One-Step Labeling Based on Eu-MOFs to Develop Fluorescence Side-Flow Immunoassay for AFB1 Detection in Corn
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instruments
2.2. Preparation of Eu-MOFs
2.3. Characterization
2.4. Preparation of Eu-MOFs-Abs Probe
2.5. Preparation of Immunochromatographic Test Strips
2.6. Detection of Eu-MOFs-LFIA
2.7. Specificity of Eu-MOFs-LFIA
2.8. Verification Experiment
3. Results and Discussion
3.1. Working Principle
3.2. Characterization and Evaluation of Eu-MOFs
3.3. Eu-MOFs-Abs Labeling Evaluation
3.4. Optimization of the Key Parameters of Eu-MOFs-LFIA
3.5. Analytical Performance of Eu-MOFs-LFIA
3.6. Specificity
3.7. Analysis of Real Samples by Eu-MOFs-LFIA and UPLC-MS
3.8. Actual Sample Testing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Song, C.; Yang, J.; Wang, Y.; Ding, G.; Guo, L.; Qin, J. Mechanisms and transformed products of aflatoxin B1 degradation under multiple treatments: A review. Crit. Rev. Food Sci. Nutr. 2024, 64, 2263–2275. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, G.; Chen, X.; Wei, X.; Shen, X.-A.; Jiang, H.; Li, X.; Xiong, Y.; Huang, X. Aggregation-induced emission nanoparticles facilitating multicolor lateral flow immunoassay for rapid and simultaneous detection of aflatoxin B1 and zearalenone. Food Chem. 2024, 447, 138997. [Google Scholar] [CrossRef] [PubMed]
- Rushing, B.R.; Selim, M.I. Aflatoxin B1: A review on metabolism, toxicity, occurrence in food, occupational exposure, and detoxification methods. Food Chem. Toxicol. 2019, 124, 81–100. [Google Scholar] [CrossRef]
- Taranu, I.; Hermenean, A.; Bulgaru, C.; Pistol, G.C.; Ciceu, A.; Grosu, I.A.; Marin, D.E. Diet containing grape seed meal by-product counteracts AFB1 toxicity in liver of pig after weaning. Ecotoxicol. Environ. Saf. 2020, 203, 110899. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Shang, Q.; Zhang, L.; Mao, J.; Zhang, Q.; Li, P. Europium nanospheres based ultrasensitive fluorescence immunosensor for aflatoxin B1 determination in feed. Talanta 2024, 270, 125569. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Xie, L.; Xu, H. Determination of toxigenic fungi and aflatoxins in nuts and dried fruits using imaging and spectroscopic techniques. Food Chem. 2018, 252, 228–242. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Wang, S.; Fotina, H.; Wang, Z. A Novel Lateral Flow Immunochromatographic Assay for Rapid and Simultaneous Detection of Aflatoxin B1 and Zearalenone in Food and Feed Samples Based on Highly Sensitive and Specific Monoclonal Antibodies. Toxins 2022, 14, 615. [Google Scholar] [CrossRef]
- Pestka, J.J. High performance thin layer chromatography ELISAGRAM: Application of a multi-hapten immunoassay to analysis of the zearalenone and aflatoxin mycotoxin families. J. Immunol. Methods 1991, 136, 177–183. [Google Scholar] [CrossRef]
- Qu, L.-L.; Jia, Q.; Liu, C.; Wang, W.; Duan, L.; Yang, G.; Han, C.-Q.; Li, H. Thin layer chromatography combined with surface-enhanced raman spectroscopy for rapid sensing aflatoxins. J. Chromatogr. A 2018, 1579, 115–120. [Google Scholar] [CrossRef]
- Li, J.; Xu, X.; Guo, W.; Zhang, Y.; Feng, X.; Zhang, F. Synthesis of a magnetic covalent organic framework as sorbents for solid-phase extraction of aflatoxins in food prior to quantification by liquid chromatography-mass spectrometry. Food Chem. 2022, 387, 132821. [Google Scholar] [CrossRef]
- Khayoon, W.S.; Saad, B.; Lee, T.P.; Salleh, B. High performance liquid chromatographic determination of aflatoxins in chilli, peanut and rice using silica based monolithic column. Food Chem. 2012, 133, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Zhan, S.; Hu, J.; Li, Y.; Huang, X.; Xiong, Y. Direct competitive ELISA enhanced by dynamic light scattering for the ultrasensitive detection of aflatoxin B1 in corn samples. Food Chem. 2021, 342, 128327. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Liu, A.; Wang, X.; Chen, F. Spectra analysis of coating antigen: A possible explanation for difference in anti-AFB1 polyclonal antibody sensitivity. J. Mol. Struct. 2016, 1121, 74–79. [Google Scholar] [CrossRef]
