Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (240)

Search Parameters:
Keywords = interior permanent motor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5151 KiB  
Article
An Adaptive Bandpass Full-Order Observer with a Compensated PLL for Sensorless IPMSMs
by Qiya Wu, Jia Zhang, Dongyi Meng, Ye Liu and Lijun Diao
Actuators 2025, 14(8), 387; https://doi.org/10.3390/act14080387 - 4 Aug 2025
Viewed by 115
Abstract
Model-based sensorless control of interior permanent-magnet synchronous motors (IPMSMs) typically employs an estimation observer with embedded position information, followed by a position extraction process. Although a type-2 phase-locked loop (PLL) is widely adopted for position and speed extraction, it suffers from steady-state tracking [...] Read more.
Model-based sensorless control of interior permanent-magnet synchronous motors (IPMSMs) typically employs an estimation observer with embedded position information, followed by a position extraction process. Although a type-2 phase-locked loop (PLL) is widely adopted for position and speed extraction, it suffers from steady-state tracking errors under variable-speed operation, leading to torque bias in IPMSM torque control. To mitigate this issue, this paper first proposes an adaptive bandpass full-order observer in the stationary reference frame. Subsequently, a Kalman filter (KF)-based compensation strategy is introduced for the PLL to eliminate tracking errors while maintaining system stability. Experimental validation on a 300 kW platform confirms the effectiveness of the proposed sensorless torque control algorithm, demonstrating significant reductions in position error and torque fluctuations during acceleration and deceleration. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

18 pages, 6130 KiB  
Article
Multi-Objective Optimization Design of Bearingless Interior Permanent Magnet Synchronous Motor Based on MOWOA
by Jianan Wang, Yizhou Hua, Boyan Xu and Yuchen Zhu
Electronics 2025, 14(15), 3080; https://doi.org/10.3390/electronics14153080 - 31 Jul 2025
Viewed by 217
Abstract
Bearingless interior permanent magnet synchronous motors (BIPMSMs) have received considerable attention in recent research due to their advantages of high speed, high power density, and absence of mechanical wear. In order to improve the torque and suspension performance of the BIPMSM, an optimization [...] Read more.
Bearingless interior permanent magnet synchronous motors (BIPMSMs) have received considerable attention in recent research due to their advantages of high speed, high power density, and absence of mechanical wear. In order to improve the torque and suspension performance of the BIPMSM, an optimization design method of BIPMSM is proposed in this paper based on sensitivity analysis, response surface fitting, and the multi-objective whale optimization algorithm (MOWOA). Firstly, the structure and operation principle of the BIPMSM are introduced. Secondly, significant variables are extracted based on sensitivity analysis. Then, regression equations of the significant variables and optimization objectives are fitted by the response surface method, and global optimization is performed with MOWOA. Finally, the motor performance before and after optimization is compared. The results demonstrate that the proposed multi-objective optimization design scheme can significantly improve the performance of the BIPMSM and effectively shorten the design cycle. Full article
Show Figures

