrossRef]
- Doughty, E.L.; Liu, H.; Moran, R.A.; Hua, X.; Ba, X.; Guo, F.; Chen, X.; Zhang, L.; Holmes, M.; van Schaik, W.; et al. Endemicity and Diversification of Carbapenem-Resistant Acinetobacter baumannii in an Intensive Care Unit. Lancet Reg. Health West. Pac. 2023, 37, 100780. [Google Scholar] [CrossRef]
- Li, T.; Yang, Y.; Yan, R.; Lan, P.; Liu, H.; Fu, Y.; Hua, X.; Jiang, Y.; Zhou, Z.; Yu, Y. Comparing Core-Genome MLST with PFGE and MLST for Cluster Analysis of Carbapenem-Resistant Acinetobacter baumannii. J. Glob. Antimicrob. Resist. 2022, 30, 148–151. [Google Scholar] [CrossRef]
- Strateva, T.V. Antibiotic Resistance, Virulence and Epidemiology of Therapeutically Problematic Isolates from the Group of “Non-Glucose-Fermenting Gram-Negative Bacteria” (2004–2023). Ph.D. Thesis, Medical University of Sofia, Sofia, Bulgaria, 2023. [Google Scholar]
- Land, M.; Hauser, L.; Jun, S.-R.; Nookaew, I.; Leuze, M.R.; Ahn, T.-H.; Karpinets, T.; Lund, O.; Kora, G.; Wassenaar, T.; et al. Insights from 20 Years of Bacterial Genome Sequencing. Funct. Integr. Genom. 2015, 15, 141–161. [Google Scholar] [CrossRef]
- Morsli, M.; Boudet, A.; Kerharo, Q.; Stephan, R.; Salipante, F.; Dunyach-Remy, C.; Houhamdi, L.; Fournier, P.-E.; Lavigne, J.P.; Drancourt, M. Real-Time Metagenomics-Based Diagnosis of Community-Acquired Meningitis: A Prospective Series, Southern France. EBioMedicine 2022, 84, 104247. [Google Scholar] [CrossRef]
- Andersson, P.; Klein, M.; Lilliebridge, R.A.; Giffard, P.M. Sequences of Multiple Bacterial Genomes and a Chlamydia Trachomatis Genotype from Direct Sequencing of DNA Derived from a Vaginal Swab Diagnostic Specimen. Clin. Microbiol. Infect. 2013, 19, E405–E408. [Google Scholar] [CrossRef] [PubMed]
- Hasman, H.; Saputra, D.; Sicheritz-Ponten, T.; Lund, O.; Svendsen, C.A.; Frimodt-Møller, N.; Aarestrup, F.M. Rapid Whole-Genome Sequencing for Detection and Characterization of Microorganisms Directly from Clinical Samples. J. Clin. Microbiol. 2014, 52, 139–146. [Google Scholar] [CrossRef]
- Tsai, M.-H.; Liu, Y.-Y.; Soo, V.-W. PathoBacTyper: A Web Server for Pathogenic Bacteria Identification and Molecular Genotyping. Front. Microbiol. 2017, 8, 1474. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Liu, J.; Liang, W.; Wang, F.; Wang, L.; Wang, X.; Hua, L.; Chen, H.; Wilson, B.A.; Wang, J.; et al. Development of an Online Tool for Pasteurella Multocida Genotyping and Genotypes of Pasteurella Multocida from Different Hosts. Front. Vet. Sci. 2021, 8, 771157. [Google Scholar] [CrossRef] [PubMed]
- Bagger, F.O.; Borgwardt, L.; Jespersen, A.S.; Hansen, A.R.; Bertelsen, B.; Kodama, M.; Nielsen, F.C. Whole Genome Sequencing in Clinical Practice. BMC Med. Genom. 2024, 17, 39. [Google Scholar] [CrossRef] [PubMed]
- Price, V.; Ngwira, L.G.; Lewis, J.M.; Baker, K.S.; Peacock, S.J.; Jauneikaite, E.; Feasey, N. A Systematic Review of Economic Evaluations of Whole-Genome Sequencing for the Surveillance of Bacterial Pathogens. Microb. Genom. 2023, 9, mgen000947. [Google Scholar] [CrossRef]
Accuracy Rate with Default Databases | Accuracy Rate After Improvement | Comparative Methods Used | Number of Validation Strains | Improvement (notes) | References |
