Comparison of Capillary Electrophoresis and HPLC-Based Methods in the Monitoring of Moniliformin in Maize
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Materials
- -
- Kinetex HILIC 50 mm × 2.1 mm 2.6 μm 100 Å (Phenomenex® Castel Maggiore Bologna, Italy);
- -
- Luna HILIC 150 mm × 2.0 mm 3 μm 200 Å (Phenomenex® Castel Maggiore Bologna, Italy);
- -
- Sequant ZIC®-p-HILIC 150 mm × 2.1 mm 5 μm (Merck, Sigma-Aldrich, Darmstadt, Germany).
2.3. Instruments
2.3.1. Capillary Electrophoresis System
2.3.2. HPLC-UV
2.3.3. HPLC-MS/MS
2.4. Samples
2.5. Sample Preparation
2.6. Data Quality
- (1)
- curve in neat solvent;
- (2)
- curve downstream (obtained spiking the extract of a blank sample);
- (3)
- curve upstream (obtained spiking a blank sample before the extraction).
2.7. Risk Assessment
3. Results
3.1. Optimization of CE Operational Conditions
3.1.1. Voltage and Buffer
3.1.2. CE Injection Conditions
3.2. Chromatographic Column Optimization
3.3. Optimization of the Mass Spectrometry Parameters
3.4. Optimization of Sample Preparation
- STEP 1: Extraction
- STEP 2: Purification
- (1)
- Strata C8;
- (2)
- C18;
- (3)
- Strata C18-E.
- STEP 3: Evaporation
3.5. Recovery
3.6. Data Quality
4. Discussion
4.1. CE vs. HPLC
4.2. Application for Real Maize Samples
4.3. Risk Assessment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Battilani, P.; Costa, L.G.; Dossena, A.; Gullino, M.L.; Marchelli, R.; Galaverna, G.; Pietri, A.; Dall’Asta, C.; Giorni, P.; Spadaro, D.; et al. Scientific information on mycotoxins and natural plant toxicants. EFSA Support. Publ. 2009, 6, 24E. [Google Scholar] [CrossRef]
- Eskola, M.; Kos, G.; Elliott, C.T.; Hajšlová, J.; Mayar, S.; Krska, R. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25%. Crit. Rev. Food Sci. Nutr. 2020, 60, 2773–2789. [Google Scholar] [CrossRef] [PubMed]
- Hooda, S.; Kawatra, A. Nutritional evaluation of baby corn (Zea mays). Nutr. Food Sci. 2013, 43, 68–73. [Google Scholar] [CrossRef]
- Erenstein, O.; Jaleta, M.; Sonder, K.; Mottaleb, K.; Prasanna, B.M. Global maize production, consumption and trade: Trends and R&D implications. Food Secur. 2022, 14, 1295–1319. [Google Scholar] [CrossRef]
- Battilani, P.; Costa, L.G.; Dossena, A.; Gullino, M.L.; Marchelli, R.; Galaverna, G.; Bouelet Ntsama, I.S.; Frazzoli, C.; Pouokam, G.B.; Colizzi, V. Occurrence and dietary risk assessment of mycotoxins in most consumed foods in Cameroon: Exploring current data to understand future challenges. Foods 2023, 12, 1713. [Google Scholar] [CrossRef]
- Zingales, V.; Taroncher, M.; Martino, P.A.; Ruiz, M.J.; Caloni, F. Climate change and effects on molds and mycotoxins. Toxins 2022, 14, 445. [Google Scholar] [CrossRef]
- Chen, D.V.; Slowinski, S.P.; Kido, A.K.; Bruns, E.L. High temperatures reduce growth, infection, and transmission of a naturally occurring fungal plant pathogen. Ecology 2024, 105, e4373. [Google Scholar] [CrossRef]
- Kos, J.; Anić, M.; Radić, B.; Zadravec, M.; Janić Hajnal, E.; Pleadin, J. Climate change—A global threat resulting in increasing mycotoxin occurrence. Foods 2023, 12, 2704. [Google Scholar] [CrossRef]
