Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (610)

Search Parameters:
Keywords = green LED light

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3156 KB  
Article
Evaluation of LED Spectral Treatments on Morphological and Nutritional Parameters of Swiss Chard (Beta vulgaris var. cicla) in a Controlled Environment Agriculture System
by Cristal Yoselin Moreno-Aguilera, Raul Omar Herrera-Arroyo, Mauro Santoyo-Mora, Coral Martinez-Nolasco, Víctor Sámano-Ortega, Juan Jose Martínez Nolasco, Antonio Petitti and Laura Romeo
Agriculture 2026, 16(2), 165; https://doi.org/10.3390/agriculture16020165 - 9 Jan 2026
Viewed by 177
Abstract
As an alternative to confronting the actual challenges in the conventional agriculture, Controlled Environment Agriculture (CEA) and hydroponics arise as sustainable alternatives, allowing for an efficient use of resources during green-leaf crop production. Considering a Nutrient Film Technique (NFT) hydroponic wall-system and two [...] Read more.
As an alternative to confronting the actual challenges in the conventional agriculture, Controlled Environment Agriculture (CEA) and hydroponics arise as sustainable alternatives, allowing for an efficient use of resources during green-leaf crop production. Considering a Nutrient Film Technique (NFT) hydroponic wall-system and two different ranges of light spectra provided via LED technology, this study evaluated their impact on the yield and efficiency during the cultivation of Swiss Chard crops (Beta vulgaris var. cicla) based on an analysis of morphological and nutritional characteristics. The experiment was developed in a growth room chamber, which was monitored and controlled under an IoT scheme, mainly focusing on the lighting treatments; treatments T1 and T2 were defined with the LED Barina 42W and LED MURFURN 70W, correspondingly. The results show no significant differences between both treatments in most morphological cases; however, the foliar area was significantly larger in treatment T1 than in treatment T2. Additionally, the nutritional quality of treatment T1 showed higher concentrations of carbohydrates, proteins, minerals, Ca, and K. Conclusively, the light spectrum composition provided by the lighting system influences the chard physiology, favoring the nutrient concentration under red–blue spectrum combinations. Full article
Show Figures

Figure 1

14 pages, 2398 KB  
Article
Synergistic Triplet Exciton Management and Interface Engineering for High-Brightness Sky-Blue Multi-Cation Perovskite Light-Emitting Diodes
by Fawad Ali, Fang Yuan, Shuaiqi He, Peichao Zhu, Nabeel Israr, Songting Zhang, Puyang Wu, Jiaxin Liang, Wen Deng and Zhaoxin Wu
Nanomaterials 2026, 16(1), 4; https://doi.org/10.3390/nano16010004 - 19 Dec 2025
Viewed by 317
Abstract
Perovskite light-emitting diodes (PeLEDs) have garnered significant interest owing to their exceptional color purity, broadly tunable emission spectra, and cost-effective solution processability. However, blue PeLEDs continue to underperform in efficiency and operational stability compared to their red and green counterparts, primarily due to [...] Read more.
Perovskite light-emitting diodes (PeLEDs) have garnered significant interest owing to their exceptional color purity, broadly tunable emission spectra, and cost-effective solution processability. However, blue PeLEDs continue to underperform in efficiency and operational stability compared to their red and green counterparts, primarily due to defect-induced non-radiative recombination losses and inefficient exciton management. Herein, we demonstrate a synergistic approach that integrates multi-cation compositional engineering with triplet exciton management by incorporating a high-triplet-energy material, mCBP (3,3-Di(9H-carbazol-9-yl)biphenyl), during film fabrication. Temperature-dependent photoluminescence reveals that mCBP incorporation significantly enhances the exciton binding energy from 49.36 meV to 68.84 meV and reduces phonon coupling strength, indicating improved exciton stability and suppressed non-radiative channels. The corresponding PeLEDs achieve a peak external quantum efficiency of 10.2% and a maximum luminance exceeding 12,000 cd/m2, demonstrating the effectiveness of this solution-based triplet management strategy. This work highlights the critical role of scalable, solution-processed triplet exciton management strategies in advancing blue PeLED performance, offering a practical pathway toward high-performance perovskite-based display and lighting technologies. Full article
Show Figures

