Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (103)

Search Parameters:
Keywords = mixed-gas plasma

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1295 KB  
Review
Closing the Loop: How Regenerative Robust Gasification Enhances Recycling and Supply Chain Resilience
by Bruce Welt, Calvin Lakhan, Jacob Gazaleh, Charles Swearingen and Ziynet Boz
Recycling 2025, 10(6), 209; https://doi.org/10.3390/recycling10060209 - 14 Nov 2025
Viewed by 1211
Abstract
Municipal solid waste (MSW) recycling is constrained by contamination, heterogeneity, and infrastructure built around material-specific pathways. We introduce effectiveness-normalized greenhouse gas (GHG) emissions as a system-level metric that adjusts reported process burdens by feedstock eligibility (Effectiveness Fraction, EF) and carbon recovery efficiency (CRE) [...] Read more.
Municipal solid waste (MSW) recycling is constrained by contamination, heterogeneity, and infrastructure built around material-specific pathways. We introduce effectiveness-normalized greenhouse gas (GHG) emissions as a system-level metric that adjusts reported process burdens by feedstock eligibility (Effectiveness Fraction, EF) and carbon recovery efficiency (CRE) to reflect real-world MSW conditions. Using published LCA data and engineering estimates, we benchmark six pathways, mechanical recycling, PET depolymerization, enzymatic depolymerization, pyrolysis, supercritical water gasification (SCWG), and Regenerative Robust Gasification (RRG), at the scale of mixed MSW. Normalizing for EF and CRE reveals large differences between process-level and system-level performance. Mechanical recycling and PET depolymerization show low process intensities yet high normalized impacts because they can treat only a small share of plastics in MSW. SCWG performs well at broader eligibility. RRG, a plasma-assisted molten-bath approach integrated with methanol synthesis, maintains the lowest normalized impact (~1.6 t CO2e per ton of recycled polymer) while accepting virtually all organics in MSW and vitrifying inorganics. Modeled methanol yields are ~200–300 gal·t−1 without external hydrogen and up to ~800 gal·t−1 with renewable methane reforming. The metric clarifies trade-offs for policy and investment by rewarding technologies that maximize diversion and carbon retention. We discuss how effectiveness-normalized results can be incorporated into LCA practice and Extended Producer Responsibility (EPR) frameworks and outline research needs in techno-economics, regional scalability, hydrogen sourcing, and uncertainty analysis. Findings support aligning infrastructure and procurement with robust, scalable routes that deliver circular manufacturing from heterogeneous MSW. Full article
Show Figures

Figure 1

11 pages, 1096 KB  
Article
Study on the Sustainable Degradation of Sulfur Hexafluoride by Thermal Plasma for Greenhouse Gas Abatement
by Shan Zhu, Yue Zhao, Haoxin Hu, Fengxiang Ma, Jun Cao, Tao Lin, Jiachen Li and Xianhui Chen
Sustainability 2025, 17(22), 10030; https://doi.org/10.3390/su172210030 - 10 Nov 2025
Viewed by 575
Abstract
This study addresses the challenges of efficiency and cost in traditional sulfur hexafluoride (SF6) degradation methods and the throughput limitations of common plasma technologies, with the aim of promoting sustainable treatment of potent greenhouse gases. A method of premixing SF6 [...] Read more.
This study addresses the challenges of efficiency and cost in traditional sulfur hexafluoride (SF6) degradation methods and the throughput limitations of common plasma technologies, with the aim of promoting sustainable treatment of potent greenhouse gases. A method of premixing SF6 with plasma media before entering the plasma discharge region was employed to systematically investigate the effects of three atmospheres—nitrogen, air, and hydrogen—on the degradation efficiency, product distribution, and energy efficiency of SF6. An experimental setup was constructed, and Gibbs free energy minimization simulations were conducted to analyze the degradation performance under different conditions. The results show that the premixed gas injection method achieves a degradation removal efficiency of over 99.84% when the SF6 flow rate is lower than 4 slm, which is significantly better than the staged mixing method. When the discharge current increases from 40 A to 100 A, the degradation effect of SF6 improves significantly, but the improvement becomes marginal when the current is further increased to 120 A. Compared with nitrogen, air and hydrogen atmospheres can effectively enhance the degradation removal rate, with the air atmosphere achieving the highest energy yield of 271 g/kWh. This research reveals the regulatory mechanism of medium components on SF6 degradation, providing a theoretical basis for the sustainable, full-process treatment of industrial-scale reactors and contributing to the mitigation of greenhouse gas emissions. Full article
Show Figures

