Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (577)

Search Parameters:
Keywords = green LED light

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2171 KiB  
Review
Polystyrene Upcycling via Photocatalytic and Non-Photocatalytic Degradation
by Terry Yang and Yalan Xing
Molecules 2025, 30(15), 3165; https://doi.org/10.3390/molecules30153165 - 29 Jul 2025
Viewed by 144
Abstract
The rapid increase in polystyrene (PS) production has led to substantial growth in plastic waste, posing serious environmental and waste management challenges. Current disposal techniques are unsustainable, relying heavily on harsh conditions, high energy input, and generating environmentally harmful byproducts. This review critically [...] Read more.
The rapid increase in polystyrene (PS) production has led to substantial growth in plastic waste, posing serious environmental and waste management challenges. Current disposal techniques are unsustainable, relying heavily on harsh conditions, high energy input, and generating environmentally harmful byproducts. This review critically discusses alternative green approaches for PS treatment through photocatalytic and non-photocatalytic upcycling methods. Photocatalytic methods utilize light energy (UV, visible, or broad-spectrum irradiation) to initiate radical reactions that cleave the inert carbon backbone of PS. In contrast, non-photocatalytic strategies achieve backbone degradation without direct light activation, often employing catalysts and thermal energy. Both approaches effectively transform PS waste into higher-value compounds, such as benzoic acid and acetophenone, though yields remain moderate for most reported methods. Current limitations, including catalyst performance, low yields, and impurities in real-world PS waste, are highlighted. Future directions toward enhancing the efficiency, selectivity, and scalability of PS upcycling processes are proposed to address the growing plastic waste crisis sustainably. Full article
(This article belongs to the Special Issue Green Catalysis Technology for Sustainable Energy Conversion)
Show Figures

Graphical abstract

18 pages, 4008 KiB  
Article
Carboxymethyl Chitosan Cinnamaldehyde Coated SilverNanocomposites for Antifungal Seed Priming in Wheat: A Dual-Action Approach Toward Sustainable Crop Protection
by María Mondéjar-López, María Paz García-Simarro, Lourdes Gómez-Gómez, Oussama Ahrazem and Enrique Niza
Polymers 2025, 17(15), 2031; https://doi.org/10.3390/polym17152031 - 25 Jul 2025
Viewed by 201
Abstract
Biogenic silver nanoparticles (AgNPs) were synthesized via a green chemistry strategy using wheat extract and subsequently functionalized with a carboxymethyl chitosan–cinnamaldehyde (CMC=CIN) conjugate through covalent imine bonding. The resulting nanohybrid (AgNP–CMC=CIN) was extensively characterized to confirm successful biofunctionalization: UV–Vis spectroscopy revealed characteristic cinnamaldehyde [...] Read more.
Biogenic silver nanoparticles (AgNPs) were synthesized via a green chemistry strategy using wheat extract and subsequently functionalized with a carboxymethyl chitosan–cinnamaldehyde (CMC=CIN) conjugate through covalent imine bonding. The resulting nanohybrid (AgNP–CMC=CIN) was extensively characterized to confirm successful biofunctionalization: UV–Vis spectroscopy revealed characteristic cinnamaldehyde absorption peaks; ATR-FTIR spectra confirmed polymer–terpene bonding; and TEM analysis evidenced uniform nanoparticle morphology. Dynamic light scattering (DLS) measurements indicated an increase in hydrodynamic size upon coating (from 59.46 ± 12.63 nm to 110.17 ± 4.74 nm), while maintaining low polydispersity (PDI: 0.29 to 0.27) and stable surface charge (zeta potential ~ −30 mV), suggesting colloidal stability and homogeneous polymer encapsulation. Antifungal activity was evaluated against Fusarium oxysporum, Penicillium citrinum, Aspergillus niger, and Aspergillus brasiliensis. The minimum inhibitory concentration (MIC) against F. oxysporum was significantly reduced to 83 μg/mL with AgNP–CMC=CIN, compared to 708 μg/mL for uncoated AgNPs, and was comparable to the reference fungicide tebuconazole (52 μg/mL). Seed priming with AgNP–CMC=CIN led to improved germination (85%) and markedly reduced fungal colonization, while maintaining a favorable phytotoxicity profile. These findings highlight the potential of polysaccharide-terpene-functionalized biogenic AgNPs as a sustainable alternative to conventional fungicides, supporting their application in precision agriculture and integrated crop protection strategies. Full article
(This article belongs to the Special Issue Polymer Materials for Environmental Applications)
Show Figures