Figure 1

24 pages, 9734 KiB  
Article
Investigating the Influence of PWM-Driven Cascaded H-Bridges Multilevel Inverter on Interior Permanent Magnet Synchronous Motor Power Losses
by Claudio Nevoloso, Gioacchino Scaglione, Giuseppe Schettino, Antonino Oscar Di Tommaso, Fabio Viola, Ciro Spataro and Rosario Miceli
Energies 2025, 18(15), 3911; https://doi.org/10.3390/en18153911 - 22 Jul 2025
Viewed by 260
Abstract
This paper presents an accurate analysis of the power losses of an interior permanent magnet synchronous motor fed by a cascaded H-bridge multilevel inverter. The main goal of this study is to investigate the impact of the cascaded h-bridge inverter, multicarrier PWM strategies, [...] Read more.
This paper presents an accurate analysis of the power losses of an interior permanent magnet synchronous motor fed by a cascaded H-bridge multilevel inverter. The main goal of this study is to investigate the impact of the cascaded h-bridge inverter, multicarrier PWM strategies, and inverter switching frequency on the synchronous motor power losses. With this aim in mind, a detailed frequency domain power analysis was carried out on motor power losses at different operating points in the frequency–torque plane. Motor power losses were further categorized into fundamental and harmonic power losses. This evaluation involved driving the power converter using six distinct multicarrier PWM strategies at four different switching frequencies. Additionally, a comparison was conducted with a conventional two-level PWM inverter to quantify the reduction in motor power losses. The experimental results show that the cascaded h-bridge inverter guarantees a notable increase in the motor efficiency, up to 7%, and losses in segregation at the fundamental frequency, if compared to the standard two-level PWM inverter, especially at low speed and with partial-load conditions. Such results mark out the cascaded H-bridge inverter as a valuable choice, also with regard to low-voltage drive applications. Full article
Show Figures

Figure 1

19 pages, 3698 KiB  
Article
Multi-Plane Virtual Vector-Based Anti-Disturbance Model Predictive Fault-Tolerant Control for Electric Agricultural Equipment Applications
by Hengrui Cao, Konghao Xu, Li Zhang, Zhongqiu Liu, Ziyang Wang and Haijun Fu
Energies 2025, 18(14), 3857; https://doi.org/10.3390/en18143857 - 20 Jul 2025
Viewed by 272
Abstract
This paper proposes an anti-disturbance model predictive fault-tolerance control strategy for open-circuit faults of five-phase flux intensifying fault-tolerant interior permanent magnet (FIFT-IPM) motors. This strategy is applicable to electric agricultural equipment that has an open winding failure. Due to the rich third-harmonic back [...] Read more.
This paper proposes an anti-disturbance model predictive fault-tolerance control strategy for open-circuit faults of five-phase flux intensifying fault-tolerant interior permanent magnet (FIFT-IPM) motors. This strategy is applicable to electric agricultural equipment that has an open winding failure. Due to the rich third-harmonic back electromotive force (EMF) content of five-phase FIFT-IPM motors, the existing model predictive current fault-tolerant control algorithms fail to effectively track fundamental and third-harmonic currents. This results in high harmonic distortion in the phase current. Hence, this paper innovatively proposes a multi-plane virtual vector model predictive fault-tolerant control strategy that can achieve rapid and effective control of both the fundamental and harmonic planes while ensuring good dynamic stability performance. Additionally, considering that electric agricultural equipment is usually in a multi-disturbance working environment, this paper introduces an adaptive gain sliding-mode disturbance observer. This observer estimates complex disturbances and feeds them back into the control system, which possesses good resistance to complex disturbances. Finally, the feasibility and effectiveness of the proposed control strategy are verified by experimental results. Full article
Show Figures

