Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (237)

Search Parameters:
Keywords = emergent mycotoxins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 3364 KiB  
Review
Principles, Applications, and Future Evolution of Agricultural Nondestructive Testing Based on Microwaves
by Ran Tao, Leijun Xu, Xue Bai and Jianfeng Chen
Sensors 2025, 25(15), 4783; https://doi.org/10.3390/s25154783 - 3 Aug 2025
Viewed by 130
Abstract
Agricultural nondestructive testing technology is pivotal in safeguarding food quality assurance, safety monitoring, and supply chain transparency. While conventional optical methods such as near-infrared spectroscopy and hyperspectral imaging demonstrate proficiency in surface composition analysis, their constrained penetration depth and environmental sensitivity limit effectiveness [...] Read more.
Agricultural nondestructive testing technology is pivotal in safeguarding food quality assurance, safety monitoring, and supply chain transparency. While conventional optical methods such as near-infrared spectroscopy and hyperspectral imaging demonstrate proficiency in surface composition analysis, their constrained penetration depth and environmental sensitivity limit effectiveness in dynamic agricultural inspections. This review highlights the transformative potential of microwave technologies, systematically examining their operational principles, current implementations, and developmental trajectories for agricultural quality control. Microwave technology leverages dielectric response mechanisms to overcome traditional limitations, such as low-frequency penetration for grain silo moisture testing and high-frequency multi-parameter analysis, enabling simultaneous detection of moisture gradients, density variations, and foreign contaminants. Established applications span moisture quantification in cereal grains, oilseed crops, and plant tissues, while emerging implementations address storage condition monitoring, mycotoxin detection, and adulteration screening. The high-frequency branch of the microwave–millimeter wave systems enhances analytical precision through molecular resonance effects and sub-millimeter spatial resolution, achieving trace-level contaminant identification. Current challenges focus on three areas: excessive absorption of low-frequency microwaves by high-moisture agricultural products, significant path loss of microwave high-frequency signals in complex environments, and the lack of a standardized dielectric database. In the future, it is essential to develop low-cost, highly sensitive, and portable systems based on solid-state microelectronics and metamaterials, and to utilize IoT and 6G communications to enable dynamic monitoring. This review not only consolidates the state-of-the-art but also identifies future innovation pathways, providing a roadmap for scalable deployment of next-generation agricultural NDT systems. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

46 pages, 1120 KiB  
Review
From Morphology to Multi-Omics: A New Age of Fusarium Research
by Collins Bugingo, Alessandro Infantino, Paul Okello, Oscar Perez-Hernandez, Kristina Petrović, Andéole Niyongabo Turatsinze and Swarnalatha Moparthi
Pathogens 2025, 14(8), 762; https://doi.org/10.3390/pathogens14080762 - 1 Aug 2025
Viewed by 372
Abstract
The Fusarium genus includes some of the most economically and ecologically impactful fungal pathogens affecting global agriculture and human health. Over the past 15 years, rapid advances in molecular biology, genomics, and diagnostic technologies have reshaped our understanding of Fusarium taxonomy, host–pathogen dynamics, [...] Read more.
The Fusarium genus includes some of the most economically and ecologically impactful fungal pathogens affecting global agriculture and human health. Over the past 15 years, rapid advances in molecular biology, genomics, and diagnostic technologies have reshaped our understanding of Fusarium taxonomy, host–pathogen dynamics, mycotoxin biosynthesis, and disease management. This review synthesizes key developments in these areas, focusing on agriculturally important Fusarium species complexes such as the Fusarium oxysporum species complex (FOSC), Fusarium graminearum species complex (FGSC), and a discussion on emerging lineages such as Neocosmospora. We explore recent shifts in species delimitation, functional genomics, and the molecular architecture of pathogenicity. In addition, we examine the global burden of Fusarium-induced mycotoxins by examining their prevalence in three of the world’s most widely consumed staple crops: maize, wheat, and rice. Last, we also evaluate contemporary management strategies, including molecular diagnostics, host resistance, and integrated disease control, positioning this review as a roadmap for future research and practical solutions in Fusarium-related disease and mycotoxin management. By weaving together morphological insights and cutting-edge multi-omics tools, this review captures the transition into a new era of Fusarium research where integrated, high-resolution approaches are transforming diagnosis, classification, and management. Full article
(This article belongs to the Special Issue Current Research on Fusarium: 2nd Edition)
Show Figures