Figure 1

16 pages, 3788 KB  
Article
Color Genesis and Compositional Features of Red-Blue Colored Gem-Quality Corundum from Malipo, China
by Hui Wang, Xiao-Yan Yu, Guang-Ya Wang, Masroor Alam, Lan Mu, Ying-Xin Xu and Fei Liu
Minerals 2025, 15(11), 1099; https://doi.org/10.3390/min15111099 - 22 Oct 2025
Viewed by 662
Abstract
The newly discovered multi-colored corundum (gem quality) alluvial deposit in Malipo, Yunnan Province, is one of the most famous sapphire deposits in China. However, the coloration mechanism and genesis of red-blue colored corundum (RBCC) remain enigmatic. In this study, conventional gemological techniques such [...] Read more.
The newly discovered multi-colored corundum (gem quality) alluvial deposit in Malipo, Yunnan Province, is one of the most famous sapphire deposits in China. However, the coloration mechanism and genesis of red-blue colored corundum (RBCC) remain enigmatic. In this study, conventional gemological techniques such as ultraviolet–visible (UV-vis) spectroscopy and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) were employed on an RBCC suite, with a view to unravel its coloration mechanism and compositional characteristics. The results show that the element pairs of Cr3+, Fe2+-Ti4+, and Fe3+-Fe3+ in principle contribute to the red coloration, while the blue color in corundum is predominantly caused by the Fe2+-Ti4+ pair, and subordinately by Cr3+ and Fe3+. Cr is likely the cause of the purple color. The Cr content in the red zone is significantly higher than that in the blue zone, while the Ti and V contents in the red zone are notably lower than in the blue zone. High Cr/Ga and (V + Cr)/Ga values of the Malipo RBCC suggest a metamorphic origin. All color zones of RBCC demonstrate stability in Ga content and an extremely low content of Mg, with minor fluctuations in Fe content, indicating that the formation process of the Malipo RBCC was influenced by magma mixing. Full article
Show Figures

Figure 1

20 pages, 12909 KB  
Article
Corrosion Behavior and Failure Mechanism of (Sm0.2Gd0.2Dy0.2Er0.2Yb0.2)2(Zr0.7Hf0.3)2O7 Double-Ceramic Thermal Barrier Coatings in Na2SO4 + V2O5 Environment
by Chunman Wang, Hao Mei, Yong Shang, Xunxun Hu, Huidong Wu, Haiyuan Yu, Keke Chang, Jian Sun, Guanghua Liu, Guijuan Zhou, Chunlei Wan and Shengkai Gong
Coatings 2025, 15(10), 1147; https://doi.org/10.3390/coatings15101147 - 2 Oct 2025
Viewed by 627
Abstract
To meet gas turbines’ growing demand for high-performance thermal barrier coatings (TBCs), this study addresses the limitations of traditional single-layer 8% Y2O3-stabilized ZrO2 (YSZ) coatings in high-temperature corrosive environments. Atmospheric plasma spraying (APS) was used to fabricate the [...] Read more.
To meet gas turbines’ growing demand for high-performance thermal barrier coatings (TBCs), this study addresses the limitations of traditional single-layer 8% Y2O3-stabilized ZrO2 (YSZ) coatings in high-temperature corrosive environments. Atmospheric plasma spraying (APS) was used to fabricate the double-ceramic TBCs with (Sm0.2Gd0.2Dy0.2Er0.2Yb0.2)2(Zr0.7Hf0.3)2O7 (RHZ) as the outer layer and YSZ as the inner layer; thermal cycling corrosion tests (1000 °C, Na2SO4 + V2O5 molten salt) were conducted to compare its performance with traditional single-layer YSZ. The results showed that the YSZ corrosion products were m-ZrO2 and YVO4, while RHZ/YSZ produced rare-earth vanadates, m-(Zr,Hf)O2, and t′-(Zr,Hf)O2, and corrosion degree was positively correlated with salt concentration (which was more impactful) and the number of cycles. Both coatings failed via molten salt penetration, thermochemical reaction, and crack-induced spallation. The corrosion mechanism between the RHZ/YSZ coating and the mixed salt can be explained based on the Lewis acid–base theory and the optical basicity. The RHZ layer on the surface of RHZ/YSZ coatings indeed hinders the penetration of corrosive molten salts into the underlying YSZ layer to some extent. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Figure 1