Figure 1

16 pages, 2756 KiB  
Article
Development of a Surface-Inset Permanent Magnet Motor for Enhanced Torque Density in Electric Mountain Bikes
by Jun Wei Goh, Shuangchun Xie, Huanzhi Wang, Shengdao Zhu, Kailiang Yu and Christopher H. T. Lee
Energies 2025, 18(14), 3709; https://doi.org/10.3390/en18143709 - 14 Jul 2025
Viewed by 342
Abstract
Electric mountain bikes (eMTBs) demand compact, high-torque motors capable of handling steep terrain and variable load conditions. Surface-mounted permanent magnet synchronous motors (SPMSMs) are widely used in this application due to their simple construction, ease of manufacturing, and cost-effectiveness. However, SPMSMs inherently lack [...] Read more.
Electric mountain bikes (eMTBs) demand compact, high-torque motors capable of handling steep terrain and variable load conditions. Surface-mounted permanent magnet synchronous motors (SPMSMs) are widely used in this application due to their simple construction, ease of manufacturing, and cost-effectiveness. However, SPMSMs inherently lack reluctance torque, limiting their torque density and performance at high speeds. While interior PMSMs (IPMSMs) can overcome this limitation via reluctance torque, they require complex rotor machining and may compromise mechanical robustness. This paper proposes a surface-inset PMSM topology as a compromise between both approaches—introducing reluctance torque while maintaining a structurally simple rotor. The proposed motor features inset magnets shaped with a tapered outer profile, allowing them to remain flush with the rotor surface. This geometric configuration eliminates the need for a retaining sleeve during high-speed operation while also enabling saliency-based torque contribution. A baseline SPMSM design is first analyzed through finite element analysis (FEA) to establish reference performance. Comparative simulations show that the proposed design achieves a 20% increase in peak torque and a 33% reduction in current density. Experimental validation confirms these findings, with the fabricated prototype achieving a torque density of 30.1 kNm/m3. The results demonstrate that reluctance-assisted torque enhancement can be achieved without compromising mechanical simplicity or manufacturability. This study provides a practical pathway for improving motor performance in eMTB systems while retaining the production advantages of surface-mounted designs. The surface-inset approach offers a scalable and cost-effective solution that bridges the gap between conventional SPMSMs and more complex IPMSMs in high-demand e-mobility applications. Full article
Show Figures

Figure 1

11 pages, 941 KiB  
Article
Improving the Regenerative Efficiency of the Automobile Powertrain by Optimizing Combined Loss in the Motor and Inverter
by Jayakody Shreen and Kyung-min Lee
Actuators 2025, 14(7), 326; https://doi.org/10.3390/act14070326 - 1 Jul 2025
Viewed by 279
Abstract
This research presents a method for improving the regenerative efficiency of interior permanent magnet synchronous motors (IPMSMs) used in traction applications such as electric vehicles. In conventional powertrain control, the maximum torque per ampere (MTPA) strategy is commonly applied in the constant-torque region. [...] Read more.
This research presents a method for improving the regenerative efficiency of interior permanent magnet synchronous motors (IPMSMs) used in traction applications such as electric vehicles. In conventional powertrain control, the maximum torque per ampere (MTPA) strategy is commonly applied in the constant-torque region. However, this approach does not account for the combined losses of both the motor and inverter. In this study, overall system efficiency is investigated, and an improved current combination is proposed to minimize total losses. The single switching method is employed in the inverter due to its simplicity and its ability to reduce inverter losses. Simulations incorporating both motor and inverter losses were performed for two driving conditions around the MTPA current point. The results show that the optimal current combination slightly deviates from the MTPA point and leads to a slight improvement in efficiency. Experimental results under the two steady-state driving torque and angular velocity conditions confirm that the optimized current combination enhances system efficiency. Furthermore, simulations based on the Urban Dynamometer Driving Schedule predict an increase in recovered energy of approximately 1%. The proposed control strategy is simple, easy to implement, and enables the powertrain to operate with highly efficient current references. Full article
(This article belongs to the Special Issue Feature Papers in Actuators for Surface Vehicles)
Show Figures