Figure 1

17 pages, 2436 KiB  
Article
Integrated Cytotoxicity and Metabolomics Analysis Reveals Cell-Type-Specific Responses to Co-Exposure of T-2 and HT-2 Toxins
by Weihua He, Zuoyin Zhu, Jingru Xu, Chengbao Huang, Jianhua Wang, Qinggong Wang, Xiaohu Zhai and Junhua Yang
Toxins 2025, 17(8), 381; https://doi.org/10.3390/toxins17080381 - 30 Jul 2025
Viewed by 164
Abstract
T-2 toxin and HT-2 toxin are commonly found in agricultural products and animal feed, posing serious effects to both humans and animals. This study employed combination index (CI) modeling and metabolomics to assess the combined cytotoxic effects of T-2 and HT-2 on four [...] Read more.
T-2 toxin and HT-2 toxin are commonly found in agricultural products and animal feed, posing serious effects to both humans and animals. This study employed combination index (CI) modeling and metabolomics to assess the combined cytotoxic effects of T-2 and HT-2 on four porcine cell types: intestinal porcine epithelial cells (IPEC-J2), porcine Leydig cells (PLCs), porcine ear fibroblasts (PEFs), and porcine hepatocytes (PHs). Cell viability assays revealed a dose-dependent reduction in viability across all cell lines, with relative sensitivities in the order: IPEC-J2 > PLCs > PEFs > PHs. Synergistic cytotoxicity was observed at low concentrations, while antagonistic interactions emerged at higher doses. Untargeted metabolomic profiling identified consistent and significant metabolic perturbations in four different porcine cell lines under co-exposure conditions. Notably, combined treatment with T-2 and HT-2 resulted in a uniform downregulation of LysoPC (22:6), LysoPC (20:5), and LysoPC (20:4), implicating disruption of membrane phospholipid integrity. Additionally, glycerophospholipid metabolism was the most significantly affected pathway across all cell lines. Ether lipid metabolism was markedly altered in PLCs and PEFs, whereas PHs displayed a unique metabolic response characterized by dysregulation of tryptophan metabolism. This study identified markers of synergistic toxicity and common alterations in metabolic pathways across four homologous porcine cell types under the combined exposure to T-2 and HT-2 toxins. These findings enhance the current understanding of the molecular mechanisms underlying mycotoxin-induced the synergistic toxicity. Full article
Show Figures

Graphical abstract

32 pages, 1971 KiB  
Review
Research Progress in the Detection of Mycotoxins in Cereals and Their Products by Vibrational Spectroscopy
by Jihong Deng, Mingxing Zhao and Hui Jiang
Foods 2025, 14(15), 2688; https://doi.org/10.3390/foods14152688 - 30 Jul 2025
Viewed by 172
Abstract
Grains and their derivatives play a crucial role as staple foods for the global population. Identifying grains in the food chain that are free from mycotoxin contamination is essential. Researchers have explored various traditional detection methods to address this concern. However, as grain [...] Read more.
Grains and their derivatives play a crucial role as staple foods for the global population. Identifying grains in the food chain that are free from mycotoxin contamination is essential. Researchers have explored various traditional detection methods to address this concern. However, as grain consumption becomes increasingly time-sensitive and dynamic, traditional approaches face growing limitations. In recent years, emerging techniques—particularly molecular-based vibrational spectroscopy methods such as visible–near-infrared (Vis–NIR), near-infrared (NIR), Raman, mid-infrared (MIR) spectroscopy, and hyperspectral imaging (HSI)—have been applied to assess fungal contamination in grains and their products. This review summarizes research advances and applications of vibrational spectroscopy in detecting mycotoxins in grains from 2019 to 2025. The fundamentals of their work, information acquisition characteristics and their applicability in food matrices were outlined. The findings indicate that vibrational spectroscopy techniques can serve as valuable tools for identifying fungal contamination risks during the production, transportation, and storage of grains and related products, with each technique suited to specific applications. Given the close link between grain-based foods and humans, future efforts should further enhance the practicality of vibrational spectroscopy by simultaneously optimizing spectral analysis strategies across multiple aspects, including chemometrics, model transfer, and data-driven artificial intelligence. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

