Design of a High-Efficiency External Rotor Interior Permanent Magnet Synchronous Motor Without Magnetic Leakage Flux Path
Abstract
:1. Introduction
2. Analysis of Conventional External SPMSM
2.1. Characteristics
2.2. Main Effects and Design Directions for Parameters
- 1.
- Increasing the air gap magnetic flux produced by PMs.
- 2.
- Decreasing coil turns.
- 3.
- Changing the core material from S60 to S18.
3. Proposed V-Shaped IPMSM Without Magnetic Leakage Flux Path
4. Design Optimization Using Gaussian Process Model
4.1. Sensitivity Analysis
4.2. Gaussian Process Model
4.3. Design Optimization
4.4. Simulation Results
5. Experimental Verification
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shen, Y.; Zhu, Z.Q. Analytical prediction of optimal split ratio for fractional-slot external rotor PM brushless machines. IEEE Trans. Magn. 2011, 47, 4187–4190. [Google Scholar] [CrossRef]
- Kong, Y.; Lin, M.; Guo, R.; Li, N.; Xu, D. Design and optimization of an outer-rotor permanent magnet synchronous machine with an amorphous stator core. IEEE Trans. Appl. Supercond. 2018, 28, 1–5. [Google Scholar] [CrossRef]
- Lee, T.Y.; Ki, M.; Seo, M.; Kim, Y.J.; Jung, S.Y. Motor design and characteristics comparison of outer-rotor-type BLDC motor and BLAC motor based on numerical analysis. IEEE Trans. Appl. Supercond. 2016, 26, 1–6. [Google Scholar] [CrossRef]
- Aghazedeh, H.; Afjei, E.; Siadatan, A. Sizing and detailed design procedure of external rotor synchronous reluctance machine. IET Electr. Power Appl. 2019, 13, 1105–1113. [Google Scholar] [CrossRef]
- Sone, K.; Takemoto, M.; Ogasawara, S.; Takezaki, K.; Akiyama, H. A ferrite PM in-wheel motor without rare earth materials for electric city commuters. IEEE Trans. Magn. 2012, 48, 2961–2964. [Google Scholar] [CrossRef]
- Bonthu, S.S.R.; Arafat, A.; Choi, S. Comparisons of rare-earth and rare-earth-free external rotor permanent magnet assisted synchronous reluctance motors. IEEE Trans. Ind. Electron. 2017, 64, 9729–9738. [Google Scholar] [CrossRef]
- Xue, X.D.; Cheng, K.W.E.; Ng, T.W.; Cheung, N.C. Multi-objective optimization design of in-wheel switched reluctance motors in electric vehicles. IEEE Trans. Ind. Electron. 2010, 57, 2980–2987. [Google Scholar] [CrossRef]
- Beniakar, M.E.; Kakosimos, P.E.; Kladas, A.G. Strength pareto evolutionary optimization of an in-wheel PM motor with unequal teeth for electric traction. IEEE Trans. Magn. 2015, 51, 1–4. [Google Scholar] [CrossRef]
- Chung, S.U.; Moon, S.H.; Kim, D.J.; Kim, J.M. Development of a 20-pole–24-slot SPMSM with consequent pole rotor for in-wheel direct drive. IEEE Trans. Ind. Electron. 2016, 63, 302–309. [Google Scholar] [CrossRef]
- Öksüztepe, E. In-wheel switched reluctance motor design for electric vehicles by using a Pareto-based multiobjective differential evolution algorithm. IEEE Trans. Veh. Technol. 2017, 66, 4706–4715. [Google Scholar] [CrossRef]
- Wrobel, R.; Mellor, P.H. Design considerations of a direct drive brushless machine with concentrated windings. IEEE Trans. Energy Convers. 2008, 23, 1–8. [Google Scholar] [CrossRef]
- Chen, J.; Nayar, C.V.; Xu, L. Design and finite-element analysis of an outer-rotor permanent-magnet generator for directly coupled wind turbines. IEEE Trans. Magn. 2000, 36, 3802–3809. [Google Scholar] [CrossRef]
- Chen, H.; Gu, J.J. Switched reluctance motor drive with external rotor for fan in air conditioner. IEEE/ASME Trans. Mechatron. 2012, 18, 1448–1458. [Google Scholar] [CrossRef]
- Lim, M.S.; Kim, J.H.; Hong, J.P. Experimental characterization of the slinky-laminated core and iron loss analysis of electrical machine. IEEE Trans. Magn. 2015, 51, 1–4. [Google Scholar] [CrossRef]
- Ahn, H.J.; Lee, D.M. A new bumpless rotor-flux position estimation scheme for vector-controlled washing machine. IEEE Trans. Ind. Electron. 2016, 12, 466–473. [Google Scholar] [CrossRef]
