Ion-Implanted Diamond Blade Diced Ridge Waveguides in Pr:YLF—Optical Characterization and Small-Signal Gain Measurement
Abstract
:1. Introduction
2. Experimental Methods
3. Results and Discussion
3.1. Planar Waveguide Characterization—Induced Refractive Index Changes
3.2. Ridge Waveguide Characterization
3.3. Fluorescence and Lifetime Measurement
3.4. Small-Signal Amplification Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, L.; Kong, W.; Chen, F. Femtosecond laser-inscribed optical waveguides in dielectric crystals: A concise review and recent advances. Adv. Photonics 2002, 4, 024002. [Google Scholar] [CrossRef]
- Gow, P.C.; Bannerman, R.H.S.; Mennea, P.L.; Holmes, C.; Gates, J.C.; Smith, P.G.R. Direct UV written integrated planar waveguides using a 213 nm laser. Opt. Express 2019, 27, 29133–29138. [Google Scholar] [CrossRef] [PubMed]
- Dong, N.N.; Chen, F.; Jaque, D. Carbon ion implanted Nd:MgO:LiNbO3 optical channel waveguides: An intermediate step between light and heavy ion implanted waveguides. Opt. Express 2010, 18, 5951–5956. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Wang, X.L.; Wang, K.M. Development of ion-implanted optical waveguides in optical materials: A review. Opt. Mater. 2007, 29, 1523–1542. [Google Scholar]
- Chen, F.; Amekura, H.; Jia, Y. Ion Irradiation of Dielectrics for Photonic Applications; Springer Series in Optical Sciences; Springer: Berlin/Heidelberg, Germany, 2020; Volume 231. [Google Scholar]
- Bányász, I.; Szilágyi, E.; Rajta, I.; Nagy, G.U.L.; Pelli, S.; Conti, G.N.; Berneschi, S.; Havránek, V.; Vosecek, V.; Nagy, N.; et al. Fabrication of low loss channel waveguide in tungsten-tellurite glass by 11 MeV carbon ion microbeam for telecom C band. Opt. Mater. X 2019, 4, 100035. [Google Scholar] [CrossRef]
- Hukriede, J.; Kip, D.; Krätzig, E. Permanent narrow-band reflection holograms for infrared light recorded in LiNbO3:Ti:Cu channel waveguides. Appl. Phys. B 2001, 72, 749–753. [Google Scholar]
- Suntsov, S.; Rüter, C.E.; Brüske, D.; Kip, D. Watt-level 775 nm SHG with 70% conversion efficiency and 97% pump depletion in annealed/reverse proton exchanged diced PPLN ridge waveguides. Opt. Express 2021, 29, 11386–11393. [Google Scholar]
- Kränkel, C.; Marzahl, D.T.; Moglia, F.; Huber, G.; Metz, P.W. Out of the blue: Semiconductor laser pumped visible rare-earth doped lasers. Laser Photon. Rev. 2016, 10, 548–568. [Google Scholar]
- Tanaka, H.; Kalusniak, S.; Badtke, M.; Demesh, M.; Kuleshov, N.V.; Kannari, F.; Kränkel, C. Visible solid-state lasers based on Pr3+ and Tb3+. Prog. Quant. Electron. 2022, 84, 100411. [Google Scholar] [CrossRef]
- Richter, A.; Heumann, E.; Osiac, E.; Huber, G.; Seelert, W.; Diening, A. Diode pumping of a continuous-wave Pr3+ doped LiYF4 laser. Opt. Lett. 2004, 29, 2638. [Google Scholar] [CrossRef]
- Gün, T.; Metz, P.; Huber, G. Power scaling of laser diode pumped Pr3+:LiYF4 cw lasers: Efficient laser operation. Opt. Lett. 2011, 36, 1002–1004. [Google Scholar] [CrossRef] [PubMed]
- Calmano, T.; Siebenmorgen, J.; Reichert, F.; Fechner, M.; Paschke, A.G.; Hansen, N.O.; Petermann, K.; Huber, G. Crystalline Pr:SrAl12O19 waveguide laser in the visible spectral region. Opt. Lett. 2011, 36, 4620–4622. [Google Scholar] [CrossRef] [PubMed]
- Müller, S.; Calmano, T.; Metz, P.; Hansen, N.O.; Kränkel, C.; Huber, G. Femtosecond-laser-written diode-pumped Pr:LiYF4 waveguide laser. Opt. Lett. 2012, 37, 5223. [Google Scholar] [CrossRef]
- Baillard, A.; Loiko, P.; Romero, C.; Arroyo, V.; Vázquez de Aldana, J.R.; Fromager, M.; Braud, A.; Camy, P.; Mateos, X. Orange surface waveguide laser in Pr:LiYF4 produced by femtosecond laser writing. Opt. Lett. 2023, 48, 6212–6215. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Cui, Z.; Sun, L.; Wang, C.; Liu, H.; Cai, Y. Laser emission from low-loss cladding waveguides in Pr:YLF by femtosecond laser helical inscription. Chin. Opt. Lett. 2022, 22, 122201. [Google Scholar] [CrossRef]
