Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (706)

Search Parameters:
Keywords = lifetime of fluorescence

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3372 KiB  
Article
Advanced Research on Biological Properties—A Study on the Activity of the Apis mellifera Antioxidant System and the Crystallographic and Spectroscopic Properties of 7-Diethylamino-4-hydroxycoumarin
by Klaudia Rząd, Iwona Budziak-Wieczorek, Aneta Strachecka, Patrycja Staniszewska, Adam Staniszewski, Anna Gryboś, Alicja Matwijczuk, Bożena Gładyszewska, Karolina Starzak, Anna A. Hoser, Maurycy E. Nowak, Małgorzata Figiel, Sylwia Okoń and Arkadiusz Paweł Matwijczuk
Int. J. Mol. Sci. 2025, 26(14), 7015; https://doi.org/10.3390/ijms26147015 - 21 Jul 2025
Viewed by 420
Abstract
The search for substances that increase the immunity of bees is becoming a necessity in the era of various environmental threats and the declining immunocompetence of these insects. Therefore, we tested the biological and physicochemical properties of 7-diethylamino-4-hydroxycoumarin (7DOC). In a cage test, [...] Read more.
The search for substances that increase the immunity of bees is becoming a necessity in the era of various environmental threats and the declining immunocompetence of these insects. Therefore, we tested the biological and physicochemical properties of 7-diethylamino-4-hydroxycoumarin (7DOC). In a cage test, two groups of bees were created: a control group fed with sugar syrup and an experimental group fed with sugar syrup with the addition of 7DOC. In each group, the longevity of the bees was determined and the protein concentrations and antioxidant activities in the bees’ hemolymph were determined. The bees fed with 7DOC lived 2.7 times longer than those in the control group. The protein concentrations and activities of SOD, CAT, GPx and GST, as well as the TAC levels, were significantly higher in the hemolymph of the supplemented workers. To confirm these potent biological properties of 7DOC, the UV-Vis spectra, emission and excitation of fluorescence, synchronous spectra and finally the fluorescence lifetimes of this compound were measured using the time-correlated single photon counting method, in various environments differing in polarity and in the environment applied in bee research. This compound was shown to be sensitive to changes in solvent polarity. The spectroscopic assays were complemented with crystallographic tests of the obtained monocrystals of the aforementioned compounds, which attested to the aggregation effects observed in the spectra measurements for the selected coumarin. The research results confirm that this compound has the potential to be implemented in apiary management, which will be our application goal, but further research into apiary conditions is required. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

16 pages, 4479 KiB  
Article
Photophysical Properties of 1,3-Diphenylisobenzofuran as a Sensitizer and Its Reaction with O2
by Ștefan Stan, João P. Prates Ramalho, Alexandru Holca and Vasile Chiș
Molecules 2025, 30(14), 3021; https://doi.org/10.3390/molecules30143021 - 18 Jul 2025
Viewed by 338
Abstract
1,3-Diphenylisobenzofuran (DPBF) is a widely used fluorescent probe for singlet oxygen (1O2) detection in photodynamic applications. In this work, we present an integrated experimental and computational analysis to describe its spectroscopic, photophysical, and reactive properties in ethanol, DMSO, and [...] Read more.
1,3-Diphenylisobenzofuran (DPBF) is a widely used fluorescent probe for singlet oxygen (1O2) detection in photodynamic applications. In this work, we present an integrated experimental and computational analysis to describe its spectroscopic, photophysical, and reactive properties in ethanol, DMSO, and DMF. UV-Vis and fluorescence measurements across a wide concentration range show well-resolved S0 → S1 electronic transition of a π → π* nature with small red shifts in polar aprotic solvents. Fluorescence lifetimes increase slightly with solvent polarity, showing stabilization of the excited state. The 2D PES and Boltzmann populations analysis indicate two co-existing conformers (Cs and C2), with Cs being slightly more stable at room temperature. TD-DFT calculations have been performed using several density functionals and the 6-311+G(2d,p) basis set to calculate absorption/emission wavelengths, oscillator strengths, transition dipole moments, and radiative lifetimes. Overall, cam-B3LYP and ωB97X-D provided the best agreement with experiments for the photophysical data across all solvents. The photophysical behavior of DPBF upon interaction with 1O2 can be explained by a small-barrier, two-step reaction pathway that goes through a zwitterionic intermediate, resulting in the formation of 2,5-endoperoxide. This work explains the photophysical properties and reactivity of DPBF, therefore providing a solid basis for future studies involving singlet oxygen. Full article
Show Figures