Graphical abstract

12 pages, 1617 KB  
Article
Hybrid Tandem White Light-Emitting Diodes Based on GaN and Organic Emitters
by Jin-Zhe Xu, Xiao-Zhao Zhu, Feng Zhai, Wei-Zhi Liu, Dong-Ying Zhou and Liang-Sheng Liao
Materials 2025, 18(24), 5684; https://doi.org/10.3390/ma18245684 - 18 Dec 2025
Viewed by 349
Abstract
Tandem white organic light-emitting diodes (OLEDs), formed by stacking red, green, and blue organic electroluminescent units, offer a promising route toward high-resolution microdisplays. However, their performance is constrained by the intrinsically short lifetime of blue OLED sub-units. Replacing the unstable blue OLED with [...] Read more.
Tandem white organic light-emitting diodes (OLEDs), formed by stacking red, green, and blue organic electroluminescent units, offer a promising route toward high-resolution microdisplays. However, their performance is constrained by the intrinsically short lifetime of blue OLED sub-units. Replacing the unstable blue OLED with a long-lived GaN-based LED could address this limitation, but practical hybridization remains difficult because of incompatible fabrication routes and significant current imbalance between the inorganic and organic units. Here, we demonstrate the first hybrid GaN–OLED tandem white LEDs enabled by an interface-engineered charge-generation unit (CGU). By introducing an ITO/HAT-CN/LiNH2-doped Bphen CGU, we simultaneously enhance the work function, strengthen the built-in electric field, and smooth the interfacial morphology. These synergistic effects promote efficient charge generation, yielding near-ideal voltage summation and well-balanced electron–hole injection. As a result, the hybrid tandem device shows a nearly twofold increase in current efficiency (from 28.1 to 58.6 cd A–1) and significantly reduced spectral shift under varying current densities. We further demonstrate the generality of this approach by integrating the GaN emission with yellow OLEDs to produce stable blue–yellow hybrid white emission. This work establishes an applicable strategy for integrating GaN-LEDs and OLEDs, opening a pathway toward efficient, stable, and compact white light engines for next-generation microdisplay technologies. Full article
(This article belongs to the Special Issue Emerging Light-Emitting Materials and Devices)
Show Figures

Graphical abstract

40 pages, 2992 KB  
Review
Advances in Mesoporous Silica and Hybrid Nanoparticles for Drug Delivery: Synthesis, Functionalization, and Biomedical Applications
by Ahmad Almatroudi
Pharmaceutics 2025, 17(12), 1602; https://doi.org/10.3390/pharmaceutics17121602 - 12 Dec 2025
Cited by 1 | Viewed by 819
Abstract
Mesoporous silica nanoparticles (MSNs) are among the most adaptable nanocarriers in modern pharmaceutics, characterized by a high surface area, tunable pore size, controllable morphology, and excellent biocompatibility. These qualities enable effective encapsulation, protection, and the delivery of drugs in a specific area and, [...] Read more.
Mesoporous silica nanoparticles (MSNs) are among the most adaptable nanocarriers in modern pharmaceutics, characterized by a high surface area, tunable pore size, controllable morphology, and excellent biocompatibility. These qualities enable effective encapsulation, protection, and the delivery of drugs in a specific area and, therefore, MSNs are powerful platforms for the targeted and controlled delivery of drugs and theragnostic agents. Over the past ten years and within the 2021–2025 period, the advancement of MSN design has led to the creation of hybrid nanostructures into polymers, lipids, metals, and biomolecules that have yielded multifunctional carriers with enhanced stability, responsiveness, and biological activities. The current review provides a review of the synthesis methods, surface functionalization techniques, and physicochemical characterization techniques that define the next-generation MSN-based delivery systems. The particular focus is put on stimuli-responsive systems, such as redox, pH, enzyme-activated, and light-activated systems, that enable delivering drugs in a controlled and localized manner. We further provide a summary of the biomedical use of MSNs and their hybrids such as in cancer chemotherapy, gene and nucleic acid delivery, antimicrobial and vaccine delivery, and central nervous system targeting, supported by recent in vivo and in vitro studies. Important evaluations of biocompatibility, immunogenicity, degradation, and biodistribution in vivo are also provided with a focus on safety in addition to the regulatory impediments to clinical translation. The review concludes by saying that there are still limitations such as large-scale reproducibility, long-term toxicity, and standardization by the regulators, and that directions are being taken in the future in the fields of smart programmable nanocarriers, green synthesis, and sustainable manufacture. Overall, mesoporous silica and hybrid nanoparticles represent a breakthrough technology in the nanomedicine sector with potentials that are unrivaled in relation to targeted, controlled, and personalized therapeutic interventions. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Graphical abstract