18 pages, 4902 KB  
Article
Plasma-Assisted CO2 Conversion to Methanol in Energy Systems: Parameter Optimization and Synergistic Effects
by Xiangbo Zou, Yunfei Ma, Yunfeng Ma, Shiwei Qin, Chuangting Chen, Gongda Chen, Zirong Shen, Angjian Wu and Xiaoqing Lin
Catalysts 2025, 15(9), 846; https://doi.org/10.3390/catal15090846 - 3 Sep 2025
Cited by 1 | Viewed by 1867
Abstract
The integrated process of CO2 hydrogenation and catalytic methanol synthesis under plasma conditions holds great potential for CO2 conversion from waste gases. This process connects a dielectric barrier discharge (DBD) plasma reactor and a methanol synthesis fixed-bed reactor through a pressurization [...] Read more.
The integrated process of CO2 hydrogenation and catalytic methanol synthesis under plasma conditions holds great potential for CO2 conversion from waste gases. This process connects a dielectric barrier discharge (DBD) plasma reactor and a methanol synthesis fixed-bed reactor through a pressurization device, achieving the stepwise conversion of CO2 to CO and then to methanol, thereby establishing a low-carbon and high-efficiency energy conversion system. This study experimentally investigated the key parameters influencing the CO2 hydrogenation process in the DBD plasma reactor and the methanol synthesis process in the fixed-bed reactor. The results show that in the plasma reaction, discharge power, discharge gap, gas flow rate, and gas composition significantly affect CO2 conversion efficiency. In the methanol synthesis process, the CO/CO2 mixed feed exhibits superior catalytic performance compared to pure CO2. The optimal operating conditions for the integrated process are a plasma voltage of 40 V and a downstream reaction temperature of 240 °C, under which the system achieves the best overall performance. Full article
(This article belongs to the Special Issue Catalytic Processes in Environmental Applications)
Show Figures

Graphical abstract

27 pages, 9202 KB  
Article
Enhancement in Corrosion and Wear Resistance of FeCoNiCrAl High-Entropy Alloy Coating Through Dual Heat Treatment with 3:1 N2/H2 Atmosphere
by Miqi Wang, Buxiang Li, Chi He, Jing Sun, Liyuan Li, Aihui Liu and Fang Shi
Coatings 2025, 15(9), 986; https://doi.org/10.3390/coatings15090986 - 23 Aug 2025
Viewed by 985
Abstract
This work investigated the effect of high-nitrogen/low-hydrogen mixed atmosphere heat treatment on the electrochemical corrosion and wear resistance of plasma-sprayed FeCoNiCrAl high-entropy alloy (HEA) coatings. The HEA coatings were sequentially prepared through annealing at 400, 600, and 800 °C for 6 h. The [...] Read more.
This work investigated the effect of high-nitrogen/low-hydrogen mixed atmosphere heat treatment on the electrochemical corrosion and wear resistance of plasma-sprayed FeCoNiCrAl high-entropy alloy (HEA) coatings. The HEA coatings were sequentially prepared through annealing at 400, 600, and 800 °C for 6 h. The heat treatment method was conducted in a vacuum tube furnace under 0.1 MPa total pressure, with gas flow rates set to 300 sccm N2 and 100 sccm H2. The XRD results indicated that the as-deposited coating exhibited α-Fe (BBC) and Al0.9Ni4.22 (FCC) phases, with an Fe0.64N0.36 nitride phase generated after 800 °C annealing. The electrochemical measurements suggested that an exceptional corrosion performance with higher thicknesses of passive film and double-layer capacitance can be detected based on the point defect model (PDM) and effective capacitance model. Wear tests revealed that the friction coefficient at 800 °C decreased by 3.84% compared to that in the as-sprayed state due to the formation of a dense nitride layer. Molecular orbital theory pointed out that the formation of bonding molecular orbitals, resulting from the overlap of valence electron orbitals of different atomic species in the HEA coating system, stabilized the structure by promoting atomic interactions. The wear mechanism associated with stress redistribution and energy balance from compositional synergy is proposed in this work. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Figure 1