Figure 1

14 pages, 4118 KiB  
Article
Study on the Electromagnetic Characteristics of a Twin Inverter System EV Traction Motor Under Various Operating Conditions
by Jae-Gak Shin, Hong-Jae Jang, Tae-Su Kim and Ki-Chan Kim
Energies 2025, 18(13), 3415; https://doi.org/10.3390/en18133415 - 29 Jun 2025
Viewed by 274
Abstract
This paper analyzes the electromagnetic characteristics of an interior permanent magnet synchronous motor (IPMSM) for electric vehicle traction under various control imbalance conditions in a twin inverter system, assuming that one of the inverters fails to operate properly. The imbalance conditions are first [...] Read more.
This paper analyzes the electromagnetic characteristics of an interior permanent magnet synchronous motor (IPMSM) for electric vehicle traction under various control imbalance conditions in a twin inverter system, assuming that one of the inverters fails to operate properly. The imbalance conditions are first investigated through dynamometer experiments and then applied to finite element method (FEM) simulations to evaluate their electromagnetic effects. Since the focus is on scenarios where a single inverter malfunctions, a stator winding configuration is first redefined to ensure stable operation in a single inverter system by preventing voltage and current imbalances within the circuit. When the stator winding is configured with eight parallel paths, the dynamometer test results show a phase voltage imbalance. However, when the number of parallel circuits is reduced to four, this voltage imbalance disappears. Using this configuration, a twin inverter system is constructed, and various imbalance conditions are applied to intuitively examine the electromagnetic characteristics when one inverter fails to accurately control current magnitude or phase angle. The simulation results showed that applying unbalanced conditions to the current and current phase angle led to a decrease in torque and an increase in torque ripple. In addition, when one of the inverters was completely disconnected, the motor performance analysis showed that it operated with approximately half of its original performance. Based on dynamometer experiments and finite element method (FEM) simulations, the electromagnetic characteristics under inverter fault conditions and appropriate stator winding configurations were analyzed. When an optimal number of parallel circuits is applied to the stator winding and a twin inverter system is employed, the load on each individual inverter is reduced, enabling accurate control. This makes the application to high-voltage and high-current systems feasible, allowing higher performance. Moreover, even if one inverter fails, the system can still operate at approximately half its capacity, ensuring high operational reliability. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

25 pages, 4087 KiB  
Article
Symmetry-Inspired Friction Compensation and GPI Observer-Based Nonlinear Predictive Control for Enhanced Speed Regulation in IPMSM Servo Systems
by Chao Wu, Xiaohong Wang, Yao Ren and Yuying Zhou
Symmetry 2025, 17(7), 1012; https://doi.org/10.3390/sym17071012 - 27 Jun 2025
Cited by 1 | Viewed by 276
Abstract
In integrated permanent magnet synchronous motors (IPMSMs) coupled with mechanical devices such as ball screws and reducers, complex nonlinear friction characteristics often arise, leading to asymmetrical distortions such as position “flat-top” and speed “ramp-up”. These phenomena significantly degrade the system’s positioning accuracy. To [...] Read more.
In integrated permanent magnet synchronous motors (IPMSMs) coupled with mechanical devices such as ball screws and reducers, complex nonlinear friction characteristics often arise, leading to asymmetrical distortions such as position “flat-top” and speed “ramp-up”. These phenomena significantly degrade the system’s positioning accuracy. To address this issue, this paper introduces a symmetry-inspired nonlinear predictive speed control approach based on the Stribeck piecewise linearized friction compensation and a generalized proportional integral (GPI) observer. The proposed method leverages the inherent symmetry in the Stribeck friction model to describe the nonlinear behavior, employing online piecewise linearization via the least squares method. A GPI observer was designed to estimate the lumped disturbance, including time-varying components in the speed dynamics, friction model deviations, and external loads. By incorporating these estimates, a nonlinear predictive controller was developed, employing a quadratic cost function to derive the optimal control law. The experimental results demonstrate that, compared to traditional integral NPC and PI controllers, the proposed method effectively restores system symmetry by eliminating the “flat-top” and “ramp-up” distortions while maintaining computational efficiency. Full article
Show Figures

