Feature Papers in Actuators for Surface Vehicles

A special issue of Actuators (ISSN 2076-0825). This special issue belongs to the section "Actuators for Surface Vehicles".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 742

Special Issue Editors


E-Mail Website
Guest Editor
Key Laboratory of Computing Power Network and Information Security, Ministry of Education, Shandong Computer Science Center (National Supercomputer Center in Jinan), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
Interests: robotic system control; fault-tolerant control; control of multiagent systems and complex networks; security control of cyber–physical systems

E-Mail Website
Guest Editor
National Research and Innovation Agency (BRIN) KST BJ Habibie, Tangerang Selatan, Banten, Indonesia
Interests: learning control; robust control; adaptive control; speech recognition; signal and image processing; deep learning

E-Mail Website
Guest Editor
School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China
Interests: agricultural robots; unmanned agricultural machinery; anti-disturbance control; adaptive control; intelligent optimization algorithm; sliding mode control
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Surface vehicles are indispensable in maritime transportation, offshore operations, and marine environmental monitoring. With the increasing demand for greater efficiency and safety in maritime activities, the development of advanced control systems for surface vehicles has become more significant. These control systems are responsible for managing the navigation, maneuvering, and stability of vessels, ensuring that they can operate effectively in diverse and often challenging marine environments. There have been significant advancements in the development of control and estimation technologies, such as the application of model predictive control, sliding mode control, and artificial intelligence-based control (e.g., fuzzy logic, neural networks, deep learning, and reinforcement learning-based control) in the context of surface vehicles. These methods have demonstrated great potential in improving the performance of vessels, enabling them to handle complex tasks such as path tracking, trajectory planning, and obstacle avoidance more proficiently. Furthermore, the integration of intelligent algorithms and sensors has led to the emergence of autonomous surface vehicles, which are capable of making real-time decisions and adapting to changing conditions independently of human intervention. The scope of this Special Issue includes, but is not limited to, the following topics:

  • The security and fault-tolerant control of surface vehicles;
  • Robust observer designs for the disturbance/state estimation of surface vehicles;
  • Artificial intelligence-based techniques for surface vehicles;
  • The formation and cooperative control of surface vehicles;
  • Navigation and path planning for surface vehicles;
  • The obstacle avoidance and optimization of surface vehicles;
  • Advanced control techniques for surface vehicles;
  • Real-world applications of surface vehicles.

Dr. Hai Wang
Prof. Dr. Xiaozheng Jin
Dr. Edi Kurniawan
Dr. Jinlin Sun
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Actuators is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • surface vehicles
  • control systems
  • autonomous navigation
  • artificial intelligence
  • path planning
  • obstacle avoidance

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

11 pages, 941 KiB  
Article
Improving the Regenerative Efficiency of the Automobile Powertrain by Optimizing Combined Loss in the Motor and Inverter
by Jayakody Shreen and Kyung-min Lee
Actuators 2025, 14(7), 326; https://doi.org/10.3390/act14070326 - 1 Jul 2025
Viewed by 216
Abstract
This research presents a method for improving the regenerative efficiency of interior permanent magnet synchronous motors (IPMSMs) used in traction applications such as electric vehicles. In conventional powertrain control, the maximum torque per ampere (MTPA) strategy is commonly applied in the constant-torque region. [...] Read more.
This research presents a method for improving the regenerative efficiency of interior permanent magnet synchronous motors (IPMSMs) used in traction applications such as electric vehicles. In conventional powertrain control, the maximum torque per ampere (MTPA) strategy is commonly applied in the constant-torque region. However, this approach does not account for the combined losses of both the motor and inverter. In this study, overall system efficiency is investigated, and an improved current combination is proposed to minimize total losses. The single switching method is employed in the inverter due to its simplicity and its ability to reduce inverter losses. Simulations incorporating both motor and inverter losses were performed for two driving conditions around the MTPA current point. The results show that the optimal current combination slightly deviates from the MTPA point and leads to a slight improvement in efficiency. Experimental results under the two steady-state driving torque and angular velocity conditions confirm that the optimized current combination enhances system efficiency. Furthermore, simulations based on the Urban Dynamometer Driving Schedule predict an increase in recovered energy of approximately 1%. The proposed control strategy is simple, easy to implement, and enables the powertrain to operate with highly efficient current references. Full article
(This article belongs to the Special Issue Feature Papers in Actuators for Surface Vehicles)
Show Figures