- El-Sayed, R.A.; Jebur, A.B.; Kang, W.; El-Demerdash, F.M. An overview on the major mycotoxins in food products: Characteristics, toxicity, and analysis. J. Future Foods 2022, 2, 91–102. [Google Scholar] [CrossRef]
- Awuchi, C.G.; Ondari, E.N.; Ogbonna, C.U.; Upadhyay, A.K.; Baran, K.; Okpala, C.O.R.; Guiné, R.P. Mycotoxins affecting animals, foods, humans, and plants: Types, occurrence, toxicities, action mechanisms, prevention, and detoxification strategies—A revisit. Foods 2021, 10, 1279. [Google Scholar] [CrossRef]
- Radić, B.Đ.; Kos, J.J.; Tanackov, S.D.K.; Hajnal, E.P.J.; Mandić, A.I. Occurrence of moniliformin in cereals. Food Feed. Res. 2019, 46, 149–160. [Google Scholar] [CrossRef]
- Scarpino, V.; Vanara, F.; Reyneri, A.; Blandino, M. Fate of moniliformin during different large-scale maize dry-milling processes. LWT 2020, 123, 109098. [Google Scholar] [CrossRef]
- Muñoz-Solano, B.; Lizarraga Pérez, E.; González-Peñas, E. Monitoring mycotoxin exposure in food-producing animals (Cattle, Pig, Poultry, and Sheep). Toxins 2024, 16, 218. [Google Scholar] [CrossRef]
- Commission Regulation (EU) 2023/915 of 25 April 2023 on Maximum Levels for Certain Contaminants in Food and Repealing Regulation (EC) No 1881/2006 (Text with EEA Relevance). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32023R0915 (accessed on 1 June 2025).
- Gruber-Dorninger, C.; Novak, B.; Nagl, V.; Berthiller, F. Emerging mycotoxins: Beyond traditionally determined food contaminants. J. Agric. Food Chem. 2017, 65, 7052–7070. [Google Scholar] [CrossRef] [PubMed]
- Munkvold, G.P.; Proctor, R.H.; Moretti, A. Mycotoxin production in Fusarium according to contemporary species concepts. Annu. Rev. Phytopathol. 2021, 59, 373–402. [Google Scholar] [CrossRef] [PubMed]
- Cole, R.J.; Kirksey, J.W.; Cutler, H.G.; Doupnik, B.L.; Peckham, J.C. Toxin from Fusarium moniliforme: Effects on plants and animals. Science 1973, 179, 1324–1326. [Google Scholar] [CrossRef] [PubMed]
- Radić, B.; Radović, R.; Janić Hajnal, E.; Mandić, A.; Đekić, S.; Stojanović, Z.; Kos, J. Moniliformin occurrence in Serbian maize over four years: Understanding weather-dependent variability. Toxins 2023, 15, 634. [Google Scholar] [CrossRef]
- EFSA 2018. Risks to human and animal health related to the presence of moniliformin in food and feed. EFSA J. 2018, 16, 5082. [Google Scholar] [CrossRef]
- Chung, S.H.; Ryu, D.; Kim, E.K.; Bullerman, L.B. Enzyme-assisted extraction of moniliformin from extruded maize grits. J. Agric. Food Chem. 2005, 53, 5074–5078. [Google Scholar] [CrossRef]
- Herrera, M.; van Dam, R.; Spanjer, M.; de Stoppelaar, J.; Mol, H.; de Nijs, M.; López, P. Survey of moniliformin in wheat- and corn-based products using a straightforward analytical method. Mycotoxin Res. 2017, 33, 333–341. [Google Scholar] [CrossRef]
- J Springer, J.P.; Clardy, J.; Cole, R.J.; Kirksey, J.W.; Hill, R.K.; Carlson, R.M.; Isidor, J.L. Structure and synthesis of moniliformin, a novel cyclobutane microbial toxin. J. Am. Chem. Soc. 1974, 96, 2267–2268. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Li, J.; Yang, Z.; Zhang, A.; Li, X.; Qi, P.; Li, J.; Zhang, J. Determination of moniliformin in vegetable oil by solid-phase extraction–hydrophilic interaction chromatography–tandem mass spectrometry. Chromatographia 2020, 83, 903–907. [Google Scholar] [CrossRef]