---|---|---|---|---|---|
70% correct ID up to species level | 98% correct ID up to species level | ARDRA, ITS, recA, and blaoxa-51 analysis by sequencing or PCR and gel electrophoresis | A. pittii—17 A. nosocoialis—18 A. baumannii—18 | Expanding the database with reference spectra. (Before inclusion of reference spectra for A. nosocomialis, strains were misidentified as A. baumannii). | Espinal et al., 2012 [25]. |
69.8% correct ID up to species level | 100% correct ID up to species level | rpoB and 16SrRNA sequencing, blaoxa-51PCR analysis | A. baumannii—419 A. nosocomialis—36 A. pittii—23 | Expanding the database with reference spectra. (Before inclusion of reference spectra, 49/110 A. nosocomialis and 5/78 A. pittii were misidentified as A. baumannii). | Jeong et al., 2016 [34]. |
PPV of 56.5% | PPV of 99.6% by use of cell extracts. PPV of 96.8% by use of colonies | rpoB sequencing, MLSA | A. baumannii—16 A. nosocomialis—24 A. pittii—15 A. dijkshoorniae—12 A. seifertii—11 | Expanding the database with reference spectra and MSP (Before inclusion of MSP 13/24 A. nosocomialis were misidentified as A. baumannii; 12/12 A. dijkshoorniae were misidentified as A. pittii, and 11/11 A. seifertii were misidentified as A. baumannii). | Mari-Almirall et al., 2017 [31]. |
Not reported | 100% consistency with rpoB sequencing | rpoB sequencing, MLSA | 100 Acb complex isolates | Expanding the database with reference spectra and SuperSpectra. | Pailhories et al., 2015 [35]. |
86% correct ID up to species level | 90% correct ID up to species level | rpoB and 16SrRNA sequencing, MLSA, ribotyping | A. baumannii—32 A. nosocomialis—29 A. pittii—22 A. calcoaceticus—22 | Replacement of CHCA and TFA with FerA and FA in the matrix solution. | Sedo et al., 2013 [36]. |
Sensitivity/specificity (%) | rpoB sequencing, MLSA AFLP | Chemometric analysis of MALDI-TOF data | Sousa et al., 2014 [26] | ||
A. baumannii 100/89 | A. baumannii 100/100 | A. baumannii—28 | |||
A. nosocomias 90/100 | A. nosocomialis 100/95 | A. nosocomialis—20 | |||
A. pittii 100/98 | A. pittii 100/100 | A. pittii—20 | |||
A. calcoaceticus 100/99 | A. calcoaceticus 89/100 | A. calcoaceticus—9 | |||
A. dijkshoorniae N.A | A. dijkshoorniae 100/100 | A. dijkshoorniae—4 | |||
A. seifertii N.A. | A. seifertii 100/100 | A. seifertii—2 |
The Principle of Method | Method | Identified Species | References |
---|---|---|---|
DNA–DNA hybridization | DNA–DNA hybridization | A. calcoaceticus, A. baumannii A. nosocomialis A. pittii A. seifertii A. dijkshoorniae | Johnson et al., 1970 [45]; Bouvet & Grimont, 1986 [11]; Tjernberg & Ursing, 1989 [14]; Nemec et al., 2011, 2015 [15,20]; Cosgaya et al., 2016 [21]. |
Average Nucleotide Identity (ANI) | A. calcoaceticus A. baumannii A. nosocomialis A. pittii A. seifertii A. dijkshoorniae | Chan et al., 2012 [46]; Nemec et al., 2011, 2015 [15,20]; Cosgaya et al., 2016 [21]. | |
Restriction analysis of DNA (genomic fingerprinting) | Amplified fragment length polymorphism (AFLP) | A. calcoaceticus A. baumannii A. nosocomialis A. pittii | Janssen et al., 1997 [47]; Nemec et al., 2011 [15]. |
