A Study on Enhanced Lipid Accumulation by Cold Plasma Process in Chlorella sp.
Abstract
1. Introduction
2. Materials and Methods
2.1. Microalgae Isolation
Microalgae Cultivation
2.2. Plasma Treatment
2.3. Confocal Laser Scanning Microscopic Investigation of Lipid Accumulation
2.4. Biomass and Lipid Extraction
2.5. FAME Profiling
3. Results
3.1. Microalgal Growth
3.2. CLSM Imaging of Lipid Bodies
3.3. Biomass and Lipid Content
3.4. FAME Yield and Composition
3.5. FAME Profiling
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
FAME | fatty acid methyl ester |
PUFA | polyunsaturated fatty acid |
MUFA | monounsaturated fatty acid |
NTAPP | non-thermal atmospheric pressure plasma |
TAG | Triacylglycerol |
DCW | dry cell weight |
References
- Chisti, Y. Biodiesel from microalgae. Biotechnol. Adv. 2007, 25, 294–306. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Sunwoo, I.Y.; Hong, H.J.; Awah, C.C.; Jeong, G.-T.; Kim, S.-K. Lipid and unsaturated fatty acid productions from three microalgae using nitrate and light-emitting diodes with complementary LED wavelength in a two-phase culture system. Bioprocess Biosyst. Eng. 2019, 42, 1517–1526. [Google Scholar] [CrossRef]
- Ibrahim, A.R.; Abdulmajeed, B.A. Biological co-existence of the microalgae—Bacteria system in dairy wastewater using photo-bioreactor. Iraqi J. Chem. Pet. Eng. 2018, 19, 1–9. [Google Scholar] [CrossRef]
- Pittman, J.K.; Dean, A.P.; Osundeko, O. The potential of sustainable algal biofuel production using wastewater resources. Bioresour. Technol. 2011, 102, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Sommerfeld, M.; Jarvis, E.; Ghirardi, M.; Posewitz, M.; Seibert, M.; Darzins, A. Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. Plant J. 2008, 54, 621–639. [Google Scholar] [CrossRef]
- Verwee, E.; Chaerle, P.; Verduijn, J.; Mienis, E.; Sekulic, M.; De Keersmaecker, H.; Vyverman, W.; Foubert, I.; Skirtach, A.G.; Van Damme, E.J. Microalgal lipid bodies: Detection and comparative analysis using imaging flow cytometry, confocal laser scanning and Raman microscopy. Algal Res. 2024, 80, 103553. [Google Scholar] [CrossRef]
- El-Sheekh, M.M.; Al-Halim, M.A.A.; Mohammed, S.A. Algae processing by plasma discharge technology: A review. Algal Res. 2023, 70, 102983. [Google Scholar] [CrossRef]
- Olatunde, O.O.; Shiekh, K.A.; Benjakul, S. Pros and cons of cold plasma technology as an alternative non-thermal processing technology in seafood industry. Trends Food Sci. Technol. 2021, 111, 617–627. [Google Scholar] [CrossRef]
- Sivaramakrishnan, R.; Incharoensakdi, A. UV mutagenesis followed by hydrogen peroxide treatment ameliorates lipid production and omega-3 fatty acids levels in Chlorella sp. Algal Res. 2023, 74, 103195. [Google Scholar] [CrossRef]
- Suparmaniam, U.; Lam, M.K.; Lim, J.W.; Yusup, S.; Tan, I.S.; Lau, S.Y.; Kodgire, P.; Kachhwaha, S.S. Influence of environmental stress on microalgae growth and lipid profile: A systematic review. Phytochem. Rev. 2023, 22, 879–901. [Google Scholar] [CrossRef]
- Dunahay, T.G.; Jarvis, E.E.; Dais, S.S.; Roessler, P.G. Manipulation of microalgal lipid production using genetic engineering. Appl. Biochem. Biotechnol. 1996, 57–58, 223–231. [Google Scholar] [CrossRef]