- Liu, S.; Sun, C.; Zhang, X.; Shu, R.; Zhang, J.; Wang, B.; Wang, K.; Dou, L.; Huang, L.; Yang, Q.; et al. Advances in enhancement-type signal tracers and analysis strategies driven Lateral flow immunoassay for guaranteeing the agri-food safety. Biosens. Bioelectron. 2025, 268, 116920. [Google Scholar] [CrossRef]
- Yang, H.; He, Q.; Lin, M.; Ji, L.; Zhang, L.; Xiao, H.; Li, S.; Li, Q.; Cui, X.; Zhao, S. Multifunctional Au@Pt@Ag NPs with color-photothermal-Raman properties for multimodal lateral flow immunoassay. J. Hazard. Mater. 2022, 435, 129082. [Google Scholar] [CrossRef]
- Fang, B.; Xiong, Q.; Duan, H.; Xiong, Y.; Lai, W. Tailored quantum dots for enhancing sensing performance of lateral flow immunoassay. TrAC–Trends Anal. Chem. 2022, 157, 116754. [Google Scholar] [CrossRef]
- Guo, J.; Chen, S.; Guo, J.; Ma, X. Nanomaterial Labels in Lateral Flow Immunoassays for Point-of-Care-Testing. J. Mater. Sci. Technol. 2021, 60, 90–104. [Google Scholar] [CrossRef]
- Lei, X.; Xu, X.; Wang, L.; Liu, L.; Kuang, H.; Xu, L.; Xu, C. Fluorescent microsphere-based lateral-flow immunoassay for rapid and sensitive determination of eugenols. Food Chem. 2023, 411, 135475. [Google Scholar] [CrossRef]
- Li, R.; Bu, T.; Zhao, Y.J.; Sun, X.Y.; Wang, Q.Z.; Tian, Y.M.; Bai, F.E.; Wang, L. Polydopamine coated zirconium metal-organic frameworks-based immunochromatographic assay for highly sensitive detection of deoxynivalenol. Anal. Chim. Acta 2020, 1131, 109–117. [Google Scholar] [CrossRef]
- Xie, W.Y.; Tian, M.L.; Lun, X.; Jiang, Y.; He, N.; Liao, X.L.; Liu, Y.S. A dual-mode fluorescent and colorimetric immunoassay based on in situ ascorbic acid-induced signal generation from metal-organic frameworks. Sens. Actuators B-Chem. 2020, 302, 127180. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, Y.; Tissot, A.; Serre, C. Luminescent sensing platforms based on lanthanide metal-organic frameworks: Current strategies and perspectives. Coord. Chem. Rev. 2023, 497, 215454. [Google Scholar] [CrossRef]
- Zhu, F.; Chai, Q.; Xiong, D.; Zhu, N.; Zhou, J.; Wu, R.; Zhang, Z. Morphology Control of Zr-Based Luminescent Metal-Organic Frameworks for Aflatoxin B1 Detection. Biosensors 2024, 14, 273. [Google Scholar] [CrossRef]
- Fu, W.; Fu, X.; Li, Z.; Liu, Z.; Li, X. Advances in smartphone assisted sensors for on-site detection of food safety based on fluorescence on-off-on mode: A review. Chem. Eng. J. 2024, 489, 151225. [Google Scholar] [CrossRef]
- Wang, C.; Gu, C.; Zhao, X.; Yu, S.; Zhang, X.; Xu, F.; Ding, L.; Huang, X.; Qian, J. Self-designed portable dual-mode fluorescence device with custom python-based analysis software for rapid detection via dual-color FRET aptasensor with IoT capabilities. Food Chem. 2024, 457, 140190. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, G.W.; Zhang, F.; Chu, T.S.; Yang, Y.Y. A novel lanthanide MOFs thin film: The highly performance self-calibrating luminescent sensor for detecting formaldehyde as an illegal preservative in aquatic product. Sens. Actuators B-Chem. 2017, 251, 667–673. [Google Scholar] [CrossRef]
- Bao, H.; Yuan, M.; Xiao, C.; Liu, D.; Lai, W. Development of a signal-enhanced LFIA based on tyramine-induced AuNPs aggregation for sensitive detection of danofloxacin. Food Chem. 2022, 375, 131875. [Google Scholar] [CrossRef]
- Mahata, P.; Mondal, S.K.; Singha, D.K.; Majee, P. Luminescent rare-earth-based MOFs as optical sensors. Dalton Trans. 2017, 46, 301–328. [Google Scholar] [CrossRef]
- Zheng, X.J.; Sun, C.Y.; Lu, S.Z.; Liao, F.H.; Gao, S.; Jin, L.P. New porous lanthanide-organic frameworks: Synthesis, characterization, and properties of lanthanide 2,6-naphthalenedicarboxylates. Eur. J. Inorg. Chem. 2004, 3262–3268. [Google Scholar] [CrossRef]