15 pages, 3956 KB  
Article
Light Supplementation and Nicotinamide Influence the Growth and Pigment Production of Tropical Hydroponic Green Fodder
by Gabriela Rodrigues Sant’Ana, Flávio Ferreira da Silva Binotti, Eliana Duarte Cardoso Binotti, Gilda Carrasco, Fernanda Pacheco de Almeida Prado Bortolheiro, Sebastião Ferreira de Lima, Carlos Eduardo da Silva Oliveira, Edilson Costa, Marcelo Carvalho Minhoto Teixeira Filho and Eduardo Pradi Vendruscolo
Agronomy 2025, 15(12), 2797; https://doi.org/10.3390/agronomy15122797 - 4 Dec 2025
Viewed by 478
Abstract
Climate change or even the natural occurrence of periods of low suitability for the production of forage species are obstacles to maintaining adequate animal nutrition. Indoor green fodder production is an alternative to this problem; however, advances in technologies capable of improving this [...] Read more.
Climate change or even the natural occurrence of periods of low suitability for the production of forage species are obstacles to maintaining adequate animal nutrition. Indoor green fodder production is an alternative to this problem; however, advances in technologies capable of improving this system still need to be studied in depth. The objective of this study was to evaluate the qualitative and quantitative characteristics of hydroponic green fodder production of millet and sorghum under varying monochromatic light supplementation and nicotinamide application. Eight treatments were defined by lighting (LS—Led Full Spectrum; LS + Ultraviolet LED; LS + Red LED; LS + Blue LED), and combined with the application of nicotinamide (with and without) at a concentration of 200 mg L−1. Cultivation under conditions of light supplementation with UV radiation or monochromatic lights results in increased light intensity by modifying the wavelength spectrum received by the plant, modification of the quality of photons received in relation to the energy level that leads to luminous stress and, consequently, lower green fodder development concerning height and fresh mass. Nicotinamide acts as a bioprotectant, attenuating the stressful effects and enabling greater productive efficiency in the production of hydroponic green fodder, particularly in vertical cultivation, which provides increased height and fresh mass for millet and sorghum green fodder. In contrast, the stress resulting from light supplementation can be used as a tool to increase carotenoid levels in plants and may be indicated for production systems that have this objective for biofortification of forages with bioactives with antioxidant effects. Full article
Show Figures

