Topic Editors

1. Department of Chemistry and Technology of Polymers, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland
2. Interdisciplinary Center for Circular Economy, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
1. Faculty of Mechanical Engineering, Cracow University of Technology, Al. Jana Pawła II 37, 31-864 Krakow, Poland
2. Interdisciplinary Center for Circular Economy, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
1. Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, Jana Pawła II 37, 31-864 Cracow, Poland
2. Interdisciplinary Center for Circular Economy, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland
1. Department of Chemistry and Technology of Polymers, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
2. Interdisciplinary Center for Circular Economy, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
Dr. Tomasz Zdeb
1. Faculty of Civil Engineering, Cracow University of Technology, 31-155 Cracow, Poland
2. Interdisciplinary Center for Circular Economy, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
Department of Industrial Engineering (DIIN), University of Salerno, 84084 Fisciano, SA, Italy

Circular Economy in Interdisciplinary Perspective: Valorization of Raw Materials, Sustainable Products, and Pro-Ecological Industrial Developments

Abstract submission deadline
31 December 2025
Manuscript submission deadline
30 March 2026
Viewed by
4245

Topic Information

Dear Colleagues,

The Circular Economy (CE) system is the opposite of the dominant linear economy model, which is based on the principles of "take from the environment, produce, consume and throw away". Due to limited raw material resources and the frequently increasing difficulty in procuring them, the linear economy model is gradually being replaced by a circular economy model assuming the reuse of products (waste) through their recovery and recycling. Product design (eco-design) plays an important role in ensuring the least possible impact is had on the natural environment during products’ life cycles and after their use. CE models described in the literature also include stages of raw material acquisition, effective chemical, biological and material recycling (including intra-production recycling), activities to extend the life of products and possibly repair them, as well as more effective production methods for products using recycled materials. A modern circular economy requires interdisciplinary cooperation between industry and science in order to develop new environmentally friendly materials and practical technological solutions that meet current requirements, e.g., energy efficiency goals. It is worth pointing out that the concept of cleaner production contributes to the development of CE, and it is supported by the results of modeling and experimental verifications performed in academia and non-academic research centers. The determined structure–property relationships help considerably in designing advanced materials and technologies complying with the CE rules.

In this context, this Topic Issue aims to collect research and review papers devoted to up-to-date Circular Economy approaches from an interdisciplinary perspective, including those pertaining to the valorization of raw materials, development of sustainable products, and advancement of pro-ecological industrial solutions. Publications in the broad field of technological development and economic assessments of production, the application and re-use of materials, and products designed with CE in mind are welcome.

Prof. Dr. Krzysztof Pielichowski
Prof. Dr. Piotr Duda
Dr. Michał Łach
Dr. Tomasz Mariusz Majka
Dr. Tomasz Zdeb
Dr. Giovanni De Feo
Topic Editors

Keywords

  • circular economy
  • raw materials
  • Sustainable development
  • eco-design
  • composites
  • recycling

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Energies
energies
3.2 7.3 2008 16.2 Days CHF 2600 Submit
Materials
materials
3.2 6.4 2008 15.2 Days CHF 2600 Submit
Recycling
recycling
4.6 8.9 2016 20.9 Days CHF 1800 Submit
Sustainability
sustainability
3.3 7.7 2009 19.3 Days CHF 2400 Submit
Waste
waste
- - 2023 30.5 Days CHF 1000 Submit

Preprints.org is a multidisciplinary platform offering a preprint service designed to facilitate the early sharing of your research. It supports and empowers your research journey from the very beginning.

MDPI Topics is collaborating with Preprints.org and has established a direct connection between MDPI journals and the platform. Authors are encouraged to take advantage of this opportunity by posting their preprints at Preprints.org prior to publication:

  1. Share your research immediately: disseminate your ideas prior to publication and establish priority for your work.
  2. Safeguard your intellectual contribution: Protect your ideas with a time-stamped preprint that serves as proof of your research timeline.
  3. Boost visibility and impact: Increase the reach and influence of your research by making it accessible to a global audience.
  4. Gain early feedback: Receive valuable input and insights from peers before submitting to a journal.
  5. Ensure broad indexing: Web of Science (Preprint Citation Index), Google Scholar, Crossref, SHARE, PrePubMed, Scilit and Europe PMC.