- Fridman, G.; Friedman, G.; Gutsol, A.; Shekhter, A.B.; Vasilets, V.N.; Fridman, A. Applied Plasma Medicine. Plasma Process. Polym. 2008, 5, 503–533. [Google Scholar] [CrossRef]
- Chen, L.; Quan, Y.; Liu, S.; Hu, G.; Zheng, X.; Hao, J. Enhancing alpha-linolenic acid content in a promising microbiology food (Chlorella sp. L166) via low-temperature plasma. LWT 2025, 216, 117370. [Google Scholar] [CrossRef]
- Bligh, G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Turab, A.; Sun, X.; Ma, Y.; Elahi, A.; Li, P.; Majeed, Y.; Sun, Y. Transcriptomics and metabonomics reveal molecular mechanisms promoting lipid production in Haematococcus pluvialis co-mutated by atmospheric and room temperature plasma with ethano. Bioresour. Technol. 2024, 418, 131958. [Google Scholar] [CrossRef]
- Rodolfi, L.; Chini Zittelli, G.; Bassi, N.; Padovani, G.; Biondi, N.; Bonini, G.; Tredici, M.R. Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 2009, 102, 100–112. [Google Scholar] [CrossRef] [PubMed]
- Anand, N. Handbook of Green Algae; Bishen Singh Mahendra Pal Singh: Dehra Dun, India, 1989; pp. 1–79. [Google Scholar]
- Mishra, A.; Wernsdorfer, W.; Abboud, K.A.; Christou, G. The first high oxidation state manganese–calcium cluster: Relevance to the water oxidizing complex of photosynthesis. Chem. Comm. 2005, 1, 54–56. [Google Scholar] [CrossRef]
- Laroussi, M. Low Temperature Plasma-Based Sterilization: Overview and State-of-the-Art. Plasma Process. Polym. 2005, 2, 391–400. [Google Scholar] [CrossRef]
- Graves, D.B. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J. Phys. D Appl. Phys. 2012, 45, 263001. [Google Scholar] [CrossRef]
- Schutze, A.; Jeong, J.Y.; Babayan, S.E.; Park, J.; Selwyn, G.S.; Hicks, R.F. The atmospheric-pressure plasma jet: A review and comparison to other plasma sources. IEEE Trans. Plasma Sci. 1998, 26, 1685–1694. [Google Scholar] [CrossRef]
- Kulawik, P.; Alvarez, C.; Cullen, P.J.; Aznar-Roca, R.; Mullen, A.M.; Tiwari, B. The effect of non-thermal plasma on the lipid oxidation and microbiological quality of sushi. Innov. Food Sci. Emerg. Technol. 2018, 45, 412–417. [Google Scholar] [CrossRef]
- Cao, S.; Zhou, X.; Jin, W.; Wang, F.; Tu, R.; Han, S.; Chen, H.; Chen, C.; Xie, G.-J.; Ma, F. Improving of lipid productivity of the oleaginous microalgae Chlorella pyrenoidosa via atmospheric and room temperature plasma (ARTP). Bioresour. Technol. 2017, 244, 1400–1406. [Google Scholar] [CrossRef] [PubMed]
- Doomun, S.E.; Loke, S.; O’Callaghan, S.; Callahan, D. A simple method for measuring carbon-13 fatty acid enrichment in the major lipid classes of microalgae using GC-MS. Metabolites 2016, 6, 42. [Google Scholar] [CrossRef] [PubMed]
- Breuer, G.; Lamers, P.P.; Martens, D.E.; Draaisma, R.B.; Wijffels, R.H. The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. Bioresour. Technol. 2012, 124, 217–226. [Google Scholar] [CrossRef]
Peak# | R. Time | Area (%) | Height (%) | A/H |
---|---|---|---|---|
1 | 16.989 | 14.42 | 14.81 | 5.51 |
2 | 17.390 | 18.82 | 9.33 | 11.42 |
3 | 17.639 | 23.73 | 18.08 | 7.43 |
4 | 29.159 | 14.41 | 22.55 | 3.62 |
5 | 29.875 | 28.61 | 35.22 | 4.60 |
100.00 | 100.00 |
S. No | Retention Time (min) | Area (%) | Compound Name | Molecular Formula | Molecular Weight (g/mol) |
---|---|---|---|---|---|