- Barthel, J.; Rapp, M.; Holtmannspötter, H.; Gottschalk, C. A rapid LC-MS/MS method for the determination of moniliformin and occurrence of this mycotoxin in maize products from the Bavarian market. Mycotoxin Res. 2018, 34, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, J.L.; Nielsen, K.F.; Thrane, U. Analysis of moniliformin in maize plants using hydrophilic interaction chromatography. J. Agric. Food Chem. 2007, 55, 9764–9768. [Google Scholar] [CrossRef]
- Maragos, C.M. Detection of moniliformin in maize using capillary zone electrophoresis. Food Addit. Contam. 2004, 21, 803–810. [Google Scholar] [CrossRef]
- Jestoi, M. Emerging Fusarium-mycotoxins fusaproliferin, beauvericin, enniatins, and moniliformin: A review. Crit. Rev. Food Sci. Nutr. 2008, 48, 21–49. [Google Scholar] [CrossRef]
- Streit, E.; Naehrer, K.; Rodrigues, I.; Schatzmayr, G. Current situation of mycotoxin contamination and co-occurrence in animal feed—Focus on Europe. Toxins 2012, 4, 910–921. [Google Scholar] [CrossRef]
- Uhlig, S.; Eriksen, G.S.; Hofgaard, I.S.; Krska, R.; Beltrán, E.; Sulyok, M. Faces of a changing climate: Semi-quantitative multi-mycotoxin analysis of grain grown in exceptional climatic conditions in Norway. Toxins 2013, 5, 1682–1697. [Google Scholar] [CrossRef]
- Bertuzzi, T.; Giorni, P.; Rastelli, S.; Vaccino, P.; Lanzanova, C.; Locatelli, S. Co-occurrence of moniliformin and regulated Fusarium toxins in maize and wheat grown in Italy. Molecules 2020, 25, 2440. [Google Scholar] [CrossRef]
- Hajnal, E.J.; Kos, J.; Malachová, A.; Steiner, D.; Stranska, M.; Krska, R.; Sulyok, M. Mycotoxins in maize harvested in Serbia in the period 2012–2015. Part 2: Non-regulated mycotoxins and other fungal metabolites. Food Chem. 2020, 317, 126409. [Google Scholar] [CrossRef]
- Commission Implementing Regulation (EU) 2021/808 of 22 March 2021 on the Performance of Analytical Methods for Residues of Pharmacologically Active Substances Used in Food-Producing Animals and on the Interpretation of Results as Well as on the Methods to Be Used for Sampling and Repealing Decisions 2002/657/EC and 98/179/EC. L 180/84 EN Official Journal of the European Union 21.5.2021. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32021R0808 (accessed on 1 June 2025).
- Commission Implementing Regulation (EU) 2023/2782 of 14 December 2023 Laying Down the Methods of Sampling and Analysis for the Control of the Levels of Mycotoxins in Food and Repealing Regulation (EC) No 401/2006. Available online: http://data.europa.eu/eli/reg_impl/2023/2782/oj (accessed on 1 June 2025).
- Magnusson, B. The Fitness for Purpose of Analytical Methods: A Laboratory Guide to Method Validation and Related Topics; Eurachem: Teddington, UK, 2014. [Google Scholar]
- Wenzl, T.; Haedrich, J.; Schaechtele, A.; Piotr, R.; Stroka, J.; Eppe, G.; Scholl, G. Guidance Document on the Estimation of LOD and LOQ for Measurements in the Field of Contaminants in Food and Feed; Institute for Reference Materials and Measurements (IRMM): Geel, Belgium, 2016; Available online: https://orbi.uliege.be/handle/2268/199914 (accessed on 1 June 2025).