25 pages, 26404 KiB  
Review
Review of Deep Learning Applications for Detecting Special Components in Agricultural Products
by Yifeng Zhao and Qingqing Xie
Computers 2025, 14(8), 309; https://doi.org/10.3390/computers14080309 - 30 Jul 2025
Viewed by 339
Abstract
The rapid evolution of deep learning (DL) has fundamentally transformed the paradigm for detecting special components in agricultural products, addressing critical challenges in food safety, quality control, and precision agriculture. This comprehensive review systematically analyzes many seminal studies to evaluate cutting-edge DL applications [...] Read more.
The rapid evolution of deep learning (DL) has fundamentally transformed the paradigm for detecting special components in agricultural products, addressing critical challenges in food safety, quality control, and precision agriculture. This comprehensive review systematically analyzes many seminal studies to evaluate cutting-edge DL applications across three core domains: contaminant surveillance (heavy metals, pesticides, and mycotoxins), nutritional component quantification (soluble solids, polyphenols, and pigments), and structural/biomarker assessment (disease symptoms, gel properties, and physiological traits). Emerging hybrid architectures—including attention-enhanced convolutional neural networks (CNNs) for lesion localization, wavelet-coupled autoencoders for spectral denoising, and multi-task learning frameworks for joint parameter prediction—demonstrate unprecedented accuracy in decoding complex agricultural matrices. Particularly noteworthy are sensor fusion strategies integrating hyperspectral imaging (HSI), Raman spectroscopy, and microwave detection with deep feature extraction, achieving industrial-grade performance (RPD > 3.0) while reducing detection time by 30–100× versus conventional methods. Nevertheless, persistent barriers in the “black-box” nature of complex models, severe lack of standardized data and protocols, computational inefficiency, and poor field robustness hinder the reliable deployment and adoption of DL for detecting special components in agricultural products. This review provides an essential foundation and roadmap for future research to bridge the gap between laboratory DL models and their effective, trusted application in real-world agricultural settings. Full article
(This article belongs to the Special Issue Deep Learning and Explainable Artificial Intelligence)
Show Figures