Figure 1

19 pages, 4849 KiB  
Article
Optimal Design for Torque Ripple Reduction in a Traction Motor for Electric Propulsion Vessels
by Gi-haeng Lee and Yong-min You
Actuators 2025, 14(7), 314; https://doi.org/10.3390/act14070314 - 24 Jun 2025
Viewed by 213
Abstract
Recently, as carbon emission regulations enforced by the International Maritime Organization (IMO) have become stricter and pressure from the World Trade Organization (WTO) to abolish tax-free fuel subsidies has increased, the demand for electric propulsion systems in the marine sector has grown. Most [...] Read more.
Recently, as carbon emission regulations enforced by the International Maritime Organization (IMO) have become stricter and pressure from the World Trade Organization (WTO) to abolish tax-free fuel subsidies has increased, the demand for electric propulsion systems in the marine sector has grown. Most small domestic fishing vessels rely on tax-free fuel and have limited cruising ranges and constant-speed operation, which makes them well-suited for electric propulsion. This paper proposes replacing the internal combustion engine system of such vessels with an electric propulsion system. Based on real operating conditions, an Interior Permanent Magnet Synchronous Motor (IPMSM) was designed and optimized. The Savitsky method was used to calculate total resistance at a typical cruising speed, from which the required torque and output were determined. To reduce torque ripple, an asymmetric dummy slot structure was proposed, with two dummy slots of different widths and depths placed in each stator slot. These dimensions, along with the magnet angle, were set as optimization parameters, and a metamodel-based optimal design was carried out. As a result, while meeting the design constraints, torque ripple decreased by 2.91% and the total harmonic distortion (THD) of the back-EMF was lowered by 1.32%. Full article
(This article belongs to the Special Issue Feature Papers in Actuators for Surface Vehicles)
Show Figures

Figure 1

Review

Jump to: Research

34 pages, 1638 KiB  
Review
Recent Advances in Bidirectional Converters and Regenerative Braking Systems in Electric Vehicles
by Hamid Naseem and Jul-Ki Seok
Actuators 2025, 14(7), 347; https://doi.org/10.3390/act14070347 (registering DOI) - 14 Jul 2025
Abstract
As electric vehicles (EVs) continue to advance toward widespread adoption, innovations in power electronics are playing a pivotal role in improving efficiency, performance, and sustainability. This review presents recent progress in bidirectional converters and regenerative braking systems (RBSs), highlighting their contributions to energy [...] Read more.
As electric vehicles (EVs) continue to advance toward widespread adoption, innovations in power electronics are playing a pivotal role in improving efficiency, performance, and sustainability. This review presents recent progress in bidirectional converters and regenerative braking systems (RBSs), highlighting their contributions to energy recovery, battery longevity, and vehicle-to-grid integration. Bidirectional converters support two-way energy flow, enabling efficient regenerative braking and advanced charging capabilities. The integration of wide-bandgap semiconductors, such as silicon carbide and gallium nitride, further enhances power density and thermal performance. The paper evaluates various converter topologies, including single-stage and multi-stage architectures, and assesses their suitability for high-voltage EV platforms. Intelligent control strategies, including fuzzy logic, neural networks, and sliding mode control, are discussed for optimizing braking force and maximizing energy recuperation. In addition, the paper explores the influence of regenerative braking on battery degradation and presents hybrid energy storage systems and AI-based methods as mitigation strategies. Special emphasis is placed on the integration of RBSs in advanced electric vehicle platforms, including autonomous systems. The review concludes by identifying current challenges, emerging trends, and key design considerations to inform future research and practical implementation in electric vehicle energy systems. Full article
(This article belongs to the Special Issue Feature Papers in Actuators for Surface Vehicles)
Show Figures

Figure 1

Back to TopTop