Figure 1

25 pages, 7358 KB  
Article
Photocatalytic and Photo-Fenton-like Degradation of Methylene Blue Using Green-Synthesized Phosphate-Doped ZnO Under Visible LED Light
by Soukaina Nehhal, Majda Ben Ali, Younes Abrouki, Khalid Ofqir, Yassine Elkahoui, Najoua Labjar, Hamid Nasrellah and Souad El Hajjaji
Reactions 2025, 6(4), 64; https://doi.org/10.3390/reactions6040064 - 28 Nov 2025
Viewed by 533
Abstract
Water pollution caused by synthetic dyes is a major environmental concern due to their stability, toxicity, and resistance to conventional wastewater treatments. This study presents a sustainable approach for synthesizing zinc oxide (ZnO) nanoparticles using artichoke biomass (waste) as a green precursor and [...] Read more.
Water pollution caused by synthetic dyes is a major environmental concern due to their stability, toxicity, and resistance to conventional wastewater treatments. This study presents a sustainable approach for synthesizing zinc oxide (ZnO) nanoparticles using artichoke biomass (waste) as a green precursor and enhancing their visible light photocatalytic activity through phosphorus doping. ZnO nanoparticles were successfully synthesized via a simple green route and doped with 3–6% phosphorus using NH4H2PO4. The structural, morphological, and optical properties of the resulting P-ZnO were characterized by XRD, SEM/EDX, TEM, FTIR, and UV-Vis spectroscopy. (6 wt%) Phosphorus doping effectively reduced the band gap from 3.06 eV to 2.95 eV, extended light absorption into the visible range, and improved electron–hole separation, resulting in enhanced photocatalytic performance. The P-ZnO nanoparticles were evaluated for methylene blue (MB) degradation under visible light in a photo-Fenton-like process, with H2O2 as an oxidant. The degradation efficiency reached 87.05% with 6% P-ZnO and further increased to 92.35% upon addition of H2O2. Durability and reusability tests demonstrated that the 6% P-ZnO catalyst maintained its activity and structural integrity over four consecutive cycles, indicating negligible loss of efficiency and excellent resistance to surface poisoning. The photocatalytic activity was strongly impacted by the quantity of catalyst, solution pH, and initial dye levels, with optimal performance at 0.3 g/L catalyst loading, pH 3, and lower MB concentrations. Full article
Show Figures

Figure 1

17 pages, 7379 KB  
Article
A Study on Visible Light Communication Systems Based on OLED Devices
by Wanyi Zhang, Haochen Xu, Sihang Ji and Jiazhuang Lan
Micromachines 2025, 16(12), 1338; https://doi.org/10.3390/mi16121338 - 27 Nov 2025
Viewed by 622
Abstract
Addressing the limitations of conventional inorganic light-emitting diodes (LEDs) in flexible visible light communication (VLC) applications, this study investigates the feasibility of organic light-emitting diodes (OLEDs) as an integrated platform for illumination, display, and communication. The optoelectronic characteristics and modulation bandwidth of red, [...] Read more.
Addressing the limitations of conventional inorganic light-emitting diodes (LEDs) in flexible visible light communication (VLC) applications, this study investigates the feasibility of organic light-emitting diodes (OLEDs) as an integrated platform for illumination, display, and communication. The optoelectronic characteristics and modulation bandwidth of red, green, and blue (RGB) OLEDs were systematically measured. Based on the experimental data, a wavelength division multiplexing (WDM) VLC system employing non-return-to-zero on-off keying (NRZ-OOK) modulation was constructed in simulation software for validation. The results indicate stable optoelectronic performance for all three primary-color OLEDs, with a maximum modulation bandwidth of 466 kHz achieved for the blue device. The system simulation demonstrates stable parallel transmission of three independent data channels, attaining a minimum bit error rate (BER) as low as 3.74×1035 achieved for the green device. This work confirms the potential of OLEDs for emerging communication applications such as flexible displays and wearable devices. Full article
(This article belongs to the Special Issue Advanced Optoelectronic Materials/Devices and Their Applications)
Show Figures