Figure 1

20 pages, 1243 KiB  
Article
Comparison of Capillary Electrophoresis and HPLC-Based Methods in the Monitoring of Moniliformin in Maize
by Sara Astolfi, Francesca Buiarelli, Francesca Debegnach, Barbara De Santis, Patrizia Di Filippo, Donatella Pomata, Carmela Riccardi and Giulia Simonetti
Foods 2025, 14(15), 2623; https://doi.org/10.3390/foods14152623 - 26 Jul 2025
Viewed by 187
Abstract
Over the past few decades, scientific interest in mycotoxins—fungal metabolites that pose serious concern to food safety, crop health, and both human and animal health—has increased. While major mycotoxins such as aflatoxins, ochratoxins, deoxynivalenol, fumonisins, zearalenone, citrinin, patulin, and ergot alkaloids are well [...] Read more.
Over the past few decades, scientific interest in mycotoxins—fungal metabolites that pose serious concern to food safety, crop health, and both human and animal health—has increased. While major mycotoxins such as aflatoxins, ochratoxins, deoxynivalenol, fumonisins, zearalenone, citrinin, patulin, and ergot alkaloids are well studied, emerging mycotoxins remain underexplored and insufficiently investigated. Among these, moniliformin (MON) is frequently detected in maize-based food and feed; however, the absence of regulatory limits and standardized detection methods limits effective monitoring and comprehensive risk assessment. The European Food Safety Authority highlights insufficient occurrence and toxicological data as challenges to regulatory development. This study compares three analytical methods—CE-DAD, HPLC-DAD, and HPLC-MS/MS—for moniliformin detection and quantification in maize, evaluating linear range, correlation coefficients, detection and quantification limits, accuracy, and precision. Results show that CE-DAD and HPLC-MS/MS provide reliable and comparable sensitivity and selectivity, while HPLC-DAD is less sensitive. Application to real samples enabled deterministic dietary exposure estimation based on consumption, supporting preliminary risk characterization. This research provides a critical comparison that supports the advancement of improved monitoring and risk assessment frameworks, representing a key step toward innovating the detection of under-monitored mycotoxins and laying the groundwork for future regulatory and preventive measures targeting MON. Full article
(This article belongs to the Special Issue Recent Advances in the Detection of Food Contaminants and Pollutants)
Show Figures

Figure 1

21 pages, 385 KiB  
Review
Emerging Mycotoxins in Aquaculture: Current Insights on Toxicity, Biocontrol Strategies, and Occurrence in Aquafeed and Fish
by Patrizio Lorusso, Giusy Rusco, Alessio Manfredi, Nicolaia Iaffaldano, Angela Di Pinto and Elisabetta Bonerba
Toxins 2025, 17(7), 356; https://doi.org/10.3390/toxins17070356 - 17 Jul 2025
Viewed by 372
Abstract
Mycotoxins are secondary metabolites produced by various fungal species that can contaminate food and feed, posing significant risks to human and animal health. In aquaculture, the replacement of fishmeal with alternative protein sources has increased the risk of mycotoxin contamination, becoming a major [...] Read more.
Mycotoxins are secondary metabolites produced by various fungal species that can contaminate food and feed, posing significant risks to human and animal health. In aquaculture, the replacement of fishmeal with alternative protein sources has increased the risk of mycotoxin contamination, becoming a major challenge in fish feed production. Current data highlights that fish are exposed not only to common mycotoxins but also to emerging ones, raising concerns about human exposure through fish consumption. In this review, we draw attention to the toxicity data of key emerging mycotoxins from Fusarium (enniatins, ENNs; beauvericin, BEA) and Alternaria (alternariol monomethyl ether, AME; alternariol, AOH), their occurrence in aquafeeds and in commercially relevant fish species in Europe, and potential biocontrol approaches to prevent/mitigate contaminations. From the present review, it emerged that these mycotoxins exhibit in vitro cytotoxic properties. Their prevalence and concentrations vary widely both among aquafeeds, depending on the sample’s origin, and among fish species. Biocontrol approaches using microorganisms or natural compounds show promise as sustainable solutions to limit contamination. However, further research is essential to address data gaps and to allow for a proper risk assessment and, if necessary, the implementation of effective management measures. Full article
(This article belongs to the Special Issue Risk Assessment of Mycotoxins: Challenges and Emerging Threats)
42 pages, 8737 KiB  
Review
Environmental Xenobiotics and Epigenetic Modifications: Implications for Human Health and Disease
by Ana Filipa Sobral, Andrea Cunha, Inês Costa, Mariana Silva-Carvalho, Renata Silva and Daniel José Barbosa
J. Xenobiot. 2025, 15(4), 118; https://doi.org/10.3390/jox15040118 - 13 Jul 2025
Viewed by 1946
Abstract
Environmental xenobiotics, including heavy metals, endocrine-disrupting chemicals (EDCs), pesticides, air pollutants, nano- and microplastics, mycotoxins, and phycotoxins, are widespread compounds that pose significant risks to human health. These substances, originating from industrial and agricultural activities, vehicle emissions, and household products, disrupt cellular homeostasis [...] Read more.
Environmental xenobiotics, including heavy metals, endocrine-disrupting chemicals (EDCs), pesticides, air pollutants, nano- and microplastics, mycotoxins, and phycotoxins, are widespread compounds that pose significant risks to human health. These substances, originating from industrial and agricultural activities, vehicle emissions, and household products, disrupt cellular homeostasis and contribute to a range of diseases, including cancer and neurodegenerative diseases, among others. Emerging evidence indicates that epigenetic alterations, such as abnormal deoxyribonucleic acid (DNA) methylation, aberrant histone modifications, and altered expression of non-coding ribonucleic acids (ncRNAs), may play a central role in mediating the toxic effects of environmental xenobiotics. Furthermore, exposure to these compounds during critical periods, such as embryogenesis and early postnatal stages, can induce long-lasting epigenetic alterations that increase susceptibility to diseases later in life. Moreover, modifications to the gamete epigenome can potentially lead to effects that persist across generations (transgenerational effects). Although these modifications represent significant health risks, many epigenetic alterations may be reversible through the removal of the xenobiotic trigger, offering potential for therapeutic intervention. This review explores the relationship between environmental xenobiotics and alterations in epigenetic signatures, focusing on how these changes impact human health, including their potential for transgenerational inheritance and their potential reversibility. Full article
Show Figures