Published Papers (6 papers)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
23 pages, 1776 KB  
Article
Assessment of Greenhouse Gas Emissions, Energy Demand and Solid Waste Generation Between Two Manufacturing Processes: A Case Study
by Fernando Nogueira Cardoso, João da Cruz Payão Filho, Margareth Nascimento de Souza Lira and Claudinei de Souza Guimarães
Recycling 2025, 10(4), 163; https://doi.org/10.3390/recycling10040163 - 13 Aug 2025
Viewed by 361
Abstract
Additive manufacturing (AM) is an Industry 4.0 technology that assists or replaces the conventional manufacturing (CM) of complex geometries in various sectors, including transport, steel, aerospace, military, and architecture. The aim is to improve processes, reduce energy consumption, atmospheric emissions, and solid waste, [...] Read more.
Additive manufacturing (AM) is an Industry 4.0 technology that assists or replaces the conventional manufacturing (CM) of complex geometries in various sectors, including transport, steel, aerospace, military, and architecture. The aim is to improve processes, reduce energy consumption, atmospheric emissions, and solid waste, and streamline stages while complying with the new environmental regulations. The main objective of this work was to carry out a cradle-to-gate Life Cycle Assessment (LCA), considering the raw material extraction, pre-processing, manufacturing, and post-processing stages, comparing two manufacturing methods for the same ER-90 metal flange part, conventional forging and wire and arc additive manufacturing (WAAM), all following the requirements and operations proposed by the ISO 14040/44 standard. WAAM is a Directed Energy Deposition (DED) technology that uses welding techniques to produce 3D objects with more complex geometries. Compared to the forging industry, which requires a lot of heat and kinetic energy in its metal part production stages, WAAM is a more sustainable and modern alternative because it does not require high temperatures and energy to produce the same parts. The environmental indicators compared in the process stages were energy consumption, greenhouse gas (GHG) emissions, and solid waste. The total energy consumption in AM was 18,846.61 MJ, the GHG emissions were 864.49 kgCO2-eq, and the solid waste generated was 142.34 kg, which were 63.8 %, 90.5%, and 31.6% lower than the environmental indicators calculated for CM, respectively. Full article
Show Figures