Figure 1

24 pages, 73556 KiB  
Article
Neural Network-Guided Smart Trap for Selective Monitoring of Nocturnal Pest Insects in Agriculture
by Joel Hinojosa-Dávalos, Miguel Ángel Robles-García, Melesio Gutiérrez-Lomelí, Ariadna Berenice Flores Jiménez and Cuauhtémoc Acosta Lúa
Agriculture 2025, 15(14), 1562; https://doi.org/10.3390/agriculture15141562 - 21 Jul 2025
Viewed by 270
Abstract
Insect pests remain a major threat to agricultural productivity, particularly in open-field cropping systems where conventional monitoring methods are labor-intensive and lack scalability. This study presents the design, implementation, and field evaluation of a neural network-guided smart trap specifically developed to monitor and [...] Read more.
Insect pests remain a major threat to agricultural productivity, particularly in open-field cropping systems where conventional monitoring methods are labor-intensive and lack scalability. This study presents the design, implementation, and field evaluation of a neural network-guided smart trap specifically developed to monitor and selectively capture nocturnal insect pests under real agricultural conditions. The proposed trap integrates light and rain sensors, servo-controlled mechanical gates, and a single-layer perceptron neural network deployed on an ATmega-2560 microcontroller by Microchip Technology Inc. (Chandler, AZ, USA). The perceptron processes normalized sensor inputs to autonomously decide, in real time, whether to open or close the gate, thereby enhancing the selectivity of insect capture. The system features a removable tray containing a food-based attractant and yellow and green LEDs designed to lure target species such as moths and flies from the orders Lepidoptera and Diptera. Field trials were conducted between June and August 2023 in La Barca, Jalisco, Mexico, under diverse environmental conditions. Captured insects were analyzed and classified using the iNaturalist platform, with the successful identification of key pest species including Tetanolita floridiana, Synchlora spp., Estigmene acrea, Sphingomorpha chlorea, Gymnoscelis rufifasciata, and Musca domestica, while minimizing the capture of non-target organisms such as Carpophilus spp., Hexagenia limbata, and Chrysoperla spp. Statistical analysis using the Kruskal–Wallis test confirmed significant differences in capture rates across environmental conditions. The results highlight the potential of this low-cost device to improve pest monitoring accuracy, and lay the groundwork for the future integration of more advanced AI-based classification and species recognition systems targeting nocturnal Lepidoptera and other pest insects. Full article
(This article belongs to the Special Issue Design and Development of Smart Crop Protection Equipment)
Show Figures

Figure 1

18 pages, 5293 KiB  
Article
Fluorescent Moieties Through Alkaline Treatment of Graphene Oxide: A Potential Substitute to Replace CRM in wLEDS
by Maria Lucia Protopapa, Emiliano Burresi, Martino Palmisano and Emanuela Pesce
ChemEngineering 2025, 9(4), 73; https://doi.org/10.3390/chemengineering9040073 - 18 Jul 2025
Viewed by 181
Abstract
White-light-emitting diodes (wLEDs) are central to next-generation lighting technologies, yet their reliance on critical raw materials (CRMs), such as rare-earth elements, raises concerns regarding sustainability and supply security. In this work, we present a simple, low-cost method to produce photoluminescent carbon-based nanostructures—known as [...] Read more.
White-light-emitting diodes (wLEDs) are central to next-generation lighting technologies, yet their reliance on critical raw materials (CRMs), such as rare-earth elements, raises concerns regarding sustainability and supply security. In this work, we present a simple, low-cost method to produce photoluminescent carbon-based nanostructures—known as oxidative debris (OD)—via alkaline treatment of graphene oxide (GO) using KOH solutions ranging from 0.04 M to 1.78 M. The resulting OD, isolated from the supernatant after acid precipitation, exhibits strong and tunable photoluminescence (PL) across the visible spectrum. Emission peaks shift from blue (~440 nm) to green (~500 nm) and yellow (~565 nm) as a function of treatment conditions, with excitation wavelengths between 300 and 390 nm. Optical, morphological. and compositional analyses were performed using UV-Vis, AFM, FTIR, and Raman spectroscopy, confirming the presence of highly oxidized aromatic domains. The blue-emitting (S2) and green/yellow-emitting (R2) fractions were successfully separated and characterized, demonstrating potential color tuning by adjusting KOH concentration and treatment time. This study highlights the feasibility of reusing GO-derived byproducts as sustainable phosphor alternatives in wLEDs, reducing reliance on CRMs and aligning with green chemistry principles. Full article
Show Figures