- Raj, M.A.; Kavitha, A. Effect of rotor geometry on peak and average torque of external-rotor synchronous reluctance motor in comparison with switched reluctance motor for low-speed direct-drive domestic application. IEEE Trans. Magn. 2017, 53, 1–8. [Google Scholar] [CrossRef]
- Li, D.; Qu, R.; Li, J.; Xu, W. Consequent-pole toroidal-winding outer-rotor Vernier permanent-magnet machines. IEEE Trans. Ind. Appl. 2015, 51, 4470–4481. [Google Scholar] [CrossRef]
- Li, L.; Zhang, J.; Zhang, C.; Yu, J. Research on electromagnetic and thermal issue of high-efficiency and high-power-density outer-rotor motor. IEEE Trans. Appl. Supercond. 2016, 26, 1–5. [Google Scholar] [CrossRef]
- Ma, C.; Chen, C.; Li, Q.; Gao, H.; Kang, Q.; Fang, J.; Cui, H.; Teng, K.; Lv, X. Analytical calculation of no-load magnetic field of external rotor permanent magnet brushless direct current motor used as in-wheel motor of electric vehicle. IEEE Trans. Magn. 2018, 54, 1–6. [Google Scholar] [CrossRef]
- Moayed-Jahromi, H.; Rahideh, A.; Mardaneh, M. 2-D analytical model for external rotor brushless PM machines. IEEE Trans. Energy Convers. 2016, 31, 1100–1109. [Google Scholar] [CrossRef]
- Boughrara, K.; Ibtiouen, R.; Zarko, D.; Touhami, O.; Rezzoug, A. Magnetic field analysis of external rotor permanent-magnet synchronous motors using conformal mapping. IEEE Trans. Magn. 2010, 46, 3684–3693. [Google Scholar] [CrossRef]
- Zuo, S.; Lin, F.; Wu, X. Noise analysis, calculation, and reduction of external rotor permanent-magnet synchronous motor. IEEE Trans. Ind. Electron. 2015, 62, 6204–6212. [Google Scholar] [CrossRef]
- Lin, F.; Zuo, S.; Deng, W.; Wu, S. Modeling and analysis of acoustic noise in external rotor in-wheel motor considering Doppler effect. IEEE Trans. Ind. Electron. 2018, 65, 4524–4533. [Google Scholar] [CrossRef]
- Chu, W.; Zhu, Z.; Shen, Y. Analytical optimisation of external rotor permanent magnet machines. IET Electr. Syst. Transp. 2013, 3, 41–49. [Google Scholar] [CrossRef]
- Kim, K.C.; Lim, S.B.; Koo, D.H.; Lee, J. The shape design of permanent magnet for permanent magnet synchronous motor considering partial demagnetization. IEEE Trans. Magn. 2006, 42, 3485–3487. [Google Scholar] [CrossRef]
- Yoo, J.H.; Park, C.S.; Jung, T.U. Permanent magnet structure optimization for cogging torque reduction of outer rotor type radial flux permanent magnet generator. In Proceedings of the 2017 IEEE International Electric Machines and Drives Conference, Miami, FL, USA, 21–24 May 2017. [Google Scholar]
- Wu, S.; Song, L.; Cui, S. Study on improving the performance of permanent magnet wheel motor for the electric vehicle application. IEEE Trans. Magn. 2007, 43, 438–442. [Google Scholar] [CrossRef]
- Ma, C.; Cui, H.; Zheng, P.; Zhang, Y.; Gao, H. Influence of static eccentricity on unbalanced magnetic force of external rotor permanent magnet brushless direct current motor used as in-wheel motor. IET Electr. Power Syst. 2019, 13, 538–550. [Google Scholar] [CrossRef]
- Ifedi, C.J.; Mecrow, B.C.; Brockway, S.T.M.; Boast, G.S.; Atkinson, G.J.; Kostic-Perovic, D. Fault-tolerant in-wheel motor topologies for high-performance electric vehicles. IEEE Trans. Ind. Appl. 2013, 49, 1249–1257. [Google Scholar] [CrossRef]
- Ishii, S.; Hasegawa, Y.; Nakamura, K.; Ichinokura, O. Characteristics of novel flux barrier type outer rotor IPM motor with rare-earth and ferrite magnets. In Proceedings of the 2012 International Conference on Renewable Energy Research and Applications, Nagasaki, Japan, 11–14 November 2012. [Google Scholar]
- Yu, D.; Huang, X.; Zhang, X.; Zhang, J.; Lu, Q.; Fang, Y. Optimal design of outer rotor interior permanent magnet synchronous machine with hybrid permanent magnet. IEEE Trans. Appl. Supercond. 2019, 29, 1–5. [Google Scholar] [CrossRef]