Figure 1

21 pages, 1079 KiB  
Article
Toxicological Responses of Juvenile Gilthead Seabream to Enniatin B and Fumonisin B1
by Flávia V. Mello, Cheila Pereira, Busenur Özkan, Ana Luísa Maulvault, Florbela Soares, Pedro Pousão-Ferreira, José O. Fernandes, Sara C. Cunha, António Marques and Patrícia Anacleto
Int. J. Mol. Sci. 2025, 26(12), 5676; https://doi.org/10.3390/ijms26125676 - 13 Jun 2025
Viewed by 594
Abstract
The replacement of ingredients from animal sources with plant-based ingredients is increasing the risk of contamination by mycotoxins in aquafeeds, potentially causing detrimental effects on fish welfare. However, limited research has been carried out so far on the impact of mycotoxins on fish [...] Read more.
The replacement of ingredients from animal sources with plant-based ingredients is increasing the risk of contamination by mycotoxins in aquafeeds, potentially causing detrimental effects on fish welfare. However, limited research has been carried out so far on the impact of mycotoxins on fish health. Hence, the aim of this study was to assess the toxicological effects of the dietary emerging (enniatin B, ENNB) and regulated (fumonisin B1, FB1) mycotoxins (150 µg/kg) in different tissues of juvenile gilthead seabream (Sparus aurata) after 28 days of dietary exposure. Fitness indexes, plasma metabolites, and biomarkers of oxidative stress, metabolism, cellular, and neurotoxic damage were assessed. The exposure to each mycotoxin was sufficient to cause distinct effects in fish tissues. ENNB appears to be the most harmful mycotoxin to S. aurata, inducing changes on alkaline phosphatase and lipase activities in plasma, as well as protein and lipid degradation in liver. Increased lipid degradation was also induced in the brain by FB1 alone or combined with ENNB, whereas the exposure to the mixture inhibited acetylcholinesterase activity. Overall, this study contributes by highlighting the toxicological attributes of ENNB, thus reinforcing the need to include this mycotoxin in future legislation. Full article
(This article belongs to the Special Issue Toxicity Mechanism of Emerging Pollutants: 2nd Edition)
Show Figures