Figure 1

17 pages, 3969 KB  
Article
Blue Light Suppresses Pepper Resistance Against Phytophthora capsici Through CRY2-Mediated ROS and SA Signaling Pathways
by Ting Yu, Yue Chen, Ying Luo, Hongyan Liu, Yong Zhou, Xiaobin Wang, Yachun Lin, Shanjun Liu, Jinyin Chen and Youxin Yang
Horticulturae 2025, 11(12), 1434; https://doi.org/10.3390/horticulturae11121434 - 27 Nov 2025
Viewed by 544
Abstract
Phytophthora capsici is frequently found in pepper (Capsicum annuum L.) cultivation, causing severe yield loss and fruit quality deterioration. Light quality is known to influence pepper growth and stress responses, but its role in pepper resistance against P. capsici remains poorly understood. [...] Read more.
Phytophthora capsici is frequently found in pepper (Capsicum annuum L.) cultivation, causing severe yield loss and fruit quality deterioration. Light quality is known to influence pepper growth and stress responses, but its role in pepper resistance against P. capsici remains poorly understood. This study displayed that, among pepper plants treated with red, green, and blue light (BL) and infected with P. capsici, those under BL exposure showed the highest disease index accompanied by lower H2O2 and salicylic acid (SA) contents. Correspondingly, the blue light photoreceptor CaCRY2 was induced by both BL exposure and P. capsici infection (PCI). Silencing of CaCRY2 in pepper led to a decrease in disease index and lesion area with higher ROS and SA accumulation, while overexpression of CaCRY2 in tobacco increased disease index. In addition, we also found that CaCRY2 manipulated the resistance of pepper against P. capsici through ROS and SA signaling pathways. These results provide a new perspective on the involvement of blue light exposure in pepper resistance to P. capsici. Full article
(This article belongs to the Special Issue A Decade of Research on Vegetable Crops: From Omics to Biotechnology)
Show Figures

Figure 1

10 pages, 3854 KB  
Article
Study on Diamond NV Centers Excited by Green Light Emission from Upconversion Luminescence
by Yangyang Guo, Fuwen Shi and Bo Li
Photonics 2025, 12(12), 1163; https://doi.org/10.3390/photonics12121163 - 26 Nov 2025
Viewed by 598
Abstract
The NV center in diamonds has been widely employed in quantum sensing, quantum computing, and bioimaging due to its controllable ground-state spin, detectable magnetic resonance, excellent photostability, favorable biocompatibility, and chemical inertness. However, conventional excitation using 532 nm green light still exhibits certain [...] Read more.
The NV center in diamonds has been widely employed in quantum sensing, quantum computing, and bioimaging due to its controllable ground-state spin, detectable magnetic resonance, excellent photostability, favorable biocompatibility, and chemical inertness. However, conventional excitation using 532 nm green light still exhibits certain limitations in practical applications. To address this, we propose a novel NV center excitation method based on the upconversion of near-infrared light to green emission. Through the synthesis of molybdenum-doped NaYF4: 20% Yb3+, 1.5% Er3+ upconversion materials, efficient excitation of NV centers has been achieved. Both UC-LED luminescence spectroscopy and ODMR measurements confirm that the green light generated via the upconversion process exhibits sufficient intensity to effectively excite NV centers. Meanwhile, the characteristic sharp emission peaks of rare-earth upconversion materials eliminate the need for optical filters, facilitating device miniaturization, and a miniaturized UC-LED sensor has been developed. Full article
(This article belongs to the Special Issue Recent Progress in Single-Photon Generation and Detection)
Show Figures