15 pages, 2785 KB  
Article
Optimization of Magnetic Nozzle Configuration and Hybrid Propellant for Radio-Frequency Plasma Micro-Thrusters in Very Low Earth Orbit Applications
by Jinhao Liu, Longfei Ma, Jianwu He, Jinyue Geng, Li Duan, Qi Kang and Feng Xu
Aerospace 2025, 12(8), 712; https://doi.org/10.3390/aerospace12080712 - 11 Aug 2025
Cited by 1 | Viewed by 1074
Abstract
Very low Earth orbit (VLEO) satellites are confronted with the challenge of orbital decay caused by thin atmospheres, and the volume and power limitations of micro satellites further restrict the application of traditional electric propulsion systems. In response to the above requirements, this [...] Read more.
Very low Earth orbit (VLEO) satellites are confronted with the challenge of orbital decay caused by thin atmospheres, and the volume and power limitations of micro satellites further restrict the application of traditional electric propulsion systems. In response to the above requirements, this study proposes an innovative scheme of radio frequency plasma micro-thrusters based on magnetic nozzle acceleration technology. By optimizing the magnetic nozzle configuration through the system, the plasma confinement efficiency was significantly enhanced. Combined with the mixed working medium (5 sccm Xe + 10 sccm air), the thrust reached 1.7 mN at a power of 130 W. Experiments show that the configuration of the magnetic nozzle directly affects the plasma beam morphology and ionization efficiency, and a multi-magnet layout can form a stable trumpet-shaped plume. The air in the mixed working medium has a linear relationship with the thrust gain (60 μN/sccm), but xenon gas is required as a “seed” to maintain the discharge stability. The optimized magnetic nozzle enables the thruster to achieve both high thrust density (13.1 μN/W) and working medium adaptability at a power level of hundreds of watts. This research provides a low-cost and miniaturized propulsion solution for very low Earth orbit satellites. Its magnetic nozzle-hybrid propellant collaborative mechanism holds significant engineering significance for the development of air-aspirating electric propulsion technology. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

14 pages, 1491 KB  
Article
A Study on Enhanced Lipid Accumulation by Cold Plasma Process in Chlorella sp.
by Mohamed Aadhil Musthak Ahamed, Navaneetha Pandiyaraj Krishnasamy, Karuppusamy Murugavel, Kannappan Arunachalam, Khamis Sulaiman AlDhafri, Arunkumar Jagadeesan, Thajuddin Nooruddin, Sang-Yul Lee and MubarakAli Davoodbasha
Water 2025, 17(13), 2030; https://doi.org/10.3390/w17132030 - 6 Jul 2025
Cited by 1 | Viewed by 1595
Abstract
This study investigated the enhancement in lipid accumulation in Chlorella sp. using non-thermal atmospheric pressure plasma as a pretreatment strategy for the production of value-added products. The plasma treatment was optimized by varying discharge times (0–16 min) using argon gas at a flow [...] Read more.
This study investigated the enhancement in lipid accumulation in Chlorella sp. using non-thermal atmospheric pressure plasma as a pretreatment strategy for the production of value-added products. The plasma treatment was optimized by varying discharge times (0–16 min) using argon gas at a flow rate of 4 L/min. Lipid productivity was assessed through gravimetric analysis and profiling of fatty acid methyl ester using gas chromatography−mass spectrometry (GC-MS). The growth rate and pH of the treated cells were monitored. The findings demonstrated that the 4-min plasma exposure maximized the efficiency of lipid recovery, achieving a 35% of the dry cell weight and a 34.6% increase over untreated control. However, longer plasma treatment times resulted in a comparative decrease in lipid yield, as the decline is possibly due to oxidative degradation. The findings highlight the role of plasma treatment, which significantly boosts lipid yield and gives complementary optimization of downstream processes to improve biodiesel production. The accumulation of lipids in terms of size and volume in the algal cells was assessed by confocal laser scanning microscopy. The GC–MS results of the control revealed that lipids comprised primarily mixed esters such as 2H Pyran 2 carboxylic acid ethyl esters, accounting for 50.97% and 20.52% of the total peak area. In contrast, the 4-min treated sample shifted to saturated triacylglycerols (dodecanoic acid, 2,3 propanetriyl ester), comprising 85% of the total lipid content, which efficiently produced biodiesel. Thus, the non-thermal plasma-based enhancement of lipids in the algal cells has been achieved. Full article
(This article belongs to the Special Issue Aquatic Environment and Ecosystems)
Show Figures