Figure 1

39 pages, 4510 KiB  
Review
Recent Advances in Functionalized Carbon Quantum Dots Integrated with Metal–Organic Frameworks: Emerging Platforms for Sensing and Food Safety Applications
by Arul Murugesan, Huanhuan Li and Muhammad Shoaib
Foods 2025, 14(12), 2060; https://doi.org/10.3390/foods14122060 - 11 Jun 2025
Cited by 1 | Viewed by 1428
Abstract
Carbon quantum dots (CQDs), with their excellent photoluminescence, tunable surface chemistry, and low toxicity, have emerged as versatile nanomaterials in sensing technologies. Meanwhile, metal–organic frameworks (MOFs) possess exceptionally porous architectures and extensive surface areas, and tunable functionalities ideal for molecular recognition and analyte [...] Read more.
Carbon quantum dots (CQDs), with their excellent photoluminescence, tunable surface chemistry, and low toxicity, have emerged as versatile nanomaterials in sensing technologies. Meanwhile, metal–organic frameworks (MOFs) possess exceptionally porous architectures and extensive surface areas, and tunable functionalities ideal for molecular recognition and analyte enrichment. The synergistic integration of CQDs and MOFs has significantly expanded the potential of hybrid materials with enhanced selectivity, sensitivity, and multifunctionality. While several reviews have addressed QD/MOF systems broadly, this review offers a focused and updated perspective on CQDs@MOFs composites specifically tailored for food safety and environmental sensing applications. This review provides a comprehensive analysis of recent advances in the design, synthesis, and surface functionalization of these hybrids, emphasizing the mechanisms of interaction, photophysical behavior, and performance advantages over conventional sensors. Special attention is given to their use in detecting food contaminants such as heavy metals, pesticides, antibiotics, mycotoxins, pathogens, and aromatic compounds. Key strategies to enhance stability, selectivity, and detection limits are highlighted, and current challenges and future directions for practical deployment are critically discussed. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

18 pages, 2149 KiB  
Review
Nuclear Magnetic Resonance-Based Approaches for the Structural and Quantitative Analysis of Mycotoxins
by Yun Hwan Kim, Seon Yeong Lee, Jin Young Kim, Hyojin Cho, Hyang Sook Chun and Sangdoo Ahn
Magnetochemistry 2025, 11(6), 47; https://doi.org/10.3390/magnetochemistry11060047 - 3 Jun 2025
Viewed by 1524
Abstract
Mycotoxins are toxic secondary metabolites produced by various fungal species, posing significant food safety concerns due to their health impacts and economic burden. Accurate structural elucidation and quantitative analysis are essential for effective risk assessment and regulatory control. This review highlights recent advances [...] Read more.
Mycotoxins are toxic secondary metabolites produced by various fungal species, posing significant food safety concerns due to their health impacts and economic burden. Accurate structural elucidation and quantitative analysis are essential for effective risk assessment and regulatory control. This review highlights recent advances in the application of nuclear magnetic resonance (NMR) spectroscopy for the structural and quantitative analysis of major mycotoxins, including aflatoxins, ochratoxins, fumonisins, trichothecenes, and zearalenone. One- and two-dimensional NMR techniques enable precise molecular characterization, positional isomer identification, including modified forms such as masked or conjugated mycotoxins, and toxicity-related molecular interaction investigation. NMR spectroscopy offers superior structural resolution, high reproducibility, and nondestructive analysis, making it invaluable in mycotoxin research. Quantitative NMR spectroscopy has emerged as a robust and accurate method for determining the absolute concentration and purity of mycotoxins, without requiring analyte-specific reference standards, an advantage particularly important for modified toxins lacking commercially available standards. The integration of NMR-based approaches strengthens analytical reliability, supports reference material development, and contributes to enhanced food safety assessment. This review also discusses ongoing analytical challenges and future directions, including the application of artificial intelligence to improve the automation and interpretation of NMR data in mycotoxin research. Full article
(This article belongs to the Section Magnetic Resonances)
Show Figures