Figure 1

24 pages, 7853 KB  
Article
Designing for Cooler Street: Case Study of Van City
by Nursevil Yuca, Şevket Alp, Sevgi Yilmaz, Elmira Jamei and Adeb Qaid
Land 2025, 14(12), 2313; https://doi.org/10.3390/land14122313 - 25 Nov 2025
Viewed by 610
Abstract
In the context of global climate change and rapid urbanization, the Urban Heat Island (UHI) effect has become a pressing environmental and public health concern, particularly in semiarid regions. This study evaluates the microclimatic performance of various urban design strategies aimed at enhancing [...] Read more.
In the context of global climate change and rapid urbanization, the Urban Heat Island (UHI) effect has become a pressing environmental and public health concern, particularly in semiarid regions. This study evaluates the microclimatic performance of various urban design strategies aimed at enhancing thermal comfort along a densely built-up street in Van, a medium-sized city located in Turkey’s semiarid climate zone. Using ENVI-met 5.7.2, nine alternative scenarios were simulated, incorporating different configurations of vegetation cover (0%, 25%, 50%, 75%), ground surface materials, and green roof applications (0%, 25%, 50%, 75%). Physiological Equivalent Temperature (PET) and other thermal comfort indicators were assessed at multiple time intervals on the hottest summer day. Results indicate that increasing vegetation cover substantially reduces PET values, with a maximum reduction of 3.0 °C observed in the 75% vegetation scenario. While the scenario with no vegetation but light-colored pavements achieved a 1.8 °C reduction in air temperature at 2:00 p.m., the maximum PET value remained unchanged. Conversely, using dark-colored asphalt decreased the average air temperature by 1 °C and improved the thermal comfort level by reducing the PET by 0.4 °C compared to a non-vegetated scenario. The scenario with the highest overall greenery led to a 2.9 °C drop in air temperature and a 12.8 °C reduction in average PET at 2:00 p.m. compared to other scenarios. The study provides evidence-based recommendations for human-centered urban planning and advocates for the integration of microclimate simulation tools in the early stages of urban development. Full article
(This article belongs to the Special Issue Morphological and Climatic Adaptations for Sustainable City Living)
Show Figures

Figure 1

16 pages, 11146 KB  
Article
Preparation and Study of Bright Orange-Yellow Long Persistent Luminescent Ca2LuScGa2Ge2O12:Pr3+ Phosphor
by Xiaoman Shi, Huimin Li, Ruiping Deng, Su Zhang and Hongjie Zhang
Photochem 2025, 5(4), 38; https://doi.org/10.3390/photochem5040038 - 18 Nov 2025
Viewed by 456
Abstract
Long persistent phosphors are widely used in many fields, such as LED, bioimaging, urgent lighting, temperature sensors, etc. Although green and blue long persistent phosphors are well developed, efficient orange-yellow long persistent phosphors are still relatively rare. In this work, a novel orange-yellow [...] Read more.
Long persistent phosphors are widely used in many fields, such as LED, bioimaging, urgent lighting, temperature sensors, etc. Although green and blue long persistent phosphors are well developed, efficient orange-yellow long persistent phosphors are still relatively rare. In this work, a novel orange-yellow long-persistent phosphors Ca2LuScGa2Ge2O12:xPr3+ (CLSGGO:xPr3+, x = 0.003, 0.005, 0.01, 0.02, 0.03, 0.04, 0.05) are prepared and systematically investigated through its crystal structural information, photoluminescence, and persistent luminescence properties. Under ultraviolet light excitation, these phosphors exhibit orange-yellow emission stemming from the 3P0 and 1D2 multiple electron transitions in the 4f level of Pr3+ ion. In addition, the material exhibits bright persistent luminescence. The complex garnet matrix structure of Ca2LuScGa2Ge2O12 provides excellent conditions for the formation of traps. Through the testing of thermoluminescence curve and function fitting, the density and depth of traps are studied; also, the storage and release process of carriers in the material are calculated in detail. A reasonable persistent luminescence mechanism is proposed for CLSGGO:0.01Pr3+. This work enriches the research content of photoluminescence and long persistent luminescence of Pr3+-doped garnet-based phosphors and paves the way for the future research of long persistent luminescent materials doped with rare earth ions. Full article
Show Figures

