Design and Control of Electrical Machines in Electric Vehicles, 2nd Edition

Special Issue Editors

School of Electrical Engineering, Tiangong University, Tianjin 300387, China
Interests: electrical machines and their control systems; electric drive systems of electric vehicles; brushless DC motor; impedance source converter
Special Issues, Collections and Topics in MDPI journals
School of Electrical Engineering, Tiangong University, Tianjin 300387, China
Interests: design and optimization of permanent magnet machine; analytical modeling; numerical analysis
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The electrical machine and its drives are the energy core of electric vehicles. The electric drive system of electric vehicles is mainly composed of an electrical machine, a DC–DC converter, an inverter, a motor controller, a transmission mechanism, etc. The optimized design method and advanced control technology affect the performances of electric vehicles, including the recharge mileage, noise level, safety, manufacturing costs, maintenance costs, and operating life.

In order to improve the operating performance, it is necessary to explore and research around electrical machines’ designs and the control strategies for electric vehicles. In terms of motor ontology, the rapid optimization of electromagnetic analyses, multiphase motors, and permanent magnet motors is worthy of attention. In terms of power converters of electric vehicles, the DC–DC converter, fault-tolerant converter, impedance source converter, and SiC drives are research hotspots. In terms of motor control algorithms, it is necessary to further study the sensorless control method, fault monitoring technology, high-performance torque control strategy, braking control, and energy recovery technology to increase the speed, range, and high-efficiency operating area of electric vehicle motors.

Dr. Xinmin Li
Dr. Liyan Guo
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. World Electric Vehicle Journal is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • novel permanent magnet synchronous machine
  • high power density
  • high efficiency
  • electric vehicles
  • multimotor systems
  • multilevel converters
  • impedance source converter
  • predictive control
  • servo motor
  • fault diagnosis
  • torque control
  • sensorless
  • efficiency optimization
  • harmonic analysis
  • energy recovery
  • motor drives
  • hybrid power
  • DC–DC converter

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Related Special Issue

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 6841 KiB  
Article
Permanent Magnet Assisted Synchronous Reluctance Motor for Subway Trains
by Vladimir Dmitrievskii, Vadim Kazakbaev, Vladimir Prakht and Alecksey Anuchin
World Electr. Veh. J. 2024, 15(9), 417; https://doi.org/10.3390/wevj15090417 - 13 Sep 2024
Viewed by 560
Abstract
With the growing demand and projected shortage of rare earth elements in the near future, the urgent task of developing energy-efficient electrical equipment with less dependence on rare earth magnets has become paramount. The use of permanent magnet-assisted synchronous reluctance motors (PMaSynRMs), which [...] Read more.
With the growing demand and projected shortage of rare earth elements in the near future, the urgent task of developing energy-efficient electrical equipment with less dependence on rare earth magnets has become paramount. The use of permanent magnet-assisted synchronous reluctance motors (PMaSynRMs), which reduce the consumption of rare earth magnets, can help solve this problem. This article presents a theoretical analysis of the characteristics of PMaSynRM in a subway train drive. Options with rare earth and ferrite magnets are considered. Optimization of the motor designs considering the train movement cycle is carried out using the Nelder-Mead method. Characteristics of the motors, such as losses, torque ripple, and inverter power rating, as well as the mass and cost of active materials, are compared. Full article
Show Figures