Figure 1

43 pages, 1107 KiB  
Review
Biocontrol Agents and Natural Feed Supplements as a Safe and Cost-Effective Way for Preventing Health Ailments Provoked by Mycotoxins
by Stoycho D. Stoev
Foods 2025, 14(11), 1960; https://doi.org/10.3390/foods14111960 - 31 May 2025
Viewed by 636
Abstract
The relationships between mycotoxins content in food commodities or feedstuffs and the foodborne diseases is well known. So far, the available data mainly include chemical methods of mycotoxins decontamination for agricultural commodities or raw materials, including mycotoxin binders. Therefore, the possible use of [...] Read more.
The relationships between mycotoxins content in food commodities or feedstuffs and the foodborne diseases is well known. So far, the available data mainly include chemical methods of mycotoxins decontamination for agricultural commodities or raw materials, including mycotoxin binders. Therefore, the possible use of some natural and cost-effective supplements such as herbs, fungi, microorganisms, or plants with powerful and safe protection against mycotoxin-induced health ailments is the main subject of this review paper. Various antagonistic microorganisms or yeast with fungicidal properties, as well as some herbs or plants that suppress fungal development and the subsequent production of target mycotoxins and/or have protective effect against mycotoxins, are deeply studied in the literature, and practical suggestions are given in this regard. The protection by degradation, biotransformation, or binding of mycotoxins by using natural additives such as herbs or plants to feedstuffs or foods has also been thoroughly investigated and analyzed as a possible approach for ameliorating the target adverse effects of mycotoxins. Possible beneficial dietary changes have also been studied to potentially alleviate mycotoxin toxicity. Practical advice are provided for possible application of the same natural supplements in real-life practice for combating mycotoxin-induced health ailments. Natural feed supplements and bioactive compounds appeared to be safe emerging approaches to preventing health ailments caused by mycotoxins. However, the available data mainly address some in vitro studies, and more in vivo experiments are necessary for introducing such approaches in the real-life practice or industry. Generally, target herbal supplements, antioxidants, or polyenzyme complements could be used as powerful protectors in addition to natural mycotoxin binders. Bioactive agents and enzymatic degradation are reported to be very successful in regard to PAT and OTA, whereas antagonistic microorganisms/fungi/yeasts have a successful application against AFs and PAT-producing fungi. Full article
(This article belongs to the Section Food Toxicology)
Show Figures

Figure 1

27 pages, 2310 KiB  
Review
Carbon Nanodots-Based Sensors: A Promising Tool for Detecting and Monitoring Toxic Compounds
by Duyen H. H. Nguyen, Arjun Muthu, Tamer Elsakhawy, Mohamed H. Sheta, Neama Abdalla, Hassan El-Ramady and József Prokisch
Nanomaterials 2025, 15(10), 725; https://doi.org/10.3390/nano15100725 - 11 May 2025
Cited by 2 | Viewed by 1246
Abstract
The increasing prevalence of toxic compounds in food, agriculture, and the environment presents a critical challenge to public health and ecological sustainability. Carbon nanodots (CNDs), with their excellent photoluminescence, biocompatibility, and ease of functionalization, have emerged as highly promising materials for developing advanced [...] Read more.
The increasing prevalence of toxic compounds in food, agriculture, and the environment presents a critical challenge to public health and ecological sustainability. Carbon nanodots (CNDs), with their excellent photoluminescence, biocompatibility, and ease of functionalization, have emerged as highly promising materials for developing advanced sensors that target hazardous substances. This review provides a comprehensive overview of the synthesis, functionalization, and sensing mechanisms of CND-based sensors, highlighting their versatile application in detecting toxic compounds such as heavy metals, pesticides, mycotoxins, and emerging contaminants. The article outlines recent advancements in fluorescence, electrochemical, and colorimetric detection strategies and presents key case studies that illustrate the successful application of CNDs in real-world monitoring scenarios. Furthermore, it addresses the challenges associated with reproducibility, scalability, selectivity, and sensor stability and explores future directions for integrating CNDs with smart and sustainable technologies. This review emphasizes the transformative potential of CNDs in achieving rapid, cost-effective, and environmentally friendly toxin detection solutions across multiple domains. Full article
(This article belongs to the Special Issue Flexible Sensors Based on Nanomaterials)
Show Figures