Figure 1

19 pages, 4849 KiB  
Article
Optimal Design for Torque Ripple Reduction in a Traction Motor for Electric Propulsion Vessels
by Gi-haeng Lee and Yong-min You
Actuators 2025, 14(7), 314; https://doi.org/10.3390/act14070314 - 24 Jun 2025
Viewed by 281
Abstract
Recently, as carbon emission regulations enforced by the International Maritime Organization (IMO) have become stricter and pressure from the World Trade Organization (WTO) to abolish tax-free fuel subsidies has increased, the demand for electric propulsion systems in the marine sector has grown. Most [...] Read more.
Recently, as carbon emission regulations enforced by the International Maritime Organization (IMO) have become stricter and pressure from the World Trade Organization (WTO) to abolish tax-free fuel subsidies has increased, the demand for electric propulsion systems in the marine sector has grown. Most small domestic fishing vessels rely on tax-free fuel and have limited cruising ranges and constant-speed operation, which makes them well-suited for electric propulsion. This paper proposes replacing the internal combustion engine system of such vessels with an electric propulsion system. Based on real operating conditions, an Interior Permanent Magnet Synchronous Motor (IPMSM) was designed and optimized. The Savitsky method was used to calculate total resistance at a typical cruising speed, from which the required torque and output were determined. To reduce torque ripple, an asymmetric dummy slot structure was proposed, with two dummy slots of different widths and depths placed in each stator slot. These dimensions, along with the magnet angle, were set as optimization parameters, and a metamodel-based optimal design was carried out. As a result, while meeting the design constraints, torque ripple decreased by 2.91% and the total harmonic distortion (THD) of the back-EMF was lowered by 1.32%. Full article
(This article belongs to the Special Issue Feature Papers in Actuators for Surface Vehicles)
Show Figures

Figure 1

21 pages, 8042 KiB  
Article
Research on Multi-Dimensional MTPA Control for Five-Phase Interior Permanent Magnet Synchronous Motor
by Yihong Qin, Peng Zhou, Zhibao Yuan and Haiping Xu
Energies 2025, 18(12), 3189; https://doi.org/10.3390/en18123189 - 18 Jun 2025
Viewed by 325
Abstract
In order to improve the output torque/current utilization of five-phase interior permanent magnet synchronous motor (FP-IPMSM) when running below base speed, a multi-dimensional maximum torque per ampere (MTPA) control strategy based on virtual signal injection (VSI) is proposed. Firstly, the mathematical model of [...] Read more.
In order to improve the output torque/current utilization of five-phase interior permanent magnet synchronous motor (FP-IPMSM) when running below base speed, a multi-dimensional maximum torque per ampere (MTPA) control strategy based on virtual signal injection (VSI) is proposed. Firstly, the mathematical model of FP-IPMSM containing third harmonic is derived, and the double-plane vector control is constructed. Secondly, the MTPA current is calculated according to the output torque, and the MTPA current trajectory of fundamental and harmonic planes is given. Thirdly, the dual-plane MTPA control strategy based on VSI is discussed. Finally, the effectiveness of the proposed control strategy is verified by simulation. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

21 pages, 3497 KiB  
Article
Structural Optimization Design and Analysis of Interior Permanent Magnet Synchronous Motor with Low Iron Loss Based on the Adhesive Lamination Process
by Liyan Guo, Huatuo Zhang, Xinmai Gao, Ying Zhou, Yan Cheng and Huimin Wang
World Electr. Veh. J. 2025, 16(6), 321; https://doi.org/10.3390/wevj16060321 - 9 Jun 2025
Viewed by 1039
Abstract
The interior permanent magnet synchronous motors (IPMSMs) are extensively applied in the field of new energy vehicles due to their high-power density and excellent performance control. However, the iron loss has a significant impact on their performance. This study conducts an optimization analysis [...] Read more.
The interior permanent magnet synchronous motors (IPMSMs) are extensively applied in the field of new energy vehicles due to their high-power density and excellent performance control. However, the iron loss has a significant impact on their performance. This study conducts an optimization analysis on the processing technology of silicon steel sheets and motor structure, targeting the reduction of iron loss and the improvement of the motor’s integrated efficiency. Firstly, the influences of two iron core processing technologies on iron loss, namely gluing and welding, are compared. Through experimental tests, it is found that the iron loss density of the gluing process is lower than that of the welding process, and as the magnetic flux density increases, the difference between the two is expanding. Therefore, the iron loss test data from the adhesive process are employed to develop a variable-coefficient iron loss model, enabling precise calculation of the motor’s iron loss. On this basis, aiming at the problem of excessive iron loss of the motor, a novel topological structure of the stator and rotor is proposed. With the optimization goal of reducing the motor iron loss and taking the connection port of the air magnetic isolation slot and the gap of the stator module as the optimization variables, the optimized design of the IPMSM with low iron loss is achieved based on the Taguchi method. After optimization, the stator iron loss decreases by 13.60%, the rotor iron loss decreases by 20.14%, and the total iron loss is reduced by 15.34%. The optimization scheme takes into account both the electromagnetic performance and the process feasibility, it offers technical backing for the high-efficiency operation of new energy vehicle drive motors. Full article
Show Figures