Figure 1

19 pages, 2749 KiB  
Article
Mechanism of Fluorescence Characteristics and Application of Zinc-Doped Carbon Dots Synthesized by Using Zinc Citrate Complexes as Precursors
by Yun Zhang, Yiwen Guo, Kaibo Sun, Xiaojing Li, Xiuhua Liu, Jinhua Zhu and Md. Zaved Hossain Khan
C 2025, 11(3), 48; https://doi.org/10.3390/c11030048 - 7 Jul 2025
Viewed by 462
Abstract
Zn-doped carbon dots (Zn@C-210 calcination temperature at 210 °C and Zn@C-260 calcination temperature at 260 °C) were synthesized via an in situ calcination method using zinc citrate complexes as precursors, aiming to investigate the mechanisms of their distinctive fluorescence properties. A range of [...] Read more.
Zn-doped carbon dots (Zn@C-210 calcination temperature at 210 °C and Zn@C-260 calcination temperature at 260 °C) were synthesized via an in situ calcination method using zinc citrate complexes as precursors, aiming to investigate the mechanisms of their distinctive fluorescence properties. A range of analytical methods were employed to characterize these nanomaterials. The mechanism study revealed that the coordination structure of Zn-O, formed through zinc doping, can induce a metal–ligand charge-transfer effect, which significantly increases the probability of radiative transitions between the excited and ground states, thereby enhancing the fluorescence intensity. The Zn@C-210 in a solid state and Zn@C-260 in water exhibited approximately 71.50% and 21.1% quantum yields, respectively. Both Zn@C-210 and Zn@C-260 exhibited excitation-independent luminescence, featuring a long fluorescence lifetime of 6.5 μs for Zn@C-210 and 6.2 μs for Zn@C-260. Impressively, zinc-doped CDs displayed exceptional biosafety, showing no acute toxicity even at 1000 mg/kg doses. Zn@C-210 has excellent fluorescence in a solid state, showing promise in anti-photobleaching applications; meanwhile, the dual functionality of Zn@C-260 makes it useful as a folate sensor and cellular imaging probe. These findings not only advance the fundamental understanding of metal-doped carbon dot photophysics but also provide practical guidelines for developing targeted biomedical nanomaterials through rational surface engineering and doping strategies. Full article
(This article belongs to the Special Issue Carbon Nanohybrids for Biomedical Applications (2nd Edition))
Show Figures

Graphical abstract

12 pages, 4610 KiB  
Article
Phenyl–Pentafluorophenyl Interaction-Mediated Ir(C^N)2(N^N)-(Ni-Metallacycle) Dual Catalysis for Light-Driven C-S Cross-Coupling Synthesis
by Jun-Feng Chen, Zhan-Xin Zhang, Jing Li and Sheng-Li Huang
Inorganics 2025, 13(7), 229; https://doi.org/10.3390/inorganics13070229 - 7 Jul 2025
Viewed by 338
Abstract
In many photocatalytic systems employing dual catalysts, researchers often focus primarily on the individual performance of each catalyst while overlooking potential inter-catalyst interactions. In this work, we have developed an efficient dual-catalytic system for C-S cross-coupling reactions, utilizing Ir(C^N)2(N^N) photosensitizers (PSs) [...] Read more.
In many photocatalytic systems employing dual catalysts, researchers often focus primarily on the individual performance of each catalyst while overlooking potential inter-catalyst interactions. In this work, we have developed an efficient dual-catalytic system for C-S cross-coupling reactions, utilizing Ir(C^N)2(N^N) photosensitizers (PSs) in conjunction with Ni3Ce metallacycles. By incorporating specifically designed ligands, we established phenyl–pentafluorophenyl interaction between the photosensitizer and the Ni3Ce metallacycle. Comparative experiments revealed that systems featuring this interaction exhibited superior catalytic performance. Furthermore, transient fluorescence studies demonstrated that the phenyl–pentafluorophenyl interaction extends the lifetime of the excited state of the photosensitizer. The primary objective of this work is to provide some references and inspiration for the development of dual-catalytic systems. Full article
(This article belongs to the Section Coordination Chemistry)
Show Figures