Graphical abstract

25 pages, 1781 KiB  
Article
Light Down-Conversion Technology Improves Vegetative Growth, Berry Production, and Postharvest Quality in Tunnel-Cultivated Blueberry
by Hafsa El Horri, Susanna Bartolini, Damiano Remorini, Costanza Ceccanti, Marta Florio, Lorenzo D’Asaro, Gagandeep Jain, Rossano Massai, Marco Landi and Lucia Guidi
Agronomy 2025, 15(7), 1708; https://doi.org/10.3390/agronomy15071708 - 16 Jul 2025
Viewed by 358
Abstract
This study examined three innovative ‘light-converting films’ that convert green light (−23%) into red light (+8%; Red film), ultraviolet light (−80%) into blue light (+9%; Blue film), and green light (−5.7%) into red light (+4%; Pink film) but also ultraviolet light (−76%) into [...] Read more.
This study examined three innovative ‘light-converting films’ that convert green light (−23%) into red light (+8%; Red film), ultraviolet light (−80%) into blue light (+9%; Blue film), and green light (−5.7%) into red light (+4%; Pink film) but also ultraviolet light (−76%) into blue light (+5.6%; Pink film). These films were used for growing blueberry plants under cover under controlled tunnel conditions (27.3 ± 11.7 °C, 51.9 ± 21.6% RH). The use of Red film led to increases in the total plant biomass (+54.2%), and Red and Pink films enhanced the leaf thickness (+17.1% and +14.4%, respectively) as compared to the control (a transparent polyethylene film). No differences in the photosynthetic rate (Pn) were observed at the flowering stage, but a decrease (−25.9%) was observed in plants grown under the Pink film during the green fruit stage. The plants grown under Blue film boosted flower production, leading to +86.8% increase in the total yield. The Blue film improved the total phenolic content (+15.2%) in the fruit, and a +25.3% greater total antioxidant capacity was observed in fruit grown under Pink film. Freshly harvested blueberries were subjected to postharvest experiments (4 °C; in dark conditions; 90–95% RH). The results suggest the importance of Red film in enhancing plant biomass and Red and Blue films in improving fruit yield and maintaining nutraceutical postharvest quality in blueberry fruit. Full article
Show Figures

Figure 1

15 pages, 2045 KiB  
Article
Monochromatic Photophase Light Alters Diurnal Profiles of Melatonin Pathway Indoles in the Rat Pineal Gland
by Bogdan Lewczuk, Kamila Martyniuk, Natalia Szyryńska, Magdalena Prusik and Natalia Ziółkowska
Int. J. Mol. Sci. 2025, 26(13), 6515; https://doi.org/10.3390/ijms26136515 - 6 Jul 2025
Viewed by 382
Abstract
Light is a major environmental factor that regulates circadian rhythms and pineal melatonin synthesis. While the influence of nighttime light exposure on melatonin suppression has been extensively investigated, much less is known about the impact of photophase light wavelength on pineal function. The [...] Read more.
Light is a major environmental factor that regulates circadian rhythms and pineal melatonin synthesis. While the influence of nighttime light exposure on melatonin suppression has been extensively investigated, much less is known about the impact of photophase light wavelength on pineal function. The aim of the study was to determine the influence of monochromatic light during the photophase on diurnal changes in melatonin-related indoles in the rat pineal gland. Wistar rats were exposed for 7 days to 150 lx of monochromatic blue (463 ± 10 nm), green (523 ± 10 nm), or red (623 ± 10 nm) LED light, or to white fluorescent light (control), under a 12:12 light–dark cycle. Pineal glands were collected every 3 h over 24 h, and the indole content was analyzed by high-performance liquid chromatography. The results demonstrated that both the timing and course of N-acetylserotonin (NAS) and melatonin (MLT) rhythms were significantly affected by light wavelength. Blue light most effectively preserved the normal rhythmicity observed under full-spectrum white light, whereas green—and particularly red light—delayed nocturnal NAS and MLT synthesis. These changes were accompanied by concurrent alternations in rhythms of serotonin, its precursors, and metabolites. The data strongly suggest that spectral light composition during the photophase influences pineal indole metabolism via melanopsin-mediated phototransduction and possibly other retinal mechanisms. These findings may have implications for the design of artificial lighting environments in human life and animal housing. Full article
(This article belongs to the Special Issue Focus on the Tryptophan Pathway)
Show Figures