- Yang, Y.; Rahman, M.M.; Lambert, T.; Bilgin, B.; Emadi, A. Development of an external rotor V-shape permanent magnet machine for E-bike application. IEEE Trans. Energy Convers. 2018, 33, 1650–1658. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, G.; Zhao, W.; Sun, L.; Shao, M.; Liu, Z. Design and comparison of two fault-tolerant interior-permanent-magnet motors. IEEE Trans. Ind. Electron. 2014, 61, 6615–6623. [Google Scholar] [CrossRef]
- Lee, S.G.; Park, M.R.; Cha, K.S.; Kim, J.H.; Hong, J.P. Design of the high efficiency IPMSM considering the operating point with different characteristic. In Proceedings of the 2019 IEEE International Electric Machines and Drives Conference, San Diego, CA, USA, 12–15 May 2019. [Google Scholar]
- Bangura, J.F. Design of high-power density and relatively high-efficiency flux-switching motor. IEEE Trans. Energy Convers. 2006, 21, 416–425. [Google Scholar] [CrossRef]
- Jones, B.; Johnson, R.T. Design and analysis for the Gaussian process model. Qual. Reliab. Eng. Int. 2009, 25, 515–524. [Google Scholar] [CrossRef]
- Zhang, X. Comparison of response surface method and Kriging method for approximation modeling. In Proceedings of the 2017 IEEE 2nd International Conference on Power and Renewable Energy, Chengdu, China, 20–23 September 2017. [Google Scholar]
- Park, M.R.; Kim, H.J.; Choi, Y.Y.; Hong, J.P.; Lee, J.J. Characteristics of IPMSM according to rotor design considering nonlinearity of permanent magnet. IEEE Trans. Magn. 2016, 52, 1–4. [Google Scholar] [CrossRef]
- Roy, R.K. Design of Experiments Using the Taguchi Approach: 16 Steps to Product and Process Improvement; John Wiley & Sons: New York, NY, USA, 2001. [Google Scholar]
- Montgomery, D.C. Design and Analysis of Experiments, 9th ed.; John Wiley & Sons: New York, NY, USA, 2017. [Google Scholar]
- Johnson, M.; Gardner, M.C.; Toliyat, H.A. Design comparison of NdFeB and ferrite radial flux surface permanent magnet coaxial magnetic gears. IEEE Trans. Ind. Appl. 2018, 54, 1254–1263. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, D.Y.; Hong, J.P. Structure of concentrated-flux-type interior permanent-magnet synchronous motors using ferrite permanent magnets. IEEE Trans. Magn. 2014, 50, 1–4. [Google Scholar] [CrossRef]
- Queipo, N.V.; Haftka, R.T.; Shyy, W.; Goel, T.; Vaidyanathan, R.; Tucker, P.K. Surrogate-based analysis and optimization. Prog. Aerosp. Sci. 2005, 41, 1–43. [Google Scholar] [CrossRef]
Part | Material | Cost Rate |
---|---|---|
Permanent magnets | Ferrite | $10/kg |
Rare earth | $50/kg | |
Coil | Aluminum | $3/kg |
Copper | $7/kg | |
Core | S60 | $0.7/kg |
S18 | $0.8/kg |
Design Variable | Initial Design | Optimum Design |
---|---|---|
x1 Pole angle (°) | 4.8 | 3.0 |
x3 Yoke thickness (mm) | 3.8 | 3.6 |
x4 Slot opening (mm) | 4 | 5.6 |
x5 Stator eccentricity (mm) | 0 | 67.2 |
x6 Rotor chamfer a (%) | 0 | 91 |
x7 Rotor chamfer b (mm) | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cha, K.-S.; Kim, J.-H.; Lee, S.-G.; Park, M.-R. Design of a High-Efficiency External Rotor Interior Permanent Magnet Synchronous Motor Without Magnetic Leakage Flux Path. Mathematics 2025, 13, 1865. https://doi.org/10.3390/math13111865
Cha K-S, Kim J-H, Lee S-G, Park M-R. Design of a High-Efficiency External Rotor Interior Permanent Magnet Synchronous Motor Without Magnetic Leakage Flux Path. Mathematics. 2025; 13(11):1865. https://doi.org/10.3390/math13111865
Chicago/Turabian StyleCha, Kyoung-Soo, Jae-Hyun Kim, Soo-Gyung Lee, and Min-Ro Park. 2025. "Design of a High-Efficiency External Rotor Interior Permanent Magnet Synchronous Motor Without Magnetic Leakage Flux Path" Mathematics 13, no. 11: 1865. https://doi.org/10.3390/math13111865
APA StyleCha, K.-S., Kim, J.-H., Lee, S.-G., & Park, M.-R. (2025). Design of a High-Efficiency External Rotor Interior Permanent Magnet Synchronous Motor Without Magnetic Leakage Flux Path. Mathematics, 13(11), 1865. https://doi.org/10.3390/math13111865