- Sulyok, M.; Berthiller, F.; Krska, R.; Schuhmacher, R. Development and validation of a liquid chromatography/tandem mass spectrometric method for the determination of 39 mycotoxins in wheat and maize. Rapid Commun. Mass Spectrom. 2006, 20, 2649–2659. [Google Scholar] [CrossRef]
- SANTE. Analytical Quality Control and Method Validation Procedures for Pesticide Residues and Analysis in Food and Feed. SANTE/11312/2021. 2021. Available online: https://food.ec.europa.eu/system/files/2023-11/pesticides_mrl_guidelines_wrkdoc_2021-11312.pdf (accessed on 1 June 2025).
- Fürst, P.; Milana, M.R.; Pfaff, K.; Tlustos, C.; Vleminckx, C.; Arcella, D.; Barthélémy, E.; Colombo, P.; Goumperis, T.; Pasinato, L.; et al. Risk evaluation of chemical contaminants in food in the context of RASFF notifications: Rapid Assessment of Contaminant Exposure tool (RACE). EFSA Support. Publ. 2019, 16, 1625E. [Google Scholar] [CrossRef]
- Sadighara, P.; Basaran, B.; Afshar, A.; Nazmara, S. Optimization of clean-up in QuEChERS method for extraction of mycotoxins in food samples: A systematic review. Microchem. J. 2024, 197, 109711. [Google Scholar] [CrossRef]
- Bohs, B.; Seidel, V.; Lindner, V. Analysis of selected mycotoxins by capillary electrophoresis. Chromatographia 1995, 41, 631. [Google Scholar] [CrossRef]
- Bertuzzi, T.; Rastelli, S.; Mulazzi, A.; Pietri, A. LC-MS/MS and LC-UV determination of moniliformin by adding lanthanide ions to the mobile phase. Toxins 2019, 11, 570. [Google Scholar] [CrossRef] [PubMed]
- Cazzaniga, D.; Basilico, J.C.; Gonzalez, R.J.; Torres, R.L.; De Greef, D.M. Mycotoxins inactivation by extrusion cooking of maize flour. Lett. Appl. Microbiol. 2001, 33, 144–147. [Google Scholar] [CrossRef]
- Pineda-Valdes, G.; Bullerman, L.B. Thermal stability of moniliformin at varying temperature, pH, and time in an aqueous environment. J. Food Prot. 2000, 63, 1598–1601. [Google Scholar] [CrossRef]
- Pineda-Valdes, G.; Ryu, D.; Hanna, M.A.; Bullerman, L.B. Reduction of moniliformin in corn by heat processing. J. Food Sci. 2003, 68, 1031–1035. [Google Scholar] [CrossRef]
- Schaarschmidt, S.; Fauhl-Hasse, C. The fate of mycotoxins during secondary food processing of maize for human consumption. Compr. Rev. Food Sci. Food Saf. 2021, 20, 91. [Google Scholar] [CrossRef]
- Scarpino, V.; Blandino, M.; Negre, M.; Reyneri, A.; Vanara, F. Moniliformin analysis in maize samples from North-West Italy using multifunctional clean-up columns and the LC-MS/MS detection method. Food Addit. Contam. Part A 2013, 30, 876–884. [Google Scholar] [CrossRef]
- Bertuzzi, T.; Abate, A.; Giorni, P. Distribution of moniliformin in industrial maize milling and flaking process. Mycotoxin Res. 2024, 40, 659–665. [Google Scholar] [CrossRef]
- Angula, M.A.; Ishola, A.; Tjiurutue, M.; Sulyok, M.; Krska, R.; Chibundu, N.; Ezekiel, C.N.; Misihairabgwi, J. Mycotoxin exposure through the consumption of processed cereal food for children (<5 years old) from rural households of Oshana, a region of Namibia. Mycotoxin Res. 2025, 41, 9–13. [Google Scholar] [CrossRef]
- EFSA. Use of the EFSA Comprehensive European Food Consumption Database in Exposure Assessment. EFSA J. 2011, 9, 2097. [Google Scholar] [CrossRef]