1 | 16.989 | 14.42 | Dodecanoic acid, 1,2,3-propanetriyl ester (trilaurin) | C39H74O6 | 638 |
2 | 17.390 | 18.82 | |||
3 | 17.639 | 23.73 | |||
4 | 29.159 | 14.41 | Ginsenol | C15H26O | 222 |
5 | 29.875 | 28.61 | Dodecanoic acid, 1,2,3-propanetriyl ester (trilaurin) | C39H74O6 | 638 |
S. No. | RT (min) | Area % | Compound Name | Molecular Formula | Molecular Weight (g/mol) |
---|---|---|---|---|---|
1 | 16.989 | 14.42 | Dodecanoic acid, 1,2,3-propanetriyl ester | C39H74O6 | 638 |
2 | 16.989 | 14.42 | Dodecanoic acid, 1-(hydroxymethyl)-1,2-ethanediyl ester | C27H52O5 | 456 |
3 | 16.989 | 14.42 | Rac-glycerol-1,3-dilaurate | C27H52O5 | 456 |
4 | 17.390 | 18.82 | Dodecanoic acid, 1,2,3-propanetriyl ester | C39H74O6 | 638 |
5 | 17.390 | 18.82 | Cyclohexene-3,5-diol, cis- | C6H10O2 | 114 |
6 | 17.390 | 18.82 | 5-trans-Methyl-1R,3-cis-cyclohexanediol | C7H14O2 | 130 |
7 | 17.639 | 23.73 | Dodecanoic acid, 1,2,3-propanetriyl ester | C39H74O6 | 638 |
8 | 17.639 | 23.73 | 3,5,9-Trioxa-4-phosphaheneicosan-1-aminium, 4-hydroxy-N,N,N-trimethyl-10-oxo-7-[(1-oxododecyl)oxy]-, hydroxide, inner salt, 4-oxide, (R)- | C32H64NO8P | 621 |
9 | 17.639 | 23.73 | Dodecanoyl chloride | C12H23ClO | 218 |
10 | 29.159 | 14.41 | Ginsenol | C15H26O | 222 |
11 | 29.159 | 14.41 | 1,2,4-Triazol-3-amine, 5-(1,3,5-trimethyl-4-pyrazolyl) amino- | C8H13N7 | 207 |
12 | 29.159 | 14.41 | 3-Methoxy-2,4,5-trifluorobenzoic acid, eicosyl ester | C28H45F3O3 | 486 |
13 | 29.159 | 14.41 | 3-Methoxy-2,4,5-trifluorobenzoic acid, nonadecyl ester | C27H43F3O3 | 472 |
14 | 29.159 | 14.41 | Dimethylmalonic acid, 2-isopropoxyphenyl nonyl ester | C23H36O5 | 392 |
15 | 29.875 | 28.61 | Dodecanoic acid, 1,2,3-propanetriyl ester | C39H74O6 | 638 |
16 | 29.875 | 28.61 | Dodecanoic acid, 1-(hydroxymethyl)-1,2-ethanediyl ester | C27H52O5 | 456 |
Sample | Total MUFA (%) | PUFA (%) | SFA (%) |
---|---|---|---|
Control | ~13.5 | Not detected | ~13.5 + minor SFAs (~20%) |
NTAAP (4 min) | ~14 (possibly modified) | Slightly reduced | ~85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musthak Ahamed, M.A.; Krishnasamy, N.P.; Murugavel, K.; Arunachalam, K.; AlDhafri, K.S.; Jagadeesan, A.; Nooruddin, T.; Lee, S.-Y.; Davoodbasha, M. A Study on Enhanced Lipid Accumulation by Cold Plasma Process in Chlorella sp. Water 2025, 17, 2030. https://doi.org/10.3390/w17132030
Musthak Ahamed MA, Krishnasamy NP, Murugavel K, Arunachalam K, AlDhafri KS, Jagadeesan A, Nooruddin T, Lee S-Y, Davoodbasha M. A Study on Enhanced Lipid Accumulation by Cold Plasma Process in Chlorella sp. Water. 2025; 17(13):2030. https://doi.org/10.3390/w17132030
Chicago/Turabian StyleMusthak Ahamed, Mohamed Aadhil, Navaneetha Pandiyaraj Krishnasamy, Karuppusamy Murugavel, Kannappan Arunachalam, Khamis Sulaiman AlDhafri, Arunkumar Jagadeesan, Thajuddin Nooruddin, Sang-Yul Lee, and MubarakAli Davoodbasha. 2025. "A Study on Enhanced Lipid Accumulation by Cold Plasma Process in Chlorella sp." Water 17, no. 13: 2030. https://doi.org/10.3390/w17132030
APA StyleMusthak Ahamed, M. A., Krishnasamy, N. P., Murugavel, K., Arunachalam, K., AlDhafri, K. S., Jagadeesan, A., Nooruddin, T., Lee, S.-Y., & Davoodbasha, M. (2025). A Study on Enhanced Lipid Accumulation by Cold Plasma Process in Chlorella sp. Water, 17(13), 2030. https://doi.org/10.3390/w17132030