Figure 1

23 pages, 12506 KiB  
Article
Robust Wide-Speed-Range Control of IPMSM with Multi-Axis Coordinated Extended State Observer for Dynamic Performance Enhancement
by Wentao Zhang, Yanchen Zhai, Pengcheng Zhu and Yiwei Liu
Energies 2025, 18(11), 2938; https://doi.org/10.3390/en18112938 - 3 Jun 2025
Viewed by 467
Abstract
Wide-speed regulation control strategies for Interior Permanent Magnet Synchronous Motors (IPMSMs) are widely applied in industrial fields. However, traditional algorithms are prone to being affected by motor parameter mismatches, sensor sampling errors, and other disturbances under complex operating conditions, leading to insufficient robustness. [...] Read more.
Wide-speed regulation control strategies for Interior Permanent Magnet Synchronous Motors (IPMSMs) are widely applied in industrial fields. However, traditional algorithms are prone to being affected by motor parameter mismatches, sensor sampling errors, and other disturbances under complex operating conditions, leading to insufficient robustness. In order to enhance dynamic performance while simultaneously ensuring robustness, we analyzed the limitations of traditional control strategies and, based on this, proposed an improved control framework. A Multi-Axis Coordinated Extended State Observer(MCESO)-based robust control framework was developed for full-speed domain operation, which enhances disturbance rejection capability against parameter uncertainties and abrupt load changes through hierarchical disturbance estimation. Subsequently, the effectiveness and stability of the proposed method were verified through theoretical analysis and simulation studies. Compared with traditional control strategies, this method can effectively observe and compensate for a series of complex issues such as nonlinear disturbances during operation without requiring additional hardware support. Finally, extensive experimental tests were carried out on a 500 W IPMSM dual-motor drive platform. The experimental results demonstrated that, even under harsh operating conditions, the proposed scheme can effectively suppress torque ripple and significantly reduce current harmonics. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

17 pages, 8494 KiB  
Article
Design of a High-Efficiency External Rotor Interior Permanent Magnet Synchronous Motor Without Magnetic Leakage Flux Path
by Kyoung-Soo Cha, Jae-Hyun Kim, Soo-Gyung Lee and Min-Ro Park
Mathematics 2025, 13(11), 1865; https://doi.org/10.3390/math13111865 - 3 Jun 2025
Viewed by 623
Abstract
This paper proposes a high-efficiency design for an external rotor interior permanent magnet synchronous motor (IPMSM) that eliminates the magnetic leakage flux path. The conventional model based on an external rotor surface-mounted permanent magnet synchronous motor (SPMSM) is analyzed using a statistical method. [...] Read more.
This paper proposes a high-efficiency design for an external rotor interior permanent magnet synchronous motor (IPMSM) that eliminates the magnetic leakage flux path. The conventional model based on an external rotor surface-mounted permanent magnet synchronous motor (SPMSM) is analyzed using a statistical method. Design directions are derived by comparing efficiencies at two major operating points with different motor characteristics. A V-shaped IPMSM is then proposed to increase the permanent magnet volume and reduce magnetic leakage. Design optimization is conducted using Gaussian process models (GPMs) constructed with a Latin hypercube design (LHD), and the optimal design is determined using a gradient descent algorithm. A prototype is fabricated to confirm manufacturability, and the improved efficiency of the proposed design is experimentally verified. The results demonstrate that the proposed IPMSM significantly outperforms the conventional SPMSM in terms of efficiency across both operating points. Full article
Show Figures

