Alternative Protein Sources for Animal Feeds

A special issue of Animals (ISSN 2076-2615). This special issue belongs to the section "Animal Nutrition".

Deadline for manuscript submissions: 15 September 2025 | Viewed by 1469

Special Issue Editor


E-Mail
Guest Editor
Department of Biological Sciences, University of New Hampshire, Durham, NC, USA
Interests: finfish nutrition; alternative proteins; soybean meal; nutritional programming; epigenetics; gut inflammation; early development stages

Special Issue Information

Dear Colleagues,

Around 733 million people faced undernourishment in 2023, an equivalent of one in eleven people worldwide and one in five in Africa. The world is facing an unprecedented hunger crisis, and it is falling significantly short of achieving the Sustainable Development Goal 2 that focuses on ending hunger, achieving food security and improved nutrition. Poverty, inequality, conflicts, and in recent years climate change have been the leading causes of severe food disasters. Climate change dramatically alters biodiversity, agricultural production, and global food security and its alleviation is essential to fulfill the future food demands of continuously expanding human population.

For food production to increase in a sustainable manner to meet the increasing global demand for protein, adjustments to the current farming practices must be made to accommodate the changing climate. We therefore welcome leading scientists working in the field of sustainable agriculture to submit their original research or review papers to this Special Issue. In particular, topics such as the use of alternative protein sources, impacts on animal digestibility, growth performance, health, product quality, consumer perception and acceptance, alternative feeding approaches, sustainable production

Dr. Karolina Kwasek
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Animals is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • aquaculture
  • livestock nutrition
  • alternative proteins
  • nutritional programming
  • epigenetics
  • animal health
  • environmental sustainability
  • climate change

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

25 pages, 2226 KiB  
Article
Replacing Soybean Meal with Hemp Leaves with Very Low THC Content in the Diet for Dairy Cows: Impact on Digestibility, Nitrogen Use Efficiency and Energy Metabolism
by Jessica Schwerdtfeger, Solvig Görs and Björn Kuhla
Animals 2025, 15(11), 1662; https://doi.org/10.3390/ani15111662 - 4 Jun 2025
Viewed by 223
Abstract
The aim was to investigate the suitability of Santhica 27 industrial hemp leaves as a protein source in dairy cow nutrition. Twelve Holstein dairy cows received a total mixed ration (TMR) containing 7.4% industrial hemp leaves (HEMP) and a TMR containing 3.5% soya [...] Read more.
The aim was to investigate the suitability of Santhica 27 industrial hemp leaves as a protein source in dairy cow nutrition. Twelve Holstein dairy cows received a total mixed ration (TMR) containing 7.4% industrial hemp leaves (HEMP) and a TMR containing 3.5% soya extraction meal (CON) in a crossover design. Cows were kept in a free-stall barn for 2 weeks to measure feed intake, milk yield and sample plasma, ruminal fluid, and urine. In week 3, cows were housed in a respiration chamber to measure gas exchange, urine, and feces excretions. In the first two weeks, cows of the HEMP group rested longer but spent less time ruminating. Feeding the HEMP diet reduced dry matter intake (DMI), milk yield, and urinary N-metabolite concentrations and tended to lower total N-excretion, milk fat, and lactose concentrations. During the stay in the respiration chamber, DMI, milk yield, apparent digestibility, and crude protein degradability were similar between groups, but feeding the HEMP diet tended to reduce methane yield. In conclusion, Santhica 27 hemp leaves are a suitable protein source for dairy cows as they have no negative effects on animal health, apparent digestibility, and crude protein degradability. Nevertheless, inadequate adaptation to the diet reduces feed intake and milk yield. Full article
(This article belongs to the Special Issue Alternative Protein Sources for Animal Feeds)
Show Figures