Figure 1

18 pages, 7946 KB  
Article
Numerical Simulation of Streaming Discharge Characteristics of Free Metal Particles in SF6/CF4 Gas Mixtures Under Highly Heterogeneous Electric Field
by Bing Qi, Hui Wang, Chang Liu, Fuyou Teng, Daoxin Yu, Yuxuan Liang and Feihu Wang
Sensors 2025, 25(13), 3847; https://doi.org/10.3390/s25133847 - 20 Jun 2025
Cited by 1 | Viewed by 756
Abstract
Compared to pure SF6 gas, the SF6/CF4 gas mixture exhibits certain advantages in reducing greenhouse effects, lowering the liquefaction temperature, and decreasing the sensitivity to non-uniform electric fields, demonstrating significant application potential in high-voltage electrical equipment. This study employs [...] Read more.
Compared to pure SF6 gas, the SF6/CF4 gas mixture exhibits certain advantages in reducing greenhouse effects, lowering the liquefaction temperature, and decreasing the sensitivity to non-uniform electric fields, demonstrating significant application potential in high-voltage electrical equipment. This study employs a two-dimensional plasma fluid model to investigate the partial discharge phenomena induced by free metallic particles in SF6/CF4 gas mixtures, analyzing the spatiotemporal evolution characteristics of key parameters, such as the charged particle density and axial electric field, under different mixing ratios. The simulation results show that there are two kinds of positive stream discharge phenomena, “continuous and decaying”, when the gas mixture ratio is 90%CF4-10%SF6 and 40%CF4-60%SF6. The proportion of CF4 in the gas mixture will affect the spatial distribution of charged particles and the production and disappearance of electrons. When the proportion of CF4 is 90%, the content of positive ions in the discharge channel is the highest, and the electric field formed by the positive space charge of CF4+ in the stream head promotes the continuous propagation of the stream. As the concentration of CF4 decreases, the main ionization reaction at the stream head shifts from CF4 to SF6, and a negative space charge region dominated by SF6 particles is also formed near the stream head, changing the electric field distribution near the flow head. The adhesion reaction rate is greater than the ionization reaction rate, resulting in the disappearance of electrons greater than the production, and the stream phenomenon tends to decay. These simulation results are helpful to understand the dynamic process of positive stream discharge induced by free metal particles in SF6/CF4 gas mixtures, and they provide a theoretical basis for better solutions to equipment damage caused by partial discharge. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

25 pages, 2226 KB  
Article
Replacing Soybean Meal with Hemp Leaves with Very Low THC Content in the Diet for Dairy Cows: Impact on Digestibility, Nitrogen Use Efficiency and Energy Metabolism
by Jessica Schwerdtfeger, Solvig Görs and Björn Kuhla
Animals 2025, 15(11), 1662; https://doi.org/10.3390/ani15111662 - 4 Jun 2025
Viewed by 1189
Abstract
The aim was to investigate the suitability of Santhica 27 industrial hemp leaves as a protein source in dairy cow nutrition. Twelve Holstein dairy cows received a total mixed ration (TMR) containing 7.4% industrial hemp leaves (HEMP) and a TMR containing 3.5% soya [...] Read more.
The aim was to investigate the suitability of Santhica 27 industrial hemp leaves as a protein source in dairy cow nutrition. Twelve Holstein dairy cows received a total mixed ration (TMR) containing 7.4% industrial hemp leaves (HEMP) and a TMR containing 3.5% soya extraction meal (CON) in a crossover design. Cows were kept in a free-stall barn for 2 weeks to measure feed intake, milk yield and sample plasma, ruminal fluid, and urine. In week 3, cows were housed in a respiration chamber to measure gas exchange, urine, and feces excretions. In the first two weeks, cows of the HEMP group rested longer but spent less time ruminating. Feeding the HEMP diet reduced dry matter intake (DMI), milk yield, and urinary N-metabolite concentrations and tended to lower total N-excretion, milk fat, and lactose concentrations. During the stay in the respiration chamber, DMI, milk yield, apparent digestibility, and crude protein degradability were similar between groups, but feeding the HEMP diet tended to reduce methane yield. In conclusion, Santhica 27 hemp leaves are a suitable protein source for dairy cows as they have no negative effects on animal health, apparent digestibility, and crude protein degradability. Nevertheless, inadequate adaptation to the diet reduces feed intake and milk yield. Full article
(This article belongs to the Special Issue Alternative Protein Sources for Animal Feeds)
Show Figures