- Baiocco, D.; Lopez-Quintas, I.; Vázquez de Aldana, J.R.; Tonelli, M.; Tredicucci, A. Comparative performance analysis of femtosecond-laser-written diode-pumped Pr:LiLuF4 visible waveguide lasers. Photonics 2023, 10, 377. [Google Scholar] [CrossRef]
- Bolaños, W.; Brasse, G.; Starecki, F.; Braud, A.; Doualan, J.; Moncorgé, R.; Camy, P. Green, orange, and red Pr3+:YLiF4 epitaxial waveguide lasers. Opt. Lett. 2014, 39, 4450–4453. [Google Scholar] [CrossRef]
- Calmano, T.; Müller, S. Crystalline waveguide lasers in the visible and near-infrared spectral range. IEEE J. Quantum Electron. 2015, 21, 401–4130. [Google Scholar] [CrossRef]
- Calmano, T.; Paschke, A.G.; Müller, S.; Kränkel, C.; Huber, G. Curved Yb:YAG waveguide lasers, fabricated by femtosecond laser inscription. Opt. Express 2013, 21, 25501–25508. [Google Scholar] [CrossRef]
- Wang, M.; Wu, R.; Lin, J.; Zhang, J.; Fang, Z.; Chai, Z.; Cheng, Y. Chemo-mechanical polish lithography: A pathway to low loss large-scale photonic integration on lithium niobate on insulator. Quantum Eng. 2019, 1, e9. [Google Scholar] [CrossRef]
- Zhao, J.H.; Fan, L.; Li, B.Y.; Zang, W.Z.; Liu, A.J.; Mao, J.H.; Yue, Y.; Li, S.; Yao, Y.C.; Yue, Q.Y. Planar and ridged waveguide preparation on erbium pre-implanted fused silica by multi-energy helium ion implantation and femtosecond laser ablation. Appl. Opt. 2024, 63, 5018–5022. [Google Scholar] [CrossRef]
- Zhao, J.H.; Liu, X.H.; Huang, Q.; Liu, P.; Wang, X.L. Lithium niobate ridge waveguides fabricated by ion implantation followed by ion beam etching. J. Light. Technol. 2010, 28, 1913–1916. [Google Scholar] [CrossRef]
- Ziegler, J.F. Srim-2003. Nucl. Instr. Meth. Phys. Res. B 2004, 219/220, 1027–1036. [Google Scholar] [CrossRef]
- Fallahkhair, A.B.; Li, K.S.; Murphy, T.E. Vector finite difference modesolver for anisotropic dielectric waveguides. J. Light. Technol. 2008, 26, 1423–1431. [Google Scholar] [CrossRef]
- Barnes, N.P.; Gettemy, D.J. Temperature variation of the refractive index of lithium fluoride. J. Opt. Soc. Am. 1980, 70, 1244–1247. [Google Scholar] [CrossRef]
- Geng, X.; Li, L.; Qian, C.; Luo, S. A full spectroscopic study of Pr:YLF crystals used in lasers. Spectroscopy 2020, 35, 39–45. [Google Scholar]
- Esterowitz, L.; Bartoli, F.J.; Allen, R.E.; Wortman, D.E.; Morrison, C.A.; Leavitt, R.P. Energy levels and line intensities of Pr3+ LiYF4. Phys. Rev. B 1979, 19, 6442–6455. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altaher, O.; Hasse, K.; Suntsov, S.; Tanaka, H.; Kränkel, C.; Bányász, I.; Mikšová, R.; Kip, D. Ion-Implanted Diamond Blade Diced Ridge Waveguides in Pr:YLF—Optical Characterization and Small-Signal Gain Measurement. Appl. Sci. 2025, 15, 4956. https://doi.org/10.3390/app15094956
Altaher O, Hasse K, Suntsov S, Tanaka H, Kränkel C, Bányász I, Mikšová R, Kip D. Ion-Implanted Diamond Blade Diced Ridge Waveguides in Pr:YLF—Optical Characterization and Small-Signal Gain Measurement. Applied Sciences. 2025; 15(9):4956. https://doi.org/10.3390/app15094956
Chicago/Turabian StyleAltaher, Omer, Kore Hasse, Sergiy Suntsov, Hiroki Tanaka, Christian Kränkel, Istvan Bányász, Romana Mikšová, and Detlef Kip. 2025. "Ion-Implanted Diamond Blade Diced Ridge Waveguides in Pr:YLF—Optical Characterization and Small-Signal Gain Measurement" Applied Sciences 15, no. 9: 4956. https://doi.org/10.3390/app15094956
APA StyleAltaher, O., Hasse, K., Suntsov, S., Tanaka, H., Kränkel, C., Bányász, I., Mikšová, R., & Kip, D. (2025). Ion-Implanted Diamond Blade Diced Ridge Waveguides in Pr:YLF—Optical Characterization and Small-Signal Gain Measurement. Applied Sciences, 15(9), 4956. https://doi.org/10.3390/app15094956