Figure 1

9 pages, 1221 KiB  
Article
High-Performance GaN-Based Green Flip-Chip Mini-LED with Lattice-Compatible AlN Passivation Layer
by Jiahao Song, Lang Shi, Siyuan Cui, Lingyue Meng, Qianxi Zhou, Jingjing Jiang, Conglong Jin, Jiahui Hu, Kuosheng Wen and Shengjun Zhou
Nanomaterials 2025, 15(13), 1048; https://doi.org/10.3390/nano15131048 - 5 Jul 2025
Viewed by 399
Abstract
The GaN-based green miniaturized light-emitting diode (mini-LED) is a key component for the realization of full-color display. Optimized passivation layers can alleviate the trapping of carriers by sidewall defects and are regarded as an effective way to improve the external quantum efficiency (EQE) [...] Read more.
The GaN-based green miniaturized light-emitting diode (mini-LED) is a key component for the realization of full-color display. Optimized passivation layers can alleviate the trapping of carriers by sidewall defects and are regarded as an effective way to improve the external quantum efficiency (EQE) efficiency of mini-LEDs. Since AlN has a closer lattice match to GaN compared to other heterogeneous passivation materials, we boosted the EQE of GaN-based green flip-chip mini-LEDs through the deposition of a lattice-compatible AlN passivation layer through atomic layer deposition (ALD) and a SiO2 passivation layer through plasma-enhanced chemical vapor deposition (PECVD). Benefiting from reduced sidewall nonradiative recombination, the EQE of the green flip-chip mini-LED with a composite ALD-AlN/PECVD-SiO2 passivation layer reached 34.14% at 5 mA, which is 34.6% higher than that of the green flip-chip mini-LED with a single PECVD-SiO2 passivation layer. The results provide guidance for the realization of high-performance mini-LEDs by selecting lattice-compatible passivation layers. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Graphical abstract

16 pages, 2423 KiB  
Article
Green Light Enhances the Postharvest Quality of Lettuce During Cold Storage
by Shafieh Salehinia, Fardad Didaran, Yvan Gariepy, Sasan Aliniaeifard, Sarah MacPherson and Mark Lefsrud
Horticulturae 2025, 11(7), 792; https://doi.org/10.3390/horticulturae11070792 - 4 Jul 2025
Cited by 1 | Viewed by 384
Abstract
The postharvest quality of lettuce (Lactuca sativa) is significantly influenced by the lighting environment during storage. This study evaluated the effects of green LEDs at 500 nm and 530 nm, white LEDs (400–700 nm), and dark storage on lettuce quality over [...] Read more.
The postharvest quality of lettuce (Lactuca sativa) is significantly influenced by the lighting environment during storage. This study evaluated the effects of green LEDs at 500 nm and 530 nm, white LEDs (400–700 nm), and dark storage on lettuce quality over 14 days at 5 °C. All treatments were applied at 10 µmol m−2 s−1 under a 12 h photoperiod. Quality parameters measured included moisture loss, relative water content (RWC), photosynthetic rate, chlorophyll content (SPAD), total soluble solids (TSSs), electrolyte leakage (EL), color change (∆E), texture (crispness), and overall visual quality (OVQ). Lettuce stored under green LEDs, particularly 530 nm, exhibited superior postharvest quality. Compared to dark storage, 530 nm reduced moisture loss by 7.1%, increased RWC by 9.2%, and reduced transpiration rate. The green light preserved photosynthetic activity (43% decline vs. 77% in the dark), increased TSS, reduced color change by 42%, improved crispness by 46.1%, and limited EL to 54.5%. Shelf life was extended by approximately four days. The 500 nm treatment showed notable improvements, including an 8.4% reduction in moisture loss, 8.2% higher RWC, a smaller photosynthesis decline (25%), and the lowest EL (53.1%). It improved color retention (∆E reduced by 45.3%) and crispness (46.8%). Both green wavelengths effectively maintained lettuce quality during cold storage, with 530 nm being the most effective overall. These results suggest that targeted green LED lighting is a promising, energy-efficient strategy to preserve postharvest quality and extend shelf life in leafy greens. Full article
Show Figures

