sustainability-logo

Journal Browser

Journal Browser

Solid Waste Management and Recycling for a Sustainable World

A special issue of Sustainability (ISSN 2071-1050). This special issue belongs to the section "Sustainable Engineering and Science".

Deadline for manuscript submissions: 26 December 2025 | Viewed by 1328

Special Issue Editor


E-Mail Website
Guest Editor
Institute for Energy and Fuel Processing Technology, 41-803 Zabrze, Poland
Interests: waste; biomass; WtE; recycling; adsorption; CCS; CCU; pyrolysis; gasification
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

It is our pleasure to announce a new Special Issue, “Solid Waste Management and Recycling for a Sustainable World”, of the journal Sustainability.

Today's challenges to the development of civilization are extremely complex and multidimensional and concern social, economic, and environmental aspects. Currently, one of the biggest problems is overly intense climate change, which is most likely caused by ever-increasing anthropogenic greenhouse gas emissions. Attempts to embark on a sustainable development path require finding ways to promote economic growth without significantly degrading natural resources and the environment.

The development of civilization is closely linked to waste generation and management. Continuous population growth and intensification of consumption have led to an increase in the amount of waste generated, which calls into question the ability of current systems to manage it effectively. Seeking to minimize the environmental impact of our activities requires, among other things, the implementation of strategies such as waste reduction, recycling, composting, and the use of residual waste as an energy source in energy recovery processes.

Rational waste management also involves technological challenges and innovations. The development of new technologies that enable more efficient waste treatment is key to reducing its negative impact on the environment.

One of the necessary and key actions is the promotion of a circular economy, which reduces the use of new resources and the amount of waste generated by increasing the recovery and recycling of useful materials. It is only through concerted action at multiple levels that the challenges of waste generation and management can be effectively addressed, which is essential for a sustainable future.

We hope that this Special Issue of Sustainability will present interesting facts about the management of various solid wastes, the effects of implementing a circular economy, including the recycling of different waste groups, and the problems that inevitably arise in these areas of activity.

In this Special Issue, original research articles and reviews are welcome. Research areas may include (but are not limited to) the following:

  • Solid waste management statistics;
  • New/innovative recycling technologies;
  • Issues of the circular economy;
  • Case studies and analyses of waste management strategies;
  • Urban waste management;
  • Environmental and human health impacts of waste;
  • Waste policy and regulation;
  • Modern packaging, biodegradable and compostable materials;
  • Digitalization in waste management;
  • Education and environmental awareness;
  • International cooperation in waste management.

Prof. Dr. Slawomir Stelmach
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sustainability is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • solid waste
  • recycling
  • circular economy
  • waste policy
  • waste management
  • waste management costs

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 6178 KiB  
Article
General Evaluation of the Recyclability of Polyester-Glass Laminates Used to Reinforce Steel Tanks
by Sławomir Stelmach, Dawid Gacki, Mateusz Szul, Kamil Słowiński, Tomasz Radko and Małgorzata Wojtaszek-Kalaitzidi
Sustainability 2025, 17(9), 4199; https://doi.org/10.3390/su17094199 - 6 May 2025
Viewed by 182
Abstract
Polyester-glass laminates are widely used to reinforce underground steel fuel tanks due to their excellent corrosion resistance and mechanical performance. However, the management of these composites at the end of their service life poses significant challenges, particularly in terms of material recovery and [...] Read more.
Polyester-glass laminates are widely used to reinforce underground steel fuel tanks due to their excellent corrosion resistance and mechanical performance. However, the management of these composites at the end of their service life poses significant challenges, particularly in terms of material recovery and environmental impact. This study investigates both the structural benefits and recyclability of polyester-glass laminates. Numerical simulations confirmed that reinforcing corroded steel tank shells with a 5 mm GFRP (Glass Fiber Reinforced Polymer) coating reduced the maximum equivalent stress by nearly 50%, significantly improving mechanical integrity. In parallel, thermogravimetric and microscopic analyses were conducted on waste GFRP samples subjected to pyrolysis, gasification, and combustion. Among the methods tested, pyrolysis proved to be the most favorable, allowing substantial organic degradation while preserving the structural integrity of the glass fiber fraction. However, microscopy revealed that the fibers were embedded in a dense char matrix, requiring additional separation processes. Although combustion leaves the fibers physically loose, pyrolysis is favored due to better preservation of fiber mechanical properties. Combustion resulted in loose and morphologically intact fibers but exposed them to high temperatures, which, according to the literature, may reduce their mechanical strength. Gasification showed intermediate performance in terms of energy recovery and fiber preservation. The findings suggest that pyrolysis offers the best trade-off between environmental performance and fiber recovery potential, provided that appropriate post-treatment is applied. This work supports the use of pyrolysis as a technically and environmentally viable strategy for recycling polyester-glass laminates and encourages further development of closed-loop composite waste management. Full article
(This article belongs to the Special Issue Solid Waste Management and Recycling for a Sustainable World)
Show Figures

Figure 1

17 pages, 5559 KiB  
Article
An Innovative Approach Toward Enhancing the Environmental and Economic Sustainability of Resource Recovery from Hazardous Zn-Bearing Dusts from Electric Arc Furnace Steelmaking
by Timur B. Khaidarov, Rita Khanna, Bekzod B. Khaidarov, Kejiang Li, Dmitrii S. Suvorov, Dmitrii A. Metlenkin, Igor N. Burmistrov, Alexander V. Gorokhovsky, Sergey V. Volokhov and Denis V. Kuznetsov
Sustainability 2025, 17(6), 2773; https://doi.org/10.3390/su17062773 - 20 Mar 2025
Viewed by 478
Abstract
An innovative approach is reported for recovering Fe and Zn resources from hazardous zinc-bearing electric arc furnace dusts (ZBDs) in a sustainable manner. A combination of carbothermal and H2 reduction were used to overcome challenges associated with the high temperatures of carbothermal [...] Read more.
An innovative approach is reported for recovering Fe and Zn resources from hazardous zinc-bearing electric arc furnace dusts (ZBDs) in a sustainable manner. A combination of carbothermal and H2 reduction were used to overcome challenges associated with the high temperatures of carbothermal reduction and the high costs/limited supplies of hydrogen. In-depth reduction studies were carried out using zinc-rich (17 wt.%), iron-poor (35 wt.%) ZBD; coke oven battery dry quenching dust (CDQD) was used as reductant. Briquettes were prepared by mixing ZBD and CDQD powders in a range of proportions; heat treatments were carried out in flowing H2 gas at 700 °C–900 °C for 4 h. The reduced products were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and inductively coupled plasma (ICP). The Fe content of the reduced briquettes showed increases between 50 and 150%, depending on composition and reduction temperature; Zn, Pb, Cl, Na, K and S were completely absent. The gaseous elements were collected in cooled traps at the furnace outlet to recover metallic zinc and other phases. The volatile products collected at the outlet (900 °C) contained more than 70% zinc and 6% lead; small amounts of zinc were also present in the metallic phase. The processing temperatures were significantly lower in the combined approach as compared to 100% carbothermal reduction. While reducing energy consumption and limiting the generation of greenhouse gases, this approach has the potential for enhancing the reutilization of hazardous industrial wastes, resource recovery, and economic and environmental sustainability. Full article
(This article belongs to the Special Issue Solid Waste Management and Recycling for a Sustainable World)
Show Figures

Figure 1

Back to TopTop