Figure 1

13 pages, 4221 KiB  
Article
Design, Analysis, and Comparison of Electric Vehicle Drive Motor Rotors Using Injection-Molded Carbon-Fiber-Reinforced Plastics
by Huai Cong Liu, Jang Soo Park and Il Hwan An
World Electr. Veh. J. 2024, 15(7), 283; https://doi.org/10.3390/wevj15070283 - 25 Jun 2024
Viewed by 2423
Abstract
Due to their excellent mechanical strength, corrosion resistance, and ease of processing, carbon fiber and carbon-fiber-reinforced plastics are finding wide application in diverse fields, including aerospace, industry, and automobiles. This research explores the feasibility of integrating carbon fiber solutions into the rotors of [...] Read more.
Due to their excellent mechanical strength, corrosion resistance, and ease of processing, carbon fiber and carbon-fiber-reinforced plastics are finding wide application in diverse fields, including aerospace, industry, and automobiles. This research explores the feasibility of integrating carbon fiber solutions into the rotors of 85-kilowatt electric vehicle interior permanent magnet synchronous motors. Two novel configurations are proposed: a carbon fiber wire-wound rotor and a carbon fiber injection-molded rotor. A finite element analysis compares the performance of these models against a basic designed rotor, considering factors like no-load back electromotive force, no-load voltage harmonics, cogging torque, load torque, torque ripple, efficiency, and manufacturing cost. Additionally, a comprehensive analysis of system efficiency and energy loss based on hypothetical electric vehicle parameters is presented. Finally, mechanical strength simulations assess the feasibility of the proposed carbon fiber composite rotor designs. Full article
Show Figures

Figure 1

18 pages, 9842 KiB  
Article
Design and Optimization of External Rotor Consequent Pole Permanent Magnet Motor with Low Iron Loss and Low Torque Ripple
by Liyan Guo, Hubin Yu and Huimin Wang
World Electr. Veh. J. 2024, 15(6), 232; https://doi.org/10.3390/wevj15060232 - 28 May 2024
Viewed by 674
Abstract
To reduce the iron loss and torque ripple of an external rotor consequent pole (ERCP) motor used in an electric vehicle air-conditioning compressor, the magnetic pole structure of the motor was improved, and an unequal piecewise consequent pole (CP) structure was designed. The [...] Read more.
To reduce the iron loss and torque ripple of an external rotor consequent pole (ERCP) motor used in an electric vehicle air-conditioning compressor, the magnetic pole structure of the motor was improved, and an unequal piecewise consequent pole (CP) structure was designed. The performance of the motor is optimized by reducing the harmonic content in the air gap flux density and reducing the iron saturation degree of the motor. The designed CP structure can significantly reduce the iron loss and torque ripple of the motor. Based on the Taguchi method, the optimal size parameters of the unequal piecewise CP structure are determined, and the final optimization design scheme is obtained. The results of finite element simulation and high-precision iron loss model show the following: compared with the original motor, the iron loss and torque ripple of the motor with the final optimized design scheme are significantly reduced. Full article
Show Figures

Figure 1

18 pages, 4885 KiB  
Article
Position Correction Control of Permanent-Magnet Brushless Motor Based on Commutation-Interval Current Symmetry
by Yongwu Guo, Yun Zhang and Xiaowei Li
World Electr. Veh. J. 2024, 15(5), 203; https://doi.org/10.3390/wevj15050203 - 7 May 2024
Viewed by 845
Abstract
With the needs of environmental protection and the adjustment of energy structure, new energy vehicles are playing an increasingly important role in the field of transportation today. The permanent-magnet brushless direct-current motor has the characteristics of high efficiency, and can be used in [...] Read more.
With the needs of environmental protection and the adjustment of energy structure, new energy vehicles are playing an increasingly important role in the field of transportation today. The permanent-magnet brushless direct-current motor has the characteristics of high efficiency, and can be used in the drive system of new energy vehicles or other auxiliary equipment. In the control process of the permanent-magnet brushless direct-current motor, based on a three-Hall position sensor, due to various factors, there are some errors in the Hall position signal, which must be corrected by appropriate measures. In this paper, the relationship between the position deviation in the commutation interval and the non-commutation-phase current is analyzed, and the current expressions in three different states are given. A new closed-loop compensation strategy for correcting the inaccurate commutation caused by the Hall signal error is proposed. Taking the position of a 30° electrical angle before and after the phase-change point as the H point, realizing the current symmetry within the 30° interval around the H point as the target and the sum of the slopes of the tangent lines at the two points symmetrical within the β (0 < β < 30) electrical angle around the H point as the deviation, a proportional-integral regulator is designed to correct the phase error of the phase-change signal. Finally, it is verified by experiments that the closed-loop compensation strategy proposed in this paper can effectively compensate the phase deviation of the commutation signal at a speed of about 2000 r/min, which improves the working efficiency of the motor to a certain extent. Full article
Show Figures