Graphical abstract

25 pages, 5128 KiB  
Article
The Effect of Additional Night and Pre-Harvest Blue and Red LEDs and White Lighting During the Day on the Morphophysiological and Biochemical Traits of Basil Varieties (Ocimum basilicum L.) Under Hydroponic Conditions
by Inna V. Knyazeva, Olga Panfilova, Oksana Vershinina, Ibrahim Kahramanoğlu, Alexander A. Smirnov and Andrey Titenkov
Horticulturae 2025, 11(7), 784; https://doi.org/10.3390/horticulturae11070784 - 3 Jul 2025
Viewed by 370
Abstract
The effect of white and additional red and blue LED lighting at night (Blue-NLL, Red-NLL) and during the pre-harvest period (Blue-P-hLL, Red-P-hLL) on morphological and physiological parameters, elemental composition, content of polyphenols, and essential oils of purple basil cultivars ‘Ararat’ and green basil [...] Read more.
The effect of white and additional red and blue LED lighting at night (Blue-NLL, Red-NLL) and during the pre-harvest period (Blue-P-hLL, Red-P-hLL) on morphological and physiological parameters, elemental composition, content of polyphenols, and essential oils of purple basil cultivars ‘Ararat’ and green basil ‘Tonus’ grown in the hydroponic conditions of the climatic chamber was studied. The height of the plants was determined by the variety and the LED irradiation period. The highest purple basil plants were obtained in the variant with Blue-NLL illumination; the highest green basil plants were obtained under Blue-P-hLL and Red-P-hLL. The red spectrum, regardless of the lighting period and variety, increased the area and number of leaves, biomass, and vegetative productivity. Significant changes in the elemental composition of the vegetative mass of basil varieties were determined by the period of exposure to the red spectrum. Red-P-hLL stimulated the absorption and accumulation of Mg, Ca, S, and P from the nutrient solution, and Red-P-hLL reduced the nitrate content by more than 30.00%. Blue-NLL lighting increased the content of quercetin, rosmarinic acid, and essential oil and reduced the nitrate content in the vegetative mass by more than 40.00%. The effectiveness of the white LED was observed in increasing the vegetative mass of ‘Tonus’. The results of this study will be in demand in the real sector of the economy when improving resource-saving technologies for growing environmentally friendly leafy vegetable crops with improved chemical composition and high vegetative productivity. Full article
Show Figures