Figure 1

13 pages, 3071 KB  
Article
Research on Gas Plasma Ionization Characteristics Based on Methane/Air/K2CO3 Mixed Combustion Scheme
by Kai Zhao, Yongji Lu, Xiaohui Zhang, Xueying Zhang and Feng Li
Fire 2025, 8(4), 148; https://doi.org/10.3390/fire8040148 - 6 Apr 2025
Viewed by 920
Abstract
A high-temperature gas plasma scheme using methane/air/K2CO3 mixed combustion is proposed for the application background of hypersonic aircraft. The actual combustion temperature was calculated by ANSYS Chemkin Pro software; the various components of the combustion reaction were determined; and the [...] Read more.
A high-temperature gas plasma scheme using methane/air/K2CO3 mixed combustion is proposed for the application background of hypersonic aircraft. The actual combustion temperature was calculated by ANSYS Chemkin Pro software; the various components of the combustion reaction were determined; and the function between temperature and electrical conductivity was established, revealing the variation law of ionization decomposition of K2CO3 ionized seeds with gas temperature. At 1500 K, K2CO3 ionized seeds are close to complete ionization. Increasing the mass fraction of K2CO3 ionized seeds will enhance the endothermic effect of K2CO3 seed ionization decomposition. Under the same residual gas coefficient conditions, the combustion equilibrium temperature will correspondingly decrease. The increase in initial combustion temperature results in an approximately linear increase in equilibrium temperature and conductivity. With the increase in initial pressure, the equilibrium temperature of gas shows a logarithmic growth trend, while conductivity gradually decreases and the gradient of change gradually slows down. This study provides a new method for evaluating the ionization characteristics of high-temperature gas plasma formed by potassium carbonate (K2CO3) as ionization seed, and hydrocarbon fuel (CxHy) combined with air. Full article
Show Figures

Figure 1

23 pages, 5146 KB  
Article
Evaluation of the Effects of Fluidization Conditions on Hydrogen Reduction in Manganese Ore Fines
by Dursman Mchabe, Sello Tsebe and Elias Matinde
Minerals 2025, 15(4), 368; https://doi.org/10.3390/min15040368 - 1 Apr 2025
Cited by 3 | Viewed by 867
Abstract
Hydrogen prereduction of two manganese ores fines was investigated under varied operating conditions in a fluidized bed. The manganese ores used in this study are the Zambian ore and the South African Nchwaneng ore from the Kalahari region. The samples were milled and [...] Read more.
Hydrogen prereduction of two manganese ores fines was investigated under varied operating conditions in a fluidized bed. The manganese ores used in this study are the Zambian ore and the South African Nchwaneng ore from the Kalahari region. The samples were milled and sized before they were characterized with regard to sphericity, Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) chemical analyses, X-ray diffraction (XRD) analyses and Scanning Electrons Microscope (SEM) analyses. Prereduction experiments were conducted in a laboratory scale fluidized bed with the parameters of interest being minimum fluidization velocity, terminal velocity, elutriation, average bed voidage, residence time, temperature, intrinsic ore properties and cohesive adhesion. Experiments for the determination of fluidization velocity and terminal velocity were conducted at both ambient temperature and elevated temperature (500 °C, 550 °C, 600 °C, 700 °C, 800 °C and 900 °C), and for varied sample masses (100 g, 300 g and 700 g) and varied particle-size ranges (200–300 μm, 300–425 μm, 425–500 μm and 500–600 μm). The experimentally observed minimum fluidization velocities for particles size groupings of [+106–200 μm], [+200–300 μm], [+300–425 μm], [+425–500 μm] and [+500–600 μm] as well as the mix (20 wt% of each) was comparable with the theoretical minimum fluidization velocity. The fluidized bed was heated to a desired temperature at a rate of 10 °C/min under argon whilst logging the pressure drop across the bed with increasing temperature. The convectional cooling during the introduction of cold hydrogen as well as the net energy of endothermic and exothermic chemical reactions were observed to result in a temperature drop in the order of 100 to 250 °C. Thermal mineral transformation under argon was observed to yield iron manganese oxide in the order of 15 to 30 wt/wt%. Prereduction was conducted using hydrogen gas at a desired temperature and terminal velocity. Reduction extent was observed to increase with the increasing temperature and residence time. Increasing reduction temperature beyond 700 °C was not observed to improve reduction, whereas longer residence time (of up to 40 min) was observed to favor the formation of iron manganese oxide, iron manganese and manganosite. For hydrogen prereduction experiment conducted at 900 °C, the reactor was observed to be brittle after the experiment. Cohesive adhesion was observed to be more pronounced at 900 °C. Full article
(This article belongs to the Special Issue Ferroalloy Minerals Processing and Technology, 2nd Edition)
Show Figures