Graphical abstract

55 pages, 3842 KiB  
Review
New Strategies and Artificial Intelligence Methods for the Mitigation of Toxigenic Fungi and Mycotoxins in Foods
by Fernando Mateo, Eva María Mateo, Andrea Tarazona, María Ángeles García-Esparza, José Miguel Soria and Misericordia Jiménez
Toxins 2025, 17(5), 231; https://doi.org/10.3390/toxins17050231 - 7 May 2025
Cited by 2 | Viewed by 1535
Abstract
The proliferation of toxigenic fungi in food and the subsequent production of mycotoxins constitute a significant concern in the fields of public health and consumer protection. This review highlights recent strategies and emerging methods aimed at preventing fungal growth and mycotoxin contamination in [...] Read more.
The proliferation of toxigenic fungi in food and the subsequent production of mycotoxins constitute a significant concern in the fields of public health and consumer protection. This review highlights recent strategies and emerging methods aimed at preventing fungal growth and mycotoxin contamination in food matrices as opposed to traditional approaches such as chemical fungicides, which may leave toxic residues and pose risks to human and animal health as well as the environment. The novel methodologies discussed include the use of plant-derived compounds such as essential oils, classified as Generally Recognized as Safe (GRAS), polyphenols, lactic acid bacteria, cold plasma technologies, nanoparticles (particularly metal nanoparticles such as silver or zinc nanoparticles), magnetic materials, and ionizing radiation. Among these, essential oils, polyphenols, and lactic acid bacteria offer eco-friendly and non-toxic alternatives to conventional fungicides while demonstrating strong antimicrobial and antifungal properties; essential oils and polyphenols also possess antioxidant activity. Cold plasma and ionizing radiation enable rapid, non-thermal, and chemical-free decontamination processes. Nanoparticles and magnetic materials contribute advantages such as enhanced stability, controlled release, and ease of separation. Furthermore, this review explores recent advancements in the application of artificial intelligence, particularly machine learning methods, for the identification and classification of fungal species as well as for predicting the growth of toxigenic fungi and subsequent mycotoxin production in food products and culture media. Full article
(This article belongs to the Special Issue Mitigation and Detoxification Strategies of Mycotoxins)
Show Figures

Figure 1

17 pages, 2341 KiB  
Article
Genome Sequencing of a Fusarium Endophytic Isolate from Hazelnut: Phylogenetic and Metabolomic Implications
by Andrea Becchimanzi, Beata Zimowska, Marina Maura Calandrelli, Luigi De Masi and Rosario Nicoletti
Int. J. Mol. Sci. 2025, 26(9), 4377; https://doi.org/10.3390/ijms26094377 - 5 May 2025
Viewed by 624
Abstract
This study reports on the whole genome sequencing of the hazelnut endophytic Fusarium isolate Hzn5 from Poland. It was identified as a member of the Fusarium citricola species complex based on a phylogenetic analysis which also pointed out that other hazelnut isolates, previously [...] Read more.
This study reports on the whole genome sequencing of the hazelnut endophytic Fusarium isolate Hzn5 from Poland. It was identified as a member of the Fusarium citricola species complex based on a phylogenetic analysis which also pointed out that other hazelnut isolates, previously identified as F. lateritium and F. tricinctum, actually belong to this species complex. Genome annotation allowed the mapping of 4491 different protein sequences to the genome assembly. A further in silico search for their potential biosynthetic activity showed that predicted genes are involved in 1110 metabolic pathways. Moreover, the analysis of the genome sequence carried out in comparison to another isolate, previously identified as an agent of hazelnut gray necrosis in Italy, revealed a homology to several regions containing biosynthetic gene clusters for bioactive secondary metabolites. The resulting indications for the biosynthetic aptitude concerning some emerging mycotoxins, such as the enniatins and culmorin, should be taken into consideration with reference to the possible contamination of hazelnuts and derived products. Full article
Show Figures

Figure 1

Back to TopTop