Figure 1

16 pages, 1343 KiB  
Article
The Effect of Light on the Germination of Raphanus sativus Seeds and the Use of Sprout Extracts in the Development of a Dermatocosmetic Gel
by Mihaela Carmen Eremia, Ramona Daniela Pavaloiu, Oana Livadariu, Anca Daniela Raiciu, Fawzia Sha’at, Corina Bubueanu and Dana Maria Miu
Gels 2025, 11(7), 515; https://doi.org/10.3390/gels11070515 - 2 Jul 2025
Viewed by 247
Abstract
This study investigates the influence of different light sources (sunlight, green, red, and white LED) on the germination of Raphanus sativus L. sprouts and the potential use of their sprout extracts in the development of natural dermatocosmetic gels. The bioactive fractions were extracted [...] Read more.
This study investigates the influence of different light sources (sunlight, green, red, and white LED) on the germination of Raphanus sativus L. sprouts and the potential use of their sprout extracts in the development of natural dermatocosmetic gels. The bioactive fractions were extracted using simple methods and analyzed for total polyphenol content and antioxidant activity. Statistical analysis of weight, total phenolic content, and antioxidant activity of Raphanus sativus L. sprouts was performed using ANOVA. Sprouts exposed to green LED light showed the highest biomass (16.13 ± 0.38 g), while red LED light resulted in the highest total polyphenol content (3.28 ± 0.03 mg GAE/g fresh weight). The highest antioxidant activity (6.60 ± 0.08 mM Trolox/g fresh weight) was obtained under white LED. Although variations were observed, ANOVA analysis revealed that only sprout weight differed significantly among treatments (p < 0.001), while differences in polyphenol content and antioxidant activity were not statistically significant (p > 0.05). The extract with the highest antioxidant activity was incorporated as an active ingredient into Carbopol-based hydrogel formulations containing natural gelling agents and gentle preservatives. The resulting gels demonstrated favorable pH (4.85–5.05), texture, and stability. The results indicate that the light spectrum influences the germination process and the initial development of seedlings. Moreover, radish sprout extracts, rich in bioactive compounds, show promise for dermatocosmetic applications due to their antioxidant, soothing, and antimicrobial properties. This study supports the use of natural resources in the development of care products, in line with current trends in green cosmetics. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Figure 1

26 pages, 3149 KiB  
Review
Research Progress and Future Perspectives on Photonic and Optoelectronic Devices Based on p-Type Boron-Doped Diamond/n-Type Titanium Dioxide Heterojunctions: A Mini Review
by Shunhao Ge, Dandan Sang, Changxing Li, Yarong Shi, Qinglin Wang and Dao Xiao
Nanomaterials 2025, 15(13), 1003; https://doi.org/10.3390/nano15131003 - 29 Jun 2025
Cited by 1 | Viewed by 494
Abstract
Titanium dioxide (TiO2) is a wide-bandgap semiconductor material with broad application potential, known for its excellent photocatalytic performance, high chemical stability, low cost, and non-toxicity. These properties make it highly attractive for applications in photovoltaic energy, environmental remediation, and optoelectronic devices. [...] Read more.
Titanium dioxide (TiO2) is a wide-bandgap semiconductor material with broad application potential, known for its excellent photocatalytic performance, high chemical stability, low cost, and non-toxicity. These properties make it highly attractive for applications in photovoltaic energy, environmental remediation, and optoelectronic devices. For instance, TiO2 is widely used as a photocatalyst for hydrogen production via water splitting and for degrading organic pollutants, thanks to its efficient photo-generated electron–hole separation. Additionally, TiO2 exhibits remarkable performance in dye-sensitized solar cells and photodetectors, providing critical support for advancements in green energy and photoelectric conversion technologies. Boron-doped diamond (BDD) is renowned for its exceptional electrical conductivity, high hardness, wide electrochemical window, and outstanding chemical inertness. These unique characteristics enable its extensive use in fields such as electrochemical analysis, electrocatalysis, sensors, and biomedicine. For example, BDD electrodes exhibit high sensitivity and stability in detecting trace chemicals and pollutants, while also demonstrating excellent performance in electrocatalytic water splitting and industrial wastewater treatment. Its chemical stability and biocompatibility make it an ideal material for biosensors and implantable devices. Research indicates that the combination of TiO2 nanostructures and BDD into heterostructures can exhibit unexpected optical and electrical performance and transport behavior, opening up new possibilities for photoluminescence and rectifier diode devices. However, applications based on this heterostructure still face challenges, particularly in terms of photodetector, photoelectric emitter, optical modulator, and optical fiber devices under high-temperature conditions. This article explores the potential and prospects of their combined heterostructures in the field of optoelectronic devices such as photodetector, light emitting diode (LED), memory, field effect transistor (FET) and sensing. TiO2/BDD heterojunction can enhance photoresponsivity and extend the spectral detection range which enables stability in high-temperature and harsh environments due to BDD’s thermal conductivity. This article proposes future research directions and prospects to facilitate the development of TiO2 nanostructured materials and BDD-based heterostructures, providing a foundation for enhancing photoresponsivity and extending the spectral detection range enables stability in high-temperature and high-frequency optoelectronic devices field. Further research and exploration of optoelectronic devices based on TiO2-BDD heterostructures hold significant importance, offering new breakthroughs and innovations for the future development of optoelectronic technology. Full article
(This article belongs to the Special Issue Nanoscale Photonics and Optoelectronics)
Show Figures