Graphical abstract

11 pages, 1801 KiB  
Article
Presenilin-1 Familial Alzheimer Mutations Impair γ-Secretase Cleavage of APP Through Stabilized Enzyme–Substrate Complex Formation
by Sujan Devkota, Masato Maesako and Michael S. Wolfe
Biomolecules 2025, 15(7), 955; https://doi.org/10.3390/biom15070955 - 1 Jul 2025
Viewed by 346
Abstract
Familial Alzheimer’s disease (FAD) is caused by dominant missense mutations in amyloid precursor protein (APP) and presenilin-1 (PSEN1), the catalytic component of γ-secretase that generates amyloid β-peptides (Aβ) from the APP C-terminal fragment C99. While most FAD mutations increase the ratio of aggregation-prone [...] Read more.
Familial Alzheimer’s disease (FAD) is caused by dominant missense mutations in amyloid precursor protein (APP) and presenilin-1 (PSEN1), the catalytic component of γ-secretase that generates amyloid β-peptides (Aβ) from the APP C-terminal fragment C99. While most FAD mutations increase the ratio of aggregation-prone Aβ42 relative to Aβ40, consistent with the amyloid hypothesis of Alzheimer pathogenesis, some mutations do not increase this ratio. The γ-secretase complex produces amyloid β-peptide (Aβ) through processive cleavage along two pathways: C99 → Aβ49 → Aβ46 → Aβ43 → Aβ40 and C99 → Aβ48 → Aβ45 → Aβ42 → Aβ38. Understanding how FAD mutations affect the multistep γ-secretase cleavage process is critical for elucidating disease pathogenesis. In a recent study, we discovered that FAD mutations lead to stalled γ-secretase/substrate complexes that trigger synaptic loss independently of Aβ production. Here, we further investigate this “stalled complex” hypothesis, focusing on five additional PSEN1 FAD mutations (M84V, C92S, Y115H, T116I, and M139V). A comprehensive biochemical analysis revealed that all five mutations led to substantially reduced initial proteolysis of C99 to Aβ49 or Aβ48 as well as deficiencies in one or more subsequent trimming steps. Results from fluorescence lifetime imaging microscopy support increased stabilization of enzyme–substrate complexes by all five FAD mutations. These findings provide further support for the stalled complex hypothesis, highlighting that FAD mutations impair γ-secretase function by promoting the accumulation of stalled enzyme–substrate complexes. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Figure 1

29 pages, 736 KiB  
Review
Applications of Fluorescence Technology for Rapid Identification of Marine Plastic Pollution
by Haoyu Zhang, Yanjun Li, Lixin Zhu, Xindi Song, Changbin Ren, Buyu Guo and Yanzhen Gu
Polymers 2025, 17(12), 1679; https://doi.org/10.3390/polym17121679 - 17 Jun 2025
Viewed by 918
Abstract
As global plastic production increases, the problem of marine plastic pollution is becoming increasingly critical, and the development of effective identification technologies is particularly urgent as plastic debris not only poses a threat to aquatic ecosystems but also has a significant impact on [...] Read more.
As global plastic production increases, the problem of marine plastic pollution is becoming increasingly critical, and the development of effective identification technologies is particularly urgent as plastic debris not only poses a threat to aquatic ecosystems but also has a significant impact on human health. This paper presents the criteria for evaluating fluorescence technology and its mechanism for plastic identification, with an emphasis on its potential for the rapid detection of marine plastic pollution. By analyzing variations in the fluorescence lifetimes and intensities of plastics, different types of plastics can be effectively distinguished. In addition, this paper reviews the detection of microplastics using different fluorescent dyes and explores the fluorescence lifetime identification method. This paper also demonstrates the effectiveness of fluorescence techniques for macroplastic identification, highlighting how fluorescence lifetimes and decay rates change in various weathering environments. Monitoring these changes offers a foundation for establishing weathering models, aiding in understanding the transformation of macrolitter into microplastics. Future research should investigate the autofluorescence properties of different plastics further and focus on developing detection methods and instruments for various environments. This will improve the identification of plastic waste in complex environments. In conclusion, fluorescence technology shows great promise in plastic identification and is expected to provide substantial support for recycling plastic waste products and mitigating plastic pollution. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