Figure 1

12 pages, 3172 KB  
Article
Effect of Rapid Thermal Annealing on the Characteristics of Micro Zn-Doped Ga2O3 Films by Using Mixed Atomic Layer Deposition
by Jiajia Tao, Xishun Jiang, Aijie Fan, Xianyu Hu, Ping Wang, Zuoru Dong and Yingjie Wu
Nanomaterials 2025, 15(7), 499; https://doi.org/10.3390/nano15070499 - 26 Mar 2025
Cited by 3 | Viewed by 1011
Abstract
In this work, micro Zn-doped Ga2O3 films (GZO) were deposited by one-step mixed atomic layer deposition (ALD) followed by post-thermal engineering. The effects of Zn doping and post-annealing temperature on both structure characteristics and electric properties were investigated in detail. [...] Read more.
In this work, micro Zn-doped Ga2O3 films (GZO) were deposited by one-step mixed atomic layer deposition (ALD) followed by post-thermal engineering. The effects of Zn doping and post-annealing temperature on both structure characteristics and electric properties were investigated in detail. The combination of plasma-enhanced ALD of Ga2O3 and thermal ALD of ZnO can realize the fast growth rate (0.62 nm/supercyc.), high density (4.9 g/cm3), and smooth interface (average Rq = 0.51 nm) of Zn-doped Ga2O3 film. In addition, the thermal engineering of the GZO was achieved by setting the annealing temperature to 400, 600, 800, and 1000 °C, respectively. The GZO film annealed at 800 °C exhibits a typical crystalline structure (Ga2O3: β phase, ZnO: hexagonal wurtzite), a lower roughness (average Rq = 2.7 nm), and a higher average breakdown field (16.47 MV/cm). Notably, compared with the pure GZO film, the breakdown field annealed at 800 °C increases by 180%. The OV content in the GZO after annealing at 800 °C is as low as 34.8%, resulting in a remarkable enhancement of electrical properties. These research findings offer a new perspective on the high-quality ALD-doped materials and application of GZO in high-power electronics and high-sensitive devices. Full article
(This article belongs to the Topic Preparation and Application of Polymer Nanocomposites)
Show Figures

Figure 1

17 pages, 5559 KB  
Article
An Innovative Approach Toward Enhancing the Environmental and Economic Sustainability of Resource Recovery from Hazardous Zn-Bearing Dusts from Electric Arc Furnace Steelmaking
by Timur B. Khaidarov, Rita Khanna, Bekzod B. Khaidarov, Kejiang Li, Dmitrii S. Suvorov, Dmitrii A. Metlenkin, Igor N. Burmistrov, Alexander V. Gorokhovsky, Sergey V. Volokhov and Denis V. Kuznetsov
Sustainability 2025, 17(6), 2773; https://doi.org/10.3390/su17062773 - 20 Mar 2025
Cited by 2 | Viewed by 1394
Abstract
An innovative approach is reported for recovering Fe and Zn resources from hazardous zinc-bearing electric arc furnace dusts (ZBDs) in a sustainable manner. A combination of carbothermal and H2 reduction were used to overcome challenges associated with the high temperatures of carbothermal [...] Read more.
An innovative approach is reported for recovering Fe and Zn resources from hazardous zinc-bearing electric arc furnace dusts (ZBDs) in a sustainable manner. A combination of carbothermal and H2 reduction were used to overcome challenges associated with the high temperatures of carbothermal reduction and the high costs/limited supplies of hydrogen. In-depth reduction studies were carried out using zinc-rich (17 wt.%), iron-poor (35 wt.%) ZBD; coke oven battery dry quenching dust (CDQD) was used as reductant. Briquettes were prepared by mixing ZBD and CDQD powders in a range of proportions; heat treatments were carried out in flowing H2 gas at 700 °C–900 °C for 4 h. The reduced products were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and inductively coupled plasma (ICP). The Fe content of the reduced briquettes showed increases between 50 and 150%, depending on composition and reduction temperature; Zn, Pb, Cl, Na, K and S were completely absent. The gaseous elements were collected in cooled traps at the furnace outlet to recover metallic zinc and other phases. The volatile products collected at the outlet (900 °C) contained more than 70% zinc and 6% lead; small amounts of zinc were also present in the metallic phase. The processing temperatures were significantly lower in the combined approach as compared to 100% carbothermal reduction. While reducing energy consumption and limiting the generation of greenhouse gases, this approach has the potential for enhancing the reutilization of hazardous industrial wastes, resource recovery, and economic and environmental sustainability. Full article
(This article belongs to the Special Issue Solid Waste Management and Recycling for a Sustainable World)
Show Figures