Graphical abstract

14 pages, 3551 KiB  
Article
Integration of Green and Far-Red Light with Red-Blue Light Enhances Shoot Multiplication in Micropropagated Strawberry
by Yali Li, Ping Huang, Xia Qiu, Feiyu Zhu, Hongwen Chen, Si Wang, Jiaxian He, Yadan Pang, Hui Ma and Fang Wang
Horticulturae 2025, 11(6), 701; https://doi.org/10.3390/horticulturae11060701 - 17 Jun 2025
Cited by 1 | Viewed by 342
Abstract
Light spectral composition critically regulates plant morphogenesis and molecular adaptation in controlled environments. This study investigated the synergistic effects of three light spectra, red-blue (RB, 7:3), red-blue-green (RGB, 7:3:1), and red-blue-far-red (RBFR, 7:3:1), on multiplication, morphogenesis, physiological traits, and transcriptomic dynamics in tissue-cultured [...] Read more.
Light spectral composition critically regulates plant morphogenesis and molecular adaptation in controlled environments. This study investigated the synergistic effects of three light spectra, red-blue (RB, 7:3), red-blue-green (RGB, 7:3:1), and red-blue-far-red (RBFR, 7:3:1), on multiplication, morphogenesis, physiological traits, and transcriptomic dynamics in tissue-cultured strawberry (Fragaria × ananassa cv. ‘Benihoppe’). After 28 days of cultivation under controlled conditions (25 °C/22 °C day/night, 50 μmol·m−2·s−1 PPFD), RBFR and RGB treatments significantly enhanced shoot multiplication (38.8% and 24.2%, respectively), plant height, and callus biomass compared to RB light. RGB elevated chlorophyll a and b by 1.8- and 1.6-fold, respectively, while RBFR increased soluble protein content by 16%. Transcriptome analysis identified 144 and 376 differentially expressed genes (DEGs) under RGB and RBFR, respectively, enriched in pathways linked to circadian rhythm, auxin transport, and photosynthesis. Far-red light upregulated light signaling and photomorphogenesis genes, whereas green light enhanced chlorophyll biosynthesis while suppressing stress-responsive genes. These findings elucidate the spectral-specific regulatory mechanisms underlying strawberry micropropagation and provide a framework for optimizing multispectral LED systems in controlled-environment horticulture. Full article
(This article belongs to the Section Propagation and Seeds)
Show Figures

Figure 1

20 pages, 3795 KiB  
Article
Calcium Determination by Complexometric Titration with Calcein Indicator Using Webcam for Endpoint Detection
by Alexander Shyichuk, Dorota Ziółkowska, Jan Lamkiewicz and Maria Kowalska
Water 2025, 17(12), 1757; https://doi.org/10.3390/w17121757 - 11 Jun 2025
Viewed by 1144
Abstract
Precise and convenient analytical methods are needed for the quantitative determination of calcium in water and food. Complexometric titration remains a reliable technique to determine calcium in milligram amounts. The titrations have been performed automatically by detecting color transitions with a webcam. Classical [...] Read more.
Precise and convenient analytical methods are needed for the quantitative determination of calcium in water and food. Complexometric titration remains a reliable technique to determine calcium in milligram amounts. The titrations have been performed automatically by detecting color transitions with a webcam. Classical complexometric indicator calcein provided a sharp color transition. In diffuse reflection mode, the color appearance parameter (Hue) provides better precision and is more resistant to ambient light fluctuations compared to RGB primaries. In fluorescence mode with LED illumination, the fluorescence brightness of calcein is independent of ambient light, and the primary green color provides the sharpest endpoints. The color change during titration is better in the upper part of the acquired images due to the internal filter effect in calcein solutions. The automatic titration with a digital burette provides a standard deviation as low as 0.1 μmol. An example of its application is in the determination of calcium in commercial mineral waters. Based on the AGREE and ComplexMoGAPI rating scales, the semi-automatic titration showed better environmental assessment compared to the standard ASA method. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