Figure 1

14 pages, 3122 KB  
Article
Environmentally Friendly Silk Fibroin/Polyethyleneimine High-Performance Triboelectric Nanogenerator for Energy Harvesting and Self-Powered Sensing
by Ziyi Guo, Xinrong Xu, Yue Shen, Menglong Wang, Youzhuo Zhai, Haiyan Zheng and Jiqiang Cao
Coatings 2025, 15(11), 1323; https://doi.org/10.3390/coatings15111323 - 12 Nov 2025
Viewed by 630
Abstract
Due to the large emissions of greenhouse gases from the burning of fossil fuels and people’s demand for green materials and energy, the development of environmentally friendly triboelectric nanogenerators (TENGs) is becoming increasingly significant. Silk fibroin (SF) is considered an ideal biopolymer candidate [...] Read more.
Due to the large emissions of greenhouse gases from the burning of fossil fuels and people’s demand for green materials and energy, the development of environmentally friendly triboelectric nanogenerators (TENGs) is becoming increasingly significant. Silk fibroin (SF) is considered an ideal biopolymer candidate for fabricating green TENGs due to its biodegradability and renewability. However, its intrinsic brittleness and relatively weak triboelectric performance severely limit its practical applications. In this study, SF was physically blended with poly(ethylenimine) (PEI), a polymer rich in amino groups, to fabricate SF/PEI composite films. The resulting films were employed as tribopositive layers and paired with a poly(tetrafluoroethylene) (PTFE) tribonegative layer to assemble high-performance TENGs. Experimental results revealed that the incorporation of PEI markedly enhanced the flexibility and electron-donating capability of composite films. By optimizing the material composition, the SF/PEI-based TENG achieved an open-circuit voltage as high as 275 V and a short-circuit current of 850 nA, with a maximum output power density of 13.68 μW/cm2. Application tests demonstrated that the device could serve as an efficient self-powered energy source, capable of lighting up 66 LEDs effortlessly through simple hand tapping and driving small electronic components such as timers. In addition, the device can function as a highly sensitive self-powered sensor, capable of generating rapid and distinguishable electrical responses to various human motions. This work not only provides an effective strategy to overcome the intrinsic limitations of SF-based materials but also opens up new avenues for the development of high-performance and environmentally friendly technologies for energy harvesting and sensing. Full article
Show Figures

Figure 1

19 pages, 1058 KB  
Review
Effects of Light on Adventitious Rooting In Vitro
by Rosario Muleo, Mohamed I. Hassan, Alessandra Pellegrino and Valeria Cavallaro
Agronomy 2025, 15(11), 2597; https://doi.org/10.3390/agronomy15112597 - 11 Nov 2025
Viewed by 1031
Abstract
Vegetative propagation through stem cuttings and in vitro microcuttings enables large-scale multiplication of superior genotypes in various crop species. This approach is widely used both to propagate and select trees with desirable genetic traits as well as to preserve a significant proportion of [...] Read more.
Vegetative propagation through stem cuttings and in vitro microcuttings enables large-scale multiplication of superior genotypes in various crop species. This approach is widely used both to propagate and select trees with desirable genetic traits as well as to preserve a significant proportion of genetic diversity. However, successful plant regeneration using this technique requires the development of an adventitious root (AR) system at the base of cuttings or microcuttings. Reduced root formation and functionality strongly limit the application of vegetative propagation, both in vivo and in vitro. The complex process of AR development is greatly influenced by the physiological state of the donor plant, as well as by genetic and environmental factors. Among the environmental factors involved, light quality and intensity have been mainly studied empirically. This review summarizes advances in understanding how light quantity and quality influence in vitro rooting of micropropagated plants, emphasizing species-specific responses. Furthermore, medium components such as sugars and growth regulators, which interact significantly with light, are also considered. Based on existing studies across different plant species, particularly in the absence of growth regulators, the most effective spectrum for root induction is a temporary enrichment of red light, either alone or combined with small amounts of blue or green light. An efficient root growth occurs when the explants are re-exposed to white light, typically at intensities of 40–50 μmol m−2 s−1. After root development, exposing the microcuttings to higher intensities could help acclimatization. Finally, considering its capacity to precisely regulate light quality and intensity, LED technology offers a valuable tool for optimizing the rooting process and reducing production costs. Full article
Show Figures