Graphical abstract

27 pages, 355 KB  
Review
Comprehensive Review of Life Cycle Carbon Footprint in Edible Vegetable Oils: Current Status, Impact Factors, and Mitigation Strategies
by Shuang Zhao, Sheng Yang, Qi Huang, Haochen Zhu, Junqing Xu, Dan Fu and Guangming Li
Waste 2025, 3(3), 26; https://doi.org/10.3390/waste3030026 - 6 Aug 2025
Viewed by 576
Abstract
Amidst global climate change, carbon emissions across the edible vegetable oil supply chain are critical for sustainable development. This paper systematically reviews the existing literature, employing life cycle assessment (LCA) to analyze key factors influencing carbon footprints at stages including cultivation, processing, and [...] Read more.
Amidst global climate change, carbon emissions across the edible vegetable oil supply chain are critical for sustainable development. This paper systematically reviews the existing literature, employing life cycle assessment (LCA) to analyze key factors influencing carbon footprints at stages including cultivation, processing, and transportation. It reveals the differential impacts of fertilizer application, energy structures, and regional policies. Unlike previous reviews that focus on single crops or regions, this study uniquely integrates global data across major edible oils, identifying three critical gaps: methodological inconsistency (60% of studies deviate from the requirements and guidelines for LCA); data imbalance (80% concentrated on soybean/rapeseed); weak policy-technical linkage. Key findings: fertilizer emissions dominate cultivation (40–60% of total footprint), while renewable energy substitution in processing reduces emissions by 35%. Future efforts should prioritize multidisciplinary integration, enhanced data infrastructure, and policy scenario analysis to provide scientific insights for the low-carbon transformation of the global edible oil industry. Full article
20 pages, 2299 KB  
Article
Valorization of Waste Mineral Wool and Low-Rank Peat in the Fertilizer Industry in the Context of a Resource-Efficient Circular Economy
by Marta Huculak-Mączka, Dominik Nieweś, Kinga Marecka and Magdalena Braun-Giwerska
Sustainability 2025, 17(15), 7083; https://doi.org/10.3390/su17157083 - 5 Aug 2025
Viewed by 376
Abstract
This study aims to evaluate eco-innovative solutions in the fertilizer industry that allow for waste valorization in the context of a resource-efficient circular economy. A comprehensive reuse strategy was developed for low-rank peat and post-cultivation horticultural mineral wool, involving the extraction of valuable [...] Read more.
This study aims to evaluate eco-innovative solutions in the fertilizer industry that allow for waste valorization in the context of a resource-efficient circular economy. A comprehensive reuse strategy was developed for low-rank peat and post-cultivation horticultural mineral wool, involving the extraction of valuable humic substances from peat and residual nutrients from used mineral wool, followed by the use of both post-extraction residues to produce organic–mineral substrates. The resulting products/semifinished products were characterized in terms of their composition and properties, which met the requirements necessary to obtain the admission of this type of product to the market in accordance with the Regulation of the Minister for Agriculture and Rural Development of 18 June 2008 on the implementation of certain provisions of the Act on fertilizers and fertilization (Journal of Laws No 119, item 765). Elemental analysis, FTIR spectroscopy, and solid-state CP-MAS 13C NMR spectroscopy suggest that post-extraction peat has a relatively condensed structure with a high C content (47.4%) and a reduced O/C atomic ratio and is rich in alkyl-like matter (63.2%) but devoid of some functional groups in favor of extracted fulvic acids. Therefore, it remains a valuable organic biowaste, which, in combination with post-extraction waste mineral wool in a ratio of 60:40 and possibly the addition of mineral nutrients, allows us to obtain a completely new substrate with a bulk density of 264 g/m3, a salinity of 7.8 g/dm3 and a pH of 5.3, with an appropriate content of heavy metals and with no impurities, meeting the requirements of this type of product. A liquid fertilizer based on an extract containing previously recovered nutrients also meets the criteria in terms of quality and content of impurities and can potentially be used as a fertilizing product suitable for agricultural crops. This study demonstrates a feasible pathway for transforming specific waste streams into valuable agricultural inputs, contributing to environmental protection and sustainable production. The production of a new liquid fertilizer using nutrients recovered from post-cultivation mineral wool and the preparation of an organic–mineral substrate using post-extraction solid residue is a rational strategy for recycling hard-to-biodegrade end-of-life products. Full article
Show Figures

Figure 1

19 pages, 17315 KB  
Article
Development and Mechanical Characterization of Environmentally Friendly PLA/Crop Waste Green Composites
by Karolina Ewelina Mazur, Tomasz Wacław Witko, Alicja Kośmider and Stanisław Tadeusz Kuciel
Materials 2025, 18(15), 3608; https://doi.org/10.3390/ma18153608 - 31 Jul 2025
Viewed by 383
Abstract
This study presents the fabrication and characterization of sustainable polylactic acid (PLA)-based biocomposites reinforced with bio-origin fillers derived from food waste: seashells, eggshells, walnut shells, and spent coffee grounds. All fillers were introduced at 15 wt% into a commercial PLA matrix modified with [...] Read more.
This study presents the fabrication and characterization of sustainable polylactic acid (PLA)-based biocomposites reinforced with bio-origin fillers derived from food waste: seashells, eggshells, walnut shells, and spent coffee grounds. All fillers were introduced at 15 wt% into a commercial PLA matrix modified with a compatibilizer to improve interfacial adhesion. Mechanical properties (tensile, flexural, and impact strength), morphological characteristics (via SEM), and hydrolytic aging behavior were evaluated. Among the tested systems, PLA reinforced with seashells (PLA15S) and coffee grounds (PLA15C) demonstrated the most balanced mechanical performance, with PLA15S achieving a tensile strength increase of 72% compared to neat PLA. Notably, PLA15C exhibited the highest stability after 28 days of hydrothermal aging, retaining ~36% of its initial tensile strength, outperforming other systems. In contrast, walnut-shell-filled composites showed the most severe degradation, losing over 98% of their mechanical strength after aging. The results indicate that both the physicochemical nature and morphology of the biofiller play critical roles in determining mechanical reinforcement and degradation resistance. This research underlines the feasibility of valorizing agri-food residues into biodegradable, semi-structural PLA composites for potential use in sustainable packaging or non-load-bearing structural applications. Full article
Show Figures