19 pages, 2334 KiB  
Article
One-Pot Microwave-Assisted Synthesis of Fluorescent Carbon Dots from Tomato Industry Residues with Antioxidant and Antibacterial Activities
by Patrícia D. Barata, Alexandra I. Costa, Sónia Martins, Magda C. Semedo, Bruno G. Antunes and José V. Prata
Biomass 2025, 5(2), 35; https://doi.org/10.3390/biomass5020035 - 10 Jun 2025
Viewed by 1114
Abstract
Tomato waste (TW) was employed as a sustainable source for the synthesis of fluorescent carbon dots (CDs) via a microwave-assisted hydrothermal carbonization (Mw-HTC) method, aiming at its valorization. Several amines were used as nitrogen additives to enhance the fluorescence quantum yield (QY) of [...] Read more.
Tomato waste (TW) was employed as a sustainable source for the synthesis of fluorescent carbon dots (CDs) via a microwave-assisted hydrothermal carbonization (Mw-HTC) method, aiming at its valorization. Several amines were used as nitrogen additives to enhance the fluorescence quantum yield (QY) of CDs, and a set of reaction conditions, including additive/TW mass ratio (0.04–0.32), dwell time (15–60 min), and temperature (200–230 °C) of the HTC process, were scrutinized. The structural analysis of the tomato waste carbon dots (TWCDs) was undertaken by FTIR and 1H NMR techniques, revealing their most relevant features. In solid state, transmission electron microscopy (TEM) analysis showed the presence of nearly spherical nanoparticles with an average lateral size of 8.1 nm. Likewise, the topographical assessment by atomic force microscopy (AFM) also indicated particles’ heights between 3 and 10 nm. Their photophysical properties, revealed by UV–Vis, steady-state, and time-resolved fluorescence spectroscopies, are fully discussed. Higher photoluminescent quantum yields (up to 0.08) were attained when the biomass residues were mixed with organic aliphatic amines during the Mw-HTC process. Emission tunability is a characteristic feature of these CDs, which display an intensity average fluorescence lifetime of 8 ns. The new TWCDs demonstrated good antioxidant properties by the ABTS radical cation method (75% inhibition at TWCDs’ concentration of 5 mg/mL), which proved to be related to the dwell time used in the CDs synthesis. Moreover, the synthesized TWCDs suppressed the growth of Escherichia coli and Staphylococcus aureus at concentrations higher than 2000 μg/mL, encouraging future antibacterial applications. Full article
Show Figures

Figure 1

14 pages, 5458 KiB  
Article
Efficient Room-Temperature Luminescence of Indole-5-Carboxamide in Poly(vinyl alcohol) Films
by Bong Lee, Agnieszka Jablonska, Rajveer Sagoo, Danh Pham, Trang Thien Pham, Sergei V. Dzyuba, Zygmunt Gryczynski and Ignacy Gryczynski
Photochem 2025, 5(2), 14; https://doi.org/10.3390/photochem5020014 - 4 Jun 2025
Viewed by 954
Abstract
N-phenyl-1H-Indole-5-carboxamide (Ind-CA) exhibits previously unknown room-temperature phosphorescence (RTP) when immobilized in poly (vinyl alcohol) film (PVA film). High-fluorescence anisotropy of Ind-CA in PVA suggests that the fluorophores are strongly immobilized in a polymer matrix, while a relatively low (ca. 0.1) quantum yield [...] Read more.
N-phenyl-1H-Indole-5-carboxamide (Ind-CA) exhibits previously unknown room-temperature phosphorescence (RTP) when immobilized in poly (vinyl alcohol) film (PVA film). High-fluorescence anisotropy of Ind-CA in PVA suggests that the fluorophores are strongly immobilized in a polymer matrix, while a relatively low (ca. 0.1) quantum yield indicates a strong non-radiative singlet excited state deactivation. With an increased triplet-state population, Ind-CA can be used for various phosphorescence studies. The room-temperature phosphorescence (RTP) capability of Ind-CA indicates that there is an intricate balance between RTP and the structure of the indole-containing luminophore, as an isomeric N-1H-indole-5-ylbenzamide (Ind-BA) does not show any appreciable levels of RTP. Moreover, the phosphorescence lifetime of Ind-CA is about two orders of magnitude longer than many other 5-substituted indoles. These results further highlight the prospects for the potential rational designs of small molecules with desired triplet-state configuration and RTP characteristics. Full article
Show Figures