18 pages, 4823 KiB  
Article
A New Approach to Expanding Interior Green Areas in Urban Buildings
by Chyi-Gang Kuo, Chien-Wei Chiu and Pei-Shan Chung
Buildings 2025, 15(12), 1965; https://doi.org/10.3390/buildings15121965 - 6 Jun 2025
Viewed by 481
Abstract
Countries worldwide have implemented regulations on the green coverage ratio of new buildings to address the urban heat island effect. For example, Taipei City mandates that the green coverage rate of new buildings must be between 40% and 70%, while Singapore requires a [...] Read more.
Countries worldwide have implemented regulations on the green coverage ratio of new buildings to address the urban heat island effect. For example, Taipei City mandates that the green coverage rate of new buildings must be between 40% and 70%, while Singapore requires a green coverage rate of 100% or higher. Consequently, building greening is now a regulatory requirement rather than a preference. This study focuses on developing an indoor light-emitting-diode (LED) hydroponic inverted planting system to utilize ceiling space for expanding green areas in buildings. The light source of this system is suitable for both plant growth and daily lighting, thereby reducing electricity costs. The watertight planting unit does not require replenishment of the nutrient solution during a planting cycle for small plants, which can reduce water consumption and prevent indoor humidity. The modular structure allows various combinations, enabling interior designers to create interior ceiling scapes. Additionally, it is possible to grow aromatic plants and edible vegetables, facilitating the creation of indoor farms. Consequently, this system is suitable for high-rise residential buildings, office buildings, underground shopping malls, and indoor areas with limited or no natural light. It is also applicable to hospitals, clinics, wards, and care centers, where indoor plants alleviate psychological stress and enhance mental and physical health. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

32 pages, 5088 KiB  
Article
IoT-Based Adaptive Lighting Framework for Optimizing Energy Efficiency and Crop Yield in Indoor Farming
by Nezha Kharraz, András Revoly and István Szabó
J. Sens. Actuator Netw. 2025, 14(3), 59; https://doi.org/10.3390/jsan14030059 - 4 Jun 2025
Viewed by 891
Abstract
Indoor farming presents a sustainable response to urbanization and climate change, yet optimizing light use efficiency (LUE) remains vital for maximizing crop yield and minimizing energy use. This study introduces an IoT-based framework for adaptive light management in controlled environments, using lettuce ( [...] Read more.
Indoor farming presents a sustainable response to urbanization and climate change, yet optimizing light use efficiency (LUE) remains vital for maximizing crop yield and minimizing energy use. This study introduces an IoT-based framework for adaptive light management in controlled environments, using lettuce (Lactuca sativa L.) as a model crop due to its rapid growth and sensitivity to light spectra. The system integrates advanced LED lighting, real-time sensors, and cloud-based analytics to enhance light distribution and automate adjustments based on growth stages. The key findings indicate a 20% increase in energy efficiency and a 15% improvement in lettuce growth compared to traditional static models. Novel metrics—Light Use Efficiency at Growth stage Canopy Level (LUEP) and Lamp Level (LUEL)—were developed to assess system performance comprehensively. Simulations identified optimal growth conditions, including a light intensity of 350–400 µmol/m2/s and photoperiods of 16–17 h/day. Spectral optimization showed that a balanced blue-red light mix benefits vegetative growth, while higher red content supports flowering. The framework’s feedback control ensures rapid (<2 s) and accurate (>97%) adjustments to environmental deviations, maintaining ideal conditions throughout growth stages. Comparative analysis confirms the adaptive system’s superiority over static models in responding to dynamic environmental conditions and improving performance metrics like LUEP and LUEL. Practical recommendations include stage-specific guidelines for light spectrum, intensity, and duration to enhance both energy efficiency and crop productivity. While tailored to lettuce, the modular system design allows for adaptation to a variety of leafy greens and other crops with species-specific calibration. This research demonstrates the potential of IoT-driven adaptive lighting systems to advance precision agriculture in indoor environments, offering scalable, energy-efficient solutions for sustainable food production. Full article
Show Figures

Figure 1

Back to TopTop