Figure 1

17 pages, 6954 KiB  
Article
Torque Ripple Reduction in Brushless Wound Rotor Vernier Machine Using Third-Harmonic Multi-Layer Winding
by Muhammad Zulqarnain, Sheikh Yasir Hammad, Junaid Ikram, Syed Sabir Hussain Bukhari and Laiq Khan
World Electr. Veh. J. 2024, 15(4), 163; https://doi.org/10.3390/wevj15040163 - 11 Apr 2024
Cited by 1 | Viewed by 932
Abstract
This article aims to realize the brushless operation of a wound rotor vernier machine (WRVM) by a third-harmonic field produced through stator auxiliary winding (X). In the conventional model, a third-harmonic current is generated by connecting a 4-pole armature and 12-pole excitation windings [...] Read more.
This article aims to realize the brushless operation of a wound rotor vernier machine (WRVM) by a third-harmonic field produced through stator auxiliary winding (X). In the conventional model, a third-harmonic current is generated by connecting a 4-pole armature and 12-pole excitation windings serially with a three-phase diode rectifier to develop a pulsating field in the airgap of a machine. However, in the proposed model, the ABC winding is supplied by a three-phase current source inverter, whereas the auxiliary winding (X) carries no current due to an open circuit. The fundamental MMF component developed in the machine airgap creates a four-pole stator field, while the third-harmonic MMF induces the harmonic current in the specialized rotor harmonic winding. The rotor on the other side contains the harmonic and the field windings connected through a full-bridge rectifier. The electromagnetic interaction of the stator and rotor fields generates torque. Due to the open-circuited winding pattern, the proposed machine results in a low torque ripple. A 2D model is designed using JMAG-Designer, and 2D field element analysis (FEA) is carried out to determine the output torque and machine’s efficiency. A comparative performance analysis of both the conventional and proposed topologies is discussed graphically. The quantitative analysis of the proposed topology shows better performance as compared to the recently developed third-harmonic-based brushless WRVM topology in terms of output torque and torque ripples. Full article
Show Figures

Figure 1

20 pages, 23217 KiB  
Article
A Rotor Position Detection Method for Permanent Magnet Synchronous Motors Based on Variable Gain Discrete Sliding Mode Observer
by Mingchen Luan, Yun Zhang, Xiaowei Li and Fenghui Xu
World Electr. Veh. J. 2024, 15(3), 87; https://doi.org/10.3390/wevj15030087 - 27 Feb 2024
Cited by 1 | Viewed by 1739
Abstract
The purpose of this paper is to study the sensor-less rotor position estimation method for permanent magnet synchronous motors, and to achieve accurate estimation of rotor position in different conditions. Firstly, the traditional super-twisting observer algorithm is analyzed, and a new discrete variable [...] Read more.
The purpose of this paper is to study the sensor-less rotor position estimation method for permanent magnet synchronous motors, and to achieve accurate estimation of rotor position in different conditions. Firstly, the traditional super-twisting observer algorithm is analyzed, and a new discrete variable gain sliding mode observer is designed to solve the buffeting problem in discrete systems, taking the reaction force as the disturbance signal. By estimating the back potential of the observer, the buffeting problem in the sliding mode algorithm can be effectively improved as shown by the simulation results. Then, to solve the problem of phase delay in rotor position estimation, an adaptive orthogonal phase-locked loop method is used to compensate the estimation error caused by the change in motor speed and increase the estimation accuracy of rotor position. The stability of the method can be proven by Lyapunov’s second method. Simulation experiments verify the accuracy of the proposed PMSM rotor position estimation method. Full article
Show Figures

Figure 1

Back to TopTop