Figure 1

28 pages, 7901 KiB  
Review
Research Progress of Rare Earth Metal–Organic Frameworks on Pollutant Monitoring
by Qingbo Yu, Meng Wang, Xiujuan Feng and Xianhui Li
Chemosensors 2025, 13(5), 184; https://doi.org/10.3390/chemosensors13050184 - 15 May 2025
Viewed by 983
Abstract
Rare earth metal–organic frameworks (RE-MOFs) are mainly composed of rare earth ions and organic ligands, taking advantage of the strengths of both metal–organic frameworks (MOFs) and rare earth ions. Rare earth ions have the unique feature of unfilled 4f electron shells, which endows [...] Read more.
Rare earth metal–organic frameworks (RE-MOFs) are mainly composed of rare earth ions and organic ligands, taking advantage of the strengths of both metal–organic frameworks (MOFs) and rare earth ions. Rare earth ions have the unique feature of unfilled 4f electron shells, which endows them with higher coordination numbers, unique luminescence properties, larger Stokes shifts, longer fluorescence lifetimes, and higher luminescence quantum efficiency. The MOFs combined with a variety of organic ligands can effectively guide the antenna effect to sensitize the rare earth ions and thus enhance the photon emission, making RE-MOFs a promising material in the field of fluorescent probes. In this paper, the recent advances in design principles, strategies, synthesis means, and monitoring mechanisms of RE-MOF materials for pollutant monitoring are presented. The intrinsic correlation between the luminescence performance of RE-MOFs, the detection of contaminants and the selection of organic ligands, and the adjustment of the MOF backbone structure is systematically and comprehensively discussed. Finally, the future development direction and application prospects of RE-MOF materials are summarized and discussed. Full article
(This article belongs to the Section Nanostructures for Chemical Sensing)
Show Figures

Figure 1

20 pages, 7445 KiB  
Article
Synthesis, Structural Characterization, Luminescent Properties, and Antibacterial and Anticancer Activities of Rare Earth-Caffeic Acid Complexes
by Nguyen Thi Hien Lan, Hoang Phu Hiep, Tran Van Quy and Pham Van Khang
Molecules 2025, 30(10), 2162; https://doi.org/10.3390/molecules30102162 - 14 May 2025
Viewed by 530
Abstract
Rare earth elements (Ln: Sm, Eu, Tb, Dy) were complexed with caffeic acid (Caf), a natural phenolic compound, to synthesize novel luminescent complexes with enhanced biological activities. The complexes, formulated as Ln(Caf)3·4H2O, were characterized using infrared spectroscopy (IR), thermogravimetric [...] Read more.
Rare earth elements (Ln: Sm, Eu, Tb, Dy) were complexed with caffeic acid (Caf), a natural phenolic compound, to synthesize novel luminescent complexes with enhanced biological activities. The complexes, formulated as Ln(Caf)3·4H2O, were characterized using infrared spectroscopy (IR), thermogravimetric analysis (TGA/DTA), mass spectrometry (MS), and fluorescence spectroscopy. Structural studies confirmed the coordination of caffeic acid via carboxylate and hydroxyl groups, forming stable hexacoordinate complexes. Luminescence analysis revealed intense emission bands in the visible spectrum (480–700 nm), attributed to f-f transitions of Ln3+ ions, with decay lifetimes ranging from 0.054 to 0.064 ms. Biological assays demonstrated significant antibacterial activity against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa, with inhibition zones up to 44 mm at 200 µg/mL. The complexes also exhibited potent anticancer activity against MCF7 breast cancer cells, with Sm(Caf)3·4H3O showing the lowest IC50 value (15.5 µM). This study highlights the dual functionality of rare earth metal-caffeic acid complexes as promising candidates for biomedical imaging and therapeutic applications. Full article
Show Figures