Figure 1

16 pages, 276 KiB  
Article
Fish Meal Replacement with a Combination of Meat Meal and Chicken Byproduct Meal on Growth Performance, Feed Utilization, Biochemical Parameters and Muscle Composition of Juvenile Red Seabream (Pagrus major)
by Buddhi E. Gunathilaka, Seong-Mok Jeong, Byung-Hwa Min, Jinho Bae, Sang-Woo Hur, Sang-Guan You and Sang-Min Lee
Animals 2025, 15(11), 1581; https://doi.org/10.3390/ani15111581 - 28 May 2025
Viewed by 210
Abstract
A combination of meat meal (MM) and chicken byproduct meal (CBM) were evaluated as fish meal (FM) replacers in the diets of juvenile red seabream (Pagrus major). The control diet was formulated with 60% FM (CON). Four other diets were designed [...] Read more.
A combination of meat meal (MM) and chicken byproduct meal (CBM) were evaluated as fish meal (FM) replacers in the diets of juvenile red seabream (Pagrus major). The control diet was formulated with 60% FM (CON). Four other diets were designed by reducing the FM levels to 45, 30, 15, and 0% by adding 14, 28, 42, and 56% MM and CBM in a 1:1 ratio to compensate for the reduced protein level (designated as MC14, MC28, MC42, and MC56, respectively). Red seabream (averaging 4.57 g) were distributed among 15 fiberglass tanks (40 fish/tank) and assigned to one of three replicates of the diet. After an eight-week long feeding trial, the growth performance of the fish fed the CON, MC14, and MC28 diets were comparable with the control group, and were significantly higher than the MC42 and MC56 groups. Feed utilization was significantly higher in the MC28 group compared to the other groups. The lowest growth and feed utilization were observed in the MC56 group. Serum lysozyme and SOD activities were significantly reduced when the dietary FM level decreased. Plasma total cholesterol levels were significantly reduced when the FM level was decreased in the diets, exhibiting a significant linear trend. The CON group exhibited a significantly higher cholesterol level compared to the MC42 and MC56 groups. The muscle amino acid profile was not significantly affected. The muscle myristic acid (14:0) was significantly decreased, while the palmitic acid (16:0) level increased with the increase of MM and CBM in the diets. Therefore, the results indicate that the combination of MM and CBM can be used to replace 50% of the FM from the red seabream diets without negative influences compared to a diet containing 60% FM. Full article
(This article belongs to the Special Issue Alternative Protein Sources for Animal Feeds)
11 pages, 238 KiB  
Article
Egg Quality and Laying Performance of Rhode Island Red Hens Fed with Black Soldier Fly Larvae and Microalgae Meal as an Alternative Diet
by Marta Montserrat Tovar-Ramírez, Mónica Vanessa Oviedo-Olvera, Maria Isabel Nieto-Ramirez, Benito Parra-Pacheco, Ana Angelica Feregrino-Pérez and Juan Fernando Garcia-Trejo
Animals 2025, 15(11), 1540; https://doi.org/10.3390/ani15111540 - 24 May 2025
Viewed by 247
Abstract
The potential of black soldier fly larvae (BSFL) and microalgae (MA) in poultry diets has garnered increasing interest due to their high nutritional value and reduced environmental footprint. BSFL represent a sustainable alternative to conventional protein sources such as soybean meal, whereas MA [...] Read more.
The potential of black soldier fly larvae (BSFL) and microalgae (MA) in poultry diets has garnered increasing interest due to their high nutritional value and reduced environmental footprint. BSFL represent a sustainable alternative to conventional protein sources such as soybean meal, whereas MA contributes to improved egg quality, particularly through its enrichment with polyunsaturated fatty acids. This study assessed the effects of BSFL and MA inclusion on the growth performance and egg quality of Rhode Island Red (RIR) laying hens. Three diets were formulated: Diet A (10% BSFL), Diet B (10% BSFL + 2% MA), and Diet C (commercial control). The diets were formulated to meet the age-specific nutrient requirements of RIR hens, according to the National Research Council (NRC, 1994) guidelines. A total of 96 four-week-old chicks were randomly allocated to six pens (n = 16 per pen) and provided ad libitum access to feed and water throughout the trial. The results demonstrated that the inclusion of BSFL and MA significantly influenced the growth rate, onset of lay, and egg characteristics. Hens fed Diet B exhibited the highest average weekly body weight gain (0.034 ± 0.001 kg/week); initiated laying at 20 weeks of age, three weeks earlier than hens on Diets B and C; and produced significantly heavier eggs (51.208 ± 0.511 g). Enhanced eggshell quality and yolk pigmentation were also observed. In addition, Diet B enhanced the nutritional profile of the eggs, yielding a higher albumen protein content (76.546 ± 1.382%DM) and lower lipid concentrations (0.451 ± 0.128%DM). These findings underscore the potential of BSFL and MA as functional feed ingredients for improving poultry performance and egg quality in a sustainable production system. Full article
(This article belongs to the Special Issue Alternative Protein Sources for Animal Feeds)
10 pages, 740 KiB  
Article
In Vitro Evaluation of Three Pisum sativum L. Varieties to Partially Replace Soybean and Corn Meal in Dairy Cow Diet
by Maria Ferrara, Emanuele D’Anza, Teresa Montefusco, Piera Iommelli, Barbara Piccirillo, Alessio Ruggiero and Alessandro Vastolo
Animals 2025, 15(6), 855; https://doi.org/10.3390/ani15060855 - 17 Mar 2025
Viewed by 392
Abstract
Pea (Pisum sativum L.) seeds are valuable feed ingredients due to their high-quality protein and starch digestibility, making them a viable alternative to soybean meal and corn grain. This study evaluated the nutritional value of three commercial pea varieties (Ganster, Peps, and [...] Read more.
Pea (Pisum sativum L.) seeds are valuable feed ingredients due to their high-quality protein and starch digestibility, making them a viable alternative to soybean meal and corn grain. This study evaluated the nutritional value of three commercial pea varieties (Ganster, Peps, and Poseidon) through in vitro trials. Each variety was incorporated into an experimental diet (GNS, PES, and PNS) for dairy cows, partially replacing soybean and corn meals. These diets were compared to a control diet containing only soybean and corn meals. All diets were incubated anaerobically for 120 h with dairy cow rumen liquor. Results showed that GNS and PES diets enhanced protein degradability (p < 0.05) and fermentation kinetics (p < 0.001). Additionally, all experimental diets reduced ammonia production (p < 0.001), while the PES diet increased (p < 0.001) volatile fatty acid production. Among the tested varieties, Peps demonstrated the greatest potential by improving protein metabolism and volatile fatty acid production. These findings suggest that pea grains can be a suitable alternative in dairy cow diets, supporting efficient ruminal fermentation and nutrient utilization. Full article
(This article belongs to the Special Issue Alternative Protein Sources for Animal Feeds)
Show Figures

Figure 1

Back to TopTop