Figure 1

21 pages, 3815 KB  
Article
Paleoenvironmental Controls and Economic Potential of Li-REY Enrichment in the Upper Carboniferous Coal-Bearing “Si–Al–Fe” Strata, Northeastern Qinshui Basin
by Ning Wang, Jun Zhao, Yingxia Xu, Mangen Mu, Shangqing Zhang, Libo Jing, Guoshu Huang, Liang Liu and Pengfei Tian
Minerals 2025, 15(3), 269; https://doi.org/10.3390/min15030269 - 5 Mar 2025
Cited by 2 | Viewed by 1167
Abstract
Critical metals in coal-bearing strata have recently emerged as a frontier hotspot in both coal geology and ore deposit research. In the Upper Carboniferous coal-bearing “Si–Al–Fe” strata (Benxi Formation) of the North China Craton (NCC), several critical metals, including Li, Ga, Sc, V, [...] Read more.
Critical metals in coal-bearing strata have recently emerged as a frontier hotspot in both coal geology and ore deposit research. In the Upper Carboniferous coal-bearing “Si–Al–Fe” strata (Benxi Formation) of the North China Craton (NCC), several critical metals, including Li, Ga, Sc, V, and rare earth elements and Y (REY or REE + Y), have been discovered, with notable mineralization anomalies observed across northern, central, and southern Shanxi Province. However, despite the widespread occurrence of outcrops of the “Si–Al–Fe” strata in the northeastern Qinshui Basin of eastern Shanxi, there has been no prior report on the critical metal content in this region. Traditionally, the “Si–Al–Fe” strata have been regarded as a primary source of clastic material for the surrounding coal seams of the Carboniferous–Permian Taiyuan and Shanxi Formations, which are known to display critical metal anomalies (e.g., Li and Ga). Given these observations, it is hypothesized that the “Si–Al–Fe” strata in the northeastern Qinshui Basin may also contain critical metal mineralization. To evaluate this hypothesis, new outcrop samples from the “Si–Al–Fe” strata of the Benxi Formation in the Yangquan area of the northeastern Qinshui Basin were collected. Detailed studies on critical metal enrichment were assessed using petrographic observations, mineralogy (XRD, X-ray diffractometer), and geochemistry (XRF, X-ray fluorescence spectrometer, and ICP-MS, inductively coupled plasma mass spectrometer). The results indicate that the siliceous, ferruginous, and aluminous rocks within the study strata exhibit varying degrees of critical metal mineralization, mainly consisting of Li and REY, with minor associated Nb, Zr, and Ga. The Al2O3/TiO2, Nb/Y vs. Zr/TiO2, and Nb/Yb vs. Al2O3/TiO2 diagrams suggest that these critical metal-enriched layers likely have a mixed origin, comprising both intermediate–felsic magmatic rocks and metamorphic rocks derived from the NCC, as well as alkaline volcaniclastics associated with the Tarim Large Igneous Province (TLIP). Furthermore, combined geochemical parameters, such as the CIA (chemical index of alteration), Sr/Cu vs. Ga/Rb, Th/U, and Ni/Co vs. V/(V + Ni), indicate that the “Si–Al–Fe” strata in the northeastern Qinshui Basin were deposited under warm-to-hot, humid climate conditions, likely in suboxic-to-anoxic environments. Additionally, an economic evaluation suggests that the “Si–Al–Fe” strata in the northeastern Qinshui Basin hold considerable potential as a resource for the industrial extraction of Li, REY, Nb, Zr, and Ga. Full article
Show Figures

Figure 1

Back to TopTop