Figure 1

14 pages, 4266 KiB  
Article
One-Step Labeling Based on Eu-MOFs to Develop Fluorescence Side-Flow Immunoassay for AFB1 Detection in Corn
by Yinjun Li, Hua Ding, Ziyu Wang, Zewei Luo and Xitian Peng
Biosensors 2025, 15(5), 313; https://doi.org/10.3390/bios15050313 - 14 May 2025
Viewed by 498
Abstract
Lateral flow immunoassay (LFIA) is a promising tool for rapid detection in the field of agricultural product analysis due to its advantages of cost-effectiveness and operational simplicity. In this work, Eu metal–organic frameworks (MOFs) were introduced to LFIA as a rapid detection method [...] Read more.
Lateral flow immunoassay (LFIA) is a promising tool for rapid detection in the field of agricultural product analysis due to its advantages of cost-effectiveness and operational simplicity. In this work, Eu metal–organic frameworks (MOFs) were introduced to LFIA as a rapid detection method characterized by high stability and low interference. Key research objectives included strong fluorescence, ease of labeling, and the utilization of fluorescent probes. Eu-MOFs were synthesized in one step via the hydrothermal method, exhibiting a fluorescence lifetime of 163 μs and spherical particles with diameters ranging from 250 to 400 nm. These conditions fulfill the characteristics and requirements of LFIA. Eu-MOFs exploit the porous nature of MOFs to mitigate the drawbacks associated with complex crosslinking agents. This enables antibody proteins to be cross-linked merely upon contact, thereby simplifying the detection process. A time-resolved LFIA method was developed utilizing Eu-MOFs for the detection of aflatoxin B1 (AFB1) in corn, achieving a limit of detection (LOD, IC10) of 0.149 ng/mL. The accuracy and reliability of the Eu-MOFs-LFIA method were validated through comparisons with spiked concentrations during spiking and blind sample analyses, with verification conducted using ultra-high-performance liquid chromatography mass spectrometry (UPLC-MS). Furthermore, testing of real samples demonstrated that the Eu-MOFs-LFIA method can effectively facilitate rapid detection of AFB1 in corn. Full article
(This article belongs to the Special Issue Optical Fiber Biochemical and Environmental Sensors)
Show Figures

Figure 1

23 pages, 1494 KiB  
Review
Towards Optical Biopsy in Glioma Surgery
by Konstantin S. Yashin, Vladislav I. Shcheslavskiy, Igor A. Medyanik, Leonid Ya. Kravets and Marina V. Shirmanova
Int. J. Mol. Sci. 2025, 26(10), 4554; https://doi.org/10.3390/ijms26104554 - 9 May 2025
Viewed by 1055
Abstract
Currently, the focus of intraoperative imaging in brain tumor surgery is beginning to shift to optical methods such as optical coherence tomography (OCT), Raman spectroscopy, confocal laser endomicroscopy (CLE), and fluorescence lifetime imaging (FLIM). Optical imaging technologies provide in vivo and real-time high-resolution [...] Read more.
Currently, the focus of intraoperative imaging in brain tumor surgery is beginning to shift to optical methods such as optical coherence tomography (OCT), Raman spectroscopy, confocal laser endomicroscopy (CLE), and fluorescence lifetime imaging (FLIM). Optical imaging technologies provide in vivo and real-time high-resolution images of tissues. “Optical biopsy” can be considered as an alternative to traditional approaches for intraoperative histopathologic consultation. Intraoperative optical imaging can help to achieve precise intraoperative identification of tumor infiltrations within the surrounding brain parenchyma. Therefore, it can be considered as a complement to existing approaches based on wide-field imaging modalities such as MRI, US, or 5-ALA fluorescence. A promising future direction for intraoperative guidance during brain tumor surgery or stereotactic biopsy lies in the integration of optical imaging with machine learning techniques, enabling automated differentiation between tumor tissue and healthy brain parenchyma. We present this review to increase knowledge and form critical opinions in the field of using optical imaging in brain tumor surgery. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