- Yi, K.; Zhang, L. Designed Eu(III)-functionalized nanoscale MOFs probe based on fluorescence resonance energy transfer for the reversible sensing of trace malachite green. Food Chem. 2021, 354, 129584. [Google Scholar] [CrossRef]
- Ma, Y.; Ni, Y.; Guo, F.; Xiang, N. Flowerlike copper(II)-based coordination polymers particles: Rapid room-temperature fabrication, influencing factors, and transformation toward CuO microstructures with good catalytic activity for the reduction of 4-nitrophenol. Cryst. Growth Des. 2015, 15, 2243–2252. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, T.; Chen, J.; Yu, S.; Zheng, Z.; Deng, S.; Peng, J.; Lai, W. Rigidifying aggregation-induced emission luminogens by metal–organic framework formation for sensitive lateral flow immunoassay. Talanta 2025, 283, 127092. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Wang, Y. Recent advances in metal–organic frameworks as emerging platforms for immunoassays. TrAC–Trends Anal. Chem. 2024, 171, 117520. [Google Scholar] [CrossRef]
- Xie, G.; Liu, L.; Gong, Y.; Zhang, G.; Huang, J.; Xu, H.; Wang, J. Development of tri-mode lateral flow immunoassay based on tailored porous gold nanoflower for sensitive detection of aflatoxin B1. Food Biosci. 2024, 61, 104700. [Google Scholar] [CrossRef]
- Hou, S.; Ma, J.; Cheng, Y.; Wang, H.; Sun, J.; Yan, Y. One-step rapid detection of fumonisin B1, dexyonivalenol and zearalenone in grains. Food Control 2020, 117, 107107. [Google Scholar] [CrossRef]
- Xu, S.; Zhang, G.; Fang, B.; Xiong, Q.; Duan, H.; Lai, W. Lateral Flow Immunoassay Based on Polydopamine-Coated Gold Nanoparticles for the Sensitive Detection of Zearalenone in Maize. ACS Appl. Mater. Interfaces 2019, 11, 31283–31290. [Google Scholar] [CrossRef]
- Hao, L.; Chen, J.; Chen, X.; Ma, T.; Cai, X.; Duan, H.; Leng, Y.; Huang, X.; Xiong, Y. A novel magneto-gold nanohybrid-enhanced lateral flow immunoassay for ultrasensitive and rapid detection of ochratoxin A in grape juice. Food Chem. 2021, 336, 127710. [Google Scholar] [CrossRef] [PubMed]
- Girmatsion, M.; Tang, X.; Zhang, Q.; Jiang, J.; Li, P. Phycocyanin-based rapid fluorometric immunoassay for the determination of aflatoxin B1, deoxynivalenol, and zearalenone in food and feed matrices. Food Control 2024, 164, 110585. [Google Scholar] [CrossRef]
- Li, S.; Zhong, X.; Xu, Y.; Zheng, Y.; Shi, X.; Li, F.; Guo, S.; Yang, J. Smartphone-based reading system integrated with phycocyanin-enhanced latex nanospheres immunoassay for on-site determination of aflatoxin B1 in foodstuffs. Food Chem. 2021, 360, 130019. [Google Scholar] [CrossRef]
Lable/Signal | Analyte | Linear Range (ng/mL) | LOD (ng/mL) | Real Samples | Reference |
---|---|---|---|---|---|
HPGN@4-MBA | AFB1 | - | 0.09 | - | [33] |
GNPs | FB1/ZEN/DON | - | 60/6/12.5 | Corn | [34] |
Au@PDA | ZEN | - | 0.0074 | Corn | [35] |
MGNH | OTA | 0.098–12.5 | 0.094 | Corn, wheat | [36] |
Phycocyanin | AFB1 | 1–60 | 1.04 | Wheat, corn, fodder | [37] |
HfMOFs | T2 | - | 0.0487 | - | [31] |
PCFN | AFB1 | 0.2–48 | 0.16 | Rice, bean, Peanut and lotus seed | [38] |
Eu-MOFs | AFB1 | - | 0.149 | Corn | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Ding, H.; Wang, Z.; Luo, Z.; Peng, X. One-Step Labeling Based on Eu-MOFs to Develop Fluorescence Side-Flow Immunoassay for AFB1 Detection in Corn. Biosensors 2025, 15, 313. https://doi.org/10.3390/bios15050313
Li Y, Ding H, Wang Z, Luo Z, Peng X. One-Step Labeling Based on Eu-MOFs to Develop Fluorescence Side-Flow Immunoassay for AFB1 Detection in Corn. Biosensors. 2025; 15(5):313. https://doi.org/10.3390/bios15050313
Chicago/Turabian StyleLi, Yinjun, Hua Ding, Ziyu Wang, Zewei Luo, and Xitian Peng. 2025. "One-Step Labeling Based on Eu-MOFs to Develop Fluorescence Side-Flow Immunoassay for AFB1 Detection in Corn" Biosensors 15, no. 5: 313. https://doi.org/10.3390/bios15050313
APA StyleLi, Y., Ding, H., Wang, Z., Luo, Z., & Peng, X. (2025). One-Step Labeling Based on Eu-MOFs to Develop Fluorescence Side-Flow Immunoassay for AFB1 Detection in Corn. Biosensors, 15(5), 313. https://doi.org/10.3390/bios15050313