Amplified ribosomal DNA restriction analysis (ARDRA) | A. calcoaceticus A. baumannii A. nosocomialis A. pittii A. seifertii A. dijkshoorniae | Vaneechoutte et al., 1995 [48]; Dijkshoorn et al., 1998 [49]. | |
Ribotyping | A. calcoaceticus A. baumannii A. nosocomialis A. pittii | Gerner-Smidt, 1992 [50]; Chen et al., 2007 [51]. | |
PCR-based methods | Amplification of a 425-bp fragment of recA and a 285-bp fragment of ITS | A. baumannii | Chen et al., 2007 [51]. |
Amplification of a 425-bp fragment of recA, 208-bp and 150bp fragments of ITS, and 294-bp fragment of gyrB | A. baumannii A. nosocomialis A. pittii | Chen et al., 2014 [52]. | |
Amplification of blaOXA-51-like gene | A. baumannii | Turton et al., 2006 [22]. | |
Amplification of blaOXA-51-like and gluconolactonase genes | A. baumannii | Abhari et al., 2021 [53]. | |
Amplification of a 1024-bp region of rpoB | A. baumannii | Abhari et al., 2021 [53]. | |
gyrB gene multiplex PCR | A. calcoaceticus A. baumannii A. nosocomialis A. pittii | Higgins et al., 2007, 2010 [6,54]; Lee et al., 2014 [55]. | |
Loop-mediated isothermal method (LAMP) | A. baumannii A. nosocomialis A. pittii | Soo et al., 2013 [56]; Sharma and Gaind, 2021 [23]. | |
Methods based on the analysis of DNA sequences | 16S rRNA gene sequencing | A. baumannii A. nosocomialis A. pittii | La Scola et al., 2006 [57]; Nemec et al., 2015 [20]; Lee et al., 2014 [55]. |
Partial rpoB sequencing (PRBS) | A. calcoaceticus A. baumannii A. nosocomialis A. pittii A. seifertii A. dijkshoorniae | Gundi et al., 2009 [58]; Nemec et al., 2015 [20]; Cosgaya et al., 2016 [21]. | |
16S-23S intergenic spacer (ITS) sequencing | A. calcoaceticus A. baumannii A. nosocomialis A. pittii | Chang et al., 2005 [59]. | |
Multilocus sequence analysis (MLSA) | A. baumannii A. nosocomialis A. pittii A. seifertii A. calcoaceticus A. dijkshoorniae | Nemec et al., 2011 [15]. | |
Whole-genome sequencing (WGS) | A. calcoaceticus A. baumannii A. nosocomialis A. pittii A. seifertii A. dijkshoorniae | Didelot et al., 2012 [60]; Mustafa, 2024 [61]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marinova-Bulgaranova, T.V.; Hitkova, H.Y.; Balgaranov, N.K. Current Methods for Reliable Identification of Species in the Acinetobacter calcoaceticus–Acinetobacter baumannii Complex. Microorganisms 2025, 13, 1819. https://doi.org/10.3390/microorganisms13081819
Marinova-Bulgaranova TV, Hitkova HY, Balgaranov NK. Current Methods for Reliable Identification of Species in the Acinetobacter calcoaceticus–Acinetobacter baumannii Complex. Microorganisms. 2025; 13(8):1819. https://doi.org/10.3390/microorganisms13081819
Chicago/Turabian StyleMarinova-Bulgaranova, Teodora Vasileva, Hristina Yotova Hitkova, and Nikolay Kirilov Balgaranov. 2025. "Current Methods for Reliable Identification of Species in the Acinetobacter calcoaceticus–Acinetobacter baumannii Complex" Microorganisms 13, no. 8: 1819. https://doi.org/10.3390/microorganisms13081819
APA StyleMarinova-Bulgaranova, T. V., Hitkova, H. Y., & Balgaranov, N. K. (2025). Current Methods for Reliable Identification of Species in the Acinetobacter calcoaceticus–Acinetobacter baumannii Complex. Microorganisms, 13(8), 1819. https://doi.org/10.3390/microorganisms13081819