12 pages, 3401 KiB  
Article
Synthesis and Fluorescence Mechanism of Nitrogen-Doped Carbon Dots Utilizing Biopolymer and Urea
by Hikaru Yorozuya, Noor E Ashrafi, Kazuya Sato, Ahatashamul Islam, Rikuto Fukae, Yusuke Tagashira and Toshifumi Iimori
Molecules 2025, 30(9), 2068; https://doi.org/10.3390/molecules30092068 - 7 May 2025
Viewed by 661
Abstract
Fluorescent carbon dots are nontoxic nanoparticles composed of carbon, exhibiting advantageous properties for applications in bioimaging and functional materials. We present a methodology for synthesizing fluorescent nitrogen-doped carbon dots (N-CDs) using starch, a biopolymer, and urea as the sources of nitrogen, via the [...] Read more.
Fluorescent carbon dots are nontoxic nanoparticles composed of carbon, exhibiting advantageous properties for applications in bioimaging and functional materials. We present a methodology for synthesizing fluorescent nitrogen-doped carbon dots (N-CDs) using starch, a biopolymer, and urea as the sources of nitrogen, via the microwave-assisted hydrothermal method. Furthermore, the dependence of the fluorescence spectra and fluorescence quantum yield of N-CDs on the initial concentration of urea in the reactant solution was examined, thereby providing a comprehensive understanding of the influence of nitrogen doping on the CDs. The fluorescence of N-CDs was tunable by varying the excitation wavelength. Stronger fluorescence intensity was observed for a moist phosphate salt/N-CD composite, in contrast to the weaker fluorescence exhibited by a dried one. Fluorescence lifetime measurements revealed that the change in fluorescence intensity can be attributed to the suppression of the non-radiative deactivation process. This observation highlights the critical importance of the interaction between water molecules and surface functional groups in controlling the photophysics of the excited state of N-CDs. Full article
Show Figures

Figure 1

26 pages, 3631 KiB  
Article
Exploring Time-Resolved Fluorescence Data: A Software Solution for Model Generation and Analysis
by Thomas-Otavio Peulen
Spectrosc. J. 2025, 3(2), 16; https://doi.org/10.3390/spectroscj3020016 - 1 May 2025
Viewed by 1326
Abstract
Time-resolved fluorescence techniques, such as fluorescence lifetime imaging microscopy (FLIM), fluorescence correlation spectroscopy (FCS), and time-resolved fluorescence spectroscopy, are ideally suited for investigating molecular dynamics and interactions in biological and chemical systems. However, the analysis and interpretation of these datasets require advanced computational [...] Read more.
Time-resolved fluorescence techniques, such as fluorescence lifetime imaging microscopy (FLIM), fluorescence correlation spectroscopy (FCS), and time-resolved fluorescence spectroscopy, are ideally suited for investigating molecular dynamics and interactions in biological and chemical systems. However, the analysis and interpretation of these datasets require advanced computational tools capable of handling diverse models and datasets. This paper presents a comprehensive software solution designed for model generation and analysis of time-resolved fluorescence data with a strong focus on fluorescence for quantitative structural analysis and biophysics. The software supports the integration of multiple fluorescence techniques and provides users with robust tools for performing complex model analysis across diverse experimental data. By enabling global analysis, model generation, data visualization, and sampling over model parameters, the software enhances the interpretability of intricate fluorescence phenomena. By providing flexible modeling capabilities, this solution offers a versatile platform for researchers to extract meaningful insights from time-resolved fluorescence data, aiding in the understanding of dynamic biomolecular processes. Full article
(This article belongs to the Special Issue Feature Papers in Spectroscopy Journal)
Show Figures

Graphical abstract

9 pages, 2868 KiB  
Article
Ion-Implanted Diamond Blade Diced Ridge Waveguides in Pr:YLF—Optical Characterization and Small-Signal Gain Measurement
by Omer Altaher, Kore Hasse, Sergiy Suntsov, Hiroki Tanaka, Christian Kränkel, Istvan Bányász, Romana Mikšová and Detlef Kip
Appl. Sci. 2025, 15(9), 4956; https://doi.org/10.3390/app15094956 - 30 Apr 2025
Viewed by 503
Abstract
Planar optical waveguides were fabricated in Pr:YLF crystals by ion implantation. In a further step, ridge waveguides were fabricated using precision diamond dicing. These enable strong light confinement and have propagation losses as low as 0.4 dB/cm. To study the influence of ion [...] Read more.
Planar optical waveguides were fabricated in Pr:YLF crystals by ion implantation. In a further step, ridge waveguides were fabricated using precision diamond dicing. These enable strong light confinement and have propagation losses as low as 0.4 dB/cm. To study the influence of ion implantation on the spectroscopic properties, fluorescence and lifetime measurements were conducted in the ridge waveguides. Under blue pumping, small-signal optical gains of 6.5 dB/cm and 5 dB/cm were demonstrated at wavelengths of 607 nm and 639 nm, respectively. These results make ion-implanted ridge waveguides in Pr:YLF promising candidates for compact integrated lasers in the visible spectral region with high output powers in the watt range. Full article
(This article belongs to the Section Optics and Lasers)
Show Figures

Figure 1

Back to TopTop