Graphical abstract

16 pages, 2185 KB  
Article
Maximizing Energy Recovery from Waste Tires Through Cement Production Optimization in Togo—A Case Study
by Mona-Maria Narra, Essossinam Beguedou, Satyanarayana Narra and Michael Nelles
Waste 2025, 3(2), 19; https://doi.org/10.3390/waste3020019 - 8 Jun 2025
Viewed by 993
Abstract
The cement industry faces increasing energy costs and environmental pressures, driving the adoption of alternative fuels derived from waste materials. In Togo, approximately 350,000 t of end-of-life tires (ELT) are generated annually, creating significant environmental and health hazards through uncontrolled disposal and burning [...] Read more.
The cement industry faces increasing energy costs and environmental pressures, driving the adoption of alternative fuels derived from waste materials. In Togo, approximately 350,000 t of end-of-life tires (ELT) are generated annually, creating significant environmental and health hazards through uncontrolled disposal and burning practices. This study investigated the technical feasibility and economic viability of incorporating waste tires as an alternative fuel in cement manufacturing. Tire-derived fuel (TDF) performance was evaluated by comparing pre-processed industrial tires with unprocessed ones, focusing on clinker production loss, elemental composition, heating values, and bulk density. The results demonstrate that TDF exhibits superior performance characteristics, with the highest heating values, and meets all the required specifications for cement production. In contrast, whole tire incineration fails to satisfy the recommended criteria, necessitating blending with conventional fuels to maintain clinker quality and combustion efficiency. The investigation revealed no significant adverse effects on production processes or clinker quality while achieving substantial reductions in nitrogen and sulfur oxide emissions. The experimental results were compared with the theoretical burnout times to optimize the shredding operations and injection methods. However, several challenges remain unaddressed, including the absence of streamlined handling processes, limited understanding of long-term ecological and health impacts, and insufficient techno-economic assessments. Future research should prioritize identifying critical aging points, investigating self-rejuvenating behaviors, and quantifying long-term environmental implications. These findings provide a foundation for developing computational models to optimize the mixing ratios of alternative and fossil fuels in cement manufacturing, offering significant environmental, economic, and societal benefits for the cement industry. Full article
Show Figures

Figure 1

25 pages, 5651 KB  
Article
Kinetic and Thermodynamic Analysis of Fried Tilapia Fish Waste Pyrolysis for Biofuel Production
by Mohamed Koraiem M. Handawy, Ik-Tae Im, Gyo Woo Lee and Hamada Mohamed Abdelmotalib
Recycling 2025, 10(2), 61; https://doi.org/10.3390/recycling10020061 - 1 Apr 2025
Viewed by 919
Abstract
Converting food waste into biofuel resources is considered a promising approach to address the rapid increase in energy demand, reduce dependence on fossil fuels, and decrease environmental hazards. In Egypt, large quantities of fried tilapia fish waste are produced in restaurants and households, [...] Read more.
Converting food waste into biofuel resources is considered a promising approach to address the rapid increase in energy demand, reduce dependence on fossil fuels, and decrease environmental hazards. In Egypt, large quantities of fried tilapia fish waste are produced in restaurants and households, posing challenges for proper waste management due to its decaying nature. The current study investigates the kinetic triplet and thermodynamic parameters of fried tilapia fish waste (FTFW) pyrolysis. Kinetic analysis was carried out using four iso-conversional models, Friedman, Kissinger–Akahira–Sunose (KAS), Flynn–Wall–Ozawa (FWO), and Starink, at heating rates of 10, 15, and 20 °C/min. The study findings indicate that FTFW decomposes within the temperature range of 382–407 °C. The estimated activation energy using the Friedman, FWO, KAS, and Starink methods ranged from 43.2 to 208.2, 31.3 to 148.3, 22.3 to 179.3, and 24.1 to 181.3 kJ/mol, respectively, with average values of 118.4, 96.7, 109.7, and 100.5 kJ/mol, respectively. The average enthalpy change determined using the Friedman, FWO, KAS, and Starink methods was 113.45, 91.78, 95.58, and 104.73 kJ/mol, respectively. The average values of Gibbs free energy change for the Friedman, KAS, FWO, and Starink, methods were 192.71, 171.04, 174.83, and 183.99 kJ/mol, respectively. Full article
Show Figures

Figure 1

Back to TopTop