Figure 1

47 pages, 1674 KB  
Review
The Influence of Different Light Spectra on Broiler Chicken Endocrine Systems and Productivity
by Lenuța Galan, Gheorghe Solcan and Carmen Solcan
Animals 2025, 15(21), 3209; https://doi.org/10.3390/ani15213209 - 4 Nov 2025
Viewed by 1678
Abstract
In birds, light can penetrate the cranial bones and reach deep brain regions, where non-visual photoreceptors, especially in the hypothalamus, detect spectral and photoperiodic cues. Alongside retinal photoreception, deep-brain light sensing contributes to circadian entrainment and regulates melatonin secretion by the pineal gland. [...] Read more.
In birds, light can penetrate the cranial bones and reach deep brain regions, where non-visual photoreceptors, especially in the hypothalamus, detect spectral and photoperiodic cues. Alongside retinal photoreception, deep-brain light sensing contributes to circadian entrainment and regulates melatonin secretion by the pineal gland. These light-driven pathways modulate endocrine activity, playing a key role in muscle development. This review explores how monochromatic light-emitting diode (LED) illumination, particularly green and blue wavelengths, affects the somatotropic axis (growth hormone-releasing hormone [GHRH]-growth hormone [GH]-insulin-like growth factor 1 [IGF-1]), the gonadal axis (gonadotropin-releasing hormone [GnRH]-luteinizing hormone [LH]/follicle-stimulating hormone [FSH]-sex steroids [testosterone, estrogen, progesterone]), the thyroid axis (thyrotropin-releasing hormone [TRH]-thyroid-stimulating hormone [TSH]-thyroxine [T4]/triiodothyronine [T3]), and the hypothalamic-pituitary-adrenal (HPA) axis (corticotropin-releasing hormone [CRH]-adrenocorticotropic hormone [ACTH]-corticosterone). Green light enhances early-stage muscle growth via GHRH and IGF-1 upregulation, while blue light supports later myogenic activity and oxidative balance. Light schedules also influence melatonin dynamics, which in turn modulate endocrine axis responsiveness to photic cues. Furthermore, variations in photoperiod and exposure to artificial lights at night (ALAN) affect thyroid activity and HPA axis reactivity, influencing metabolism, thermoregulation, and stress resilience. Together, ocular and intracranial photoreception form a complex network that links environmental light to hormonal regulation and muscle growth. These insights support the strategic use of LED lighting to optimize broiler performance and welfare. Full article
Show Figures

Figure 1

17 pages, 4433 KB  
Article
Rational Design of Amino Acid-Modified Halide Perovskites for Highly Efficient and Cost-Effective Light-Emitting Diodes
by Hongyu Chen and Mingxia Qiu
Materials 2025, 18(21), 4982; https://doi.org/10.3390/ma18214982 - 31 Oct 2025
Viewed by 576
Abstract
Formamidinium lead bromide (FAPbBr3) quantum dots (QDs) have shown potential in light-emitting diodes (LEDs). However, their performance is constrained by surface defects and the limitations of charge transport. Zwitterionic ligands, owing to their twin functions of Lewis base coordination and electrostatic [...] Read more.
Formamidinium lead bromide (FAPbBr3) quantum dots (QDs) have shown potential in light-emitting diodes (LEDs). However, their performance is constrained by surface defects and the limitations of charge transport. Zwitterionic ligands, owing to their twin functions of Lewis base coordination and electrostatic compensation, passivate surface defects of perovskite QDs. Some other zwitterionic ligands are high-cost, while amino acids, as zwitterionic ligands, are inexpensive, readily available, and have efficient passivation capabilities. Their short main chain and programmable side chain can control the volume and dipole at Å-scale range through functional group selection and feed ratio regulation, achieving interface energy level engineering. This work adopts green-emitting FAPbBr3 QDs as the model, tuning ligand properties by modifying side-chain functional groups, thereby achieving PLQY of 87.2%. Experimental results and DFT reveal that amino acids preferentially undergo coordination and can be further fine-tuned through conjugated contacts. Without severe site competition and without affecting coordination occupation and ligand uniformity, the EQE reaches 5.6% and the luminance exceeds 9000 cd/m2. This low-cost technology is easily scalable and broadly manufacturable, providing a replicable material and interface design route for green zone perovskite LEDs. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

Back to TopTop