Figure 1

28 pages, 31523 KiB  
Article
Partially Segmented Permanent-Magnet Losses in Interior Permanent-Magnet Motors
by Jeremiah Vannest and Julia Zhang
Energies 2025, 18(11), 2879; https://doi.org/10.3390/en18112879 - 30 May 2025
Viewed by 412
Abstract
Permanent-magnet losses in interior permanent-magnet (IPM) motors can result in high magnet temperatures and potential demagnetization. This study investigates using partially segmented magnets as an alternative to traditional segmented magnets to reduce these losses. Partial segmentation involves cutting slots into the magnet to [...] Read more.
Permanent-magnet losses in interior permanent-magnet (IPM) motors can result in high magnet temperatures and potential demagnetization. This study investigates using partially segmented magnets as an alternative to traditional segmented magnets to reduce these losses. Partial segmentation involves cutting slots into the magnet to redirect the eddy current path and reduce losses. The research explores analytical and finite element modeling of eddy current losses in partially segmented magnets in IPM machines. Various configurations and orientations of partial segmentation were examined to assess their impact on eddy current losses. Axial slots for the partially segmented magnets were found to be the most effective slotting direction for the baseline IPM motor’s aspect ratio. This study also explores several methods for measuring permanent-magnet loss in IPM machines. A locked rotor test fixture was designed to measure losses induced by switching harmonics. AC loss measurements for the test fixture were conducted to compare magnets with and without partial segmentation. The results showed a significant reduction in permanent-magnet loss for the partially segmented magnets, particularly at higher currents and across all the tested switching frequencies and phase angles. Additionally, the transient temperature of the partially segmented magnets was found to be 12 °C lower than without partial segmentation after a 30 min test. Full article
Show Figures

Figure 1

15 pages, 3782 KiB  
Article
Multi-Objective Optimal Design of 200 kW Permanent Magnet Synchronous Motor Based on NSGA-II
by Chengxu Sun, Qi Li, Tao Fan, Xuhui Wen, Ye Li and Hongyang Li
World Electr. Veh. J. 2025, 16(6), 299; https://doi.org/10.3390/wevj16060299 - 28 May 2025
Viewed by 458
Abstract
Interior permanent magnet synchronous motors (IPMSMs) are widely applied as drive motors in electric vehicles because they have the advantages of high power density, high efficiency, and excellent dynamic performance. This paper introduces a framework for multi-objective optimization, tailored for the demands of [...] Read more.
Interior permanent magnet synchronous motors (IPMSMs) are widely applied as drive motors in electric vehicles because they have the advantages of high power density, high efficiency, and excellent dynamic performance. This paper introduces a framework for multi-objective optimization, tailored for the demands of V-Shaped IPMSMs, which involves high-dimensional variables. The framework is divided into three parts. Firstly, a proportional parametric finite element analysis (FEA) model for V-Shaped IPMSMs was established to reduce the probability of size interference among motor design parameters. Secondly, a surrogate model was trained using the design of experiments (DOE) approach and was utilized to substitute the FEA model. The accuracy of the surrogate model was then verified. Thirdly, the surrogate model was used as a fitness function, and a non-dominated sorting genetic algorithm II (NSGA-II) was employed as the optimization method to acquire the optimal goals rapidly. Based on the optimal design parameters, a prototype of the electrical motor was fabricated. Finally, the effectiveness of optimization was proven by experimental testing. Full article
(This article belongs to the Special Issue Permanent Magnet Motors and Driving Control for Electric Vehicles)
Show Figures

Figure 1

Back to TopTop