Sample Code | Description |
---|---|
C1 | Pure maize grown, dried, and finely ground (supplied by the ISS). |
C2 | Yellow maize flour produced through the milling of domestic maize. Used both for food intended for human consumption and for feed intended for animals (supplied by the ISS). |
C3 | Classical maize flour obtained from sustainable farming practices, respecting the environment and local regulations (supplied by the ISS). |
C4 | Maize guaranteed to have a maximum aflatoxin content of 4 ppb of and a maximum deoxynivalenol content of 1 ppm (supplied by the ISS). |
C5 | Flour made from pure maize from organic farming, dried and ground with a fine grain size. |
C6 | Precooked maize flour produced for making traditional polenta. This flour is made by cooking, drying, and grinding maize kernels. The process reduces cooking time as it only needs to be boiled briefly. |
C7 | “Bramata” yellow maize flour characterized by a coarser grind compared to fine maize flour, making it ideal for traditional polenta preparation. |
E1 | Maize flour of high-quality, traditionally milled stone-ground, made from locally sourced Italian maize and free from chemical additives. Ideal for making polenta and other recipes. |
F1 | Whole meal maize flour ideal for making polenta, bread, or other gluten-free recipes. |
F2 | Precooked (steam-cooked) 100% Italian maize flour. A quick and easy-to-prepare maize flour product for making polenta. |
Potential | −18 kV |
Current | 32 μA |
Buffer | Phosphate 50 mM pH = 2.5 |
Capillary | Silica bare ID 50 μm × 50 cm L |
λ of detection | 220/260 nm LEF 40 cm |
Injection condition | Pressure 50 mpsi for 5 s |
Mobile Phase | Ammonium Formate 60 mM (10%) e Acetonitrile (90%) |
---|---|
Flow speed | 0.15 mL/min |
Temperature | 25 °C |
Injection volume | 5 μL |
Time of the analysis | 10 min |
Column | ZIC-p-HILIC 5 μm 150 × 2.1 mm |
DAD detection | 220,260 nm |
Compound | PI (m/z) | FI (m/z) | EP (V) | FP (V) | CE (eV) | CXP (V) | DP (V) |
---|---|---|---|---|---|---|---|
MON | 97 (M-H)- | 41 | −10 | −200 | −25 | −5 | −10 |
MON | 97 (M-H)- | 97 | −10 | −200 | −25 | −5 | −10 |
LOD (μg/g) | LOQ (μg/g) | Intra-Day Repeatability | Inter-Day Repeatability | Matrix Effect | |
---|---|---|---|---|---|
HPLC-DAD (220 nm) | 0.4 | 1.3 | 5.2 | 7.9 | 1.6 |
HPLC-DAD (260 nm) | 0.4 | 1.3 | 3.5 | 5.2 | |
CE-DAD (220 nm) | 0.1 | 0.4 | 5.1 | 9.7 | 0.8 |
CE-DAD 260 nm) | 0.1 | 0.4 | 8.0 | 12.0 | |
HPLC-MS/MS | 0.003 | 0.01 | 4.0 | 6.2 | 1.8 |
Sample | HPLC-MS/MS (μg/g ± SD) | CE-DAD (μg/g ± SD) |
---|---|---|
C1 | 0.09 ± 0.0018 | 0.10 ± 0.0050 |
C2 | 0.4 ± 0.0120 | 0.4 ± 0.0480 |
C3 | 0.4 ± 0.0160 | 0.4 ± 0.0240 |
C4 | 0.06 ± 0.0024 | <LOD |
C5 | 0.08 ± 0.0024 | <LOD |
C6 | <LOD | <LOD |
C7 | 0.06 ± 0.0024 | <LOD |
E1 | 0.10 ± 0.0050 | 0.10 ± 0.0090 |
F1 | <LOD | <LOD |
F2 | <LOD | <LOD |
data |
Population Group (Year) | Output Mean, % (MON 0.4 μg/g) | Output Mean, % (MON 1.5 μg/g) |
---|---|---|
Infants (0–1) | 0.022 | 0.081 |
Toddlers (1–3) | 0.026 | 0.096 |
Other children (3–10) | 0.018 | 0.066 |
Adolescents (10–18) | 0.008 | 0.032 |
Adults (18–65) | 0.007 | 0.025 |
Elderly (65–75) | 0.005 | 0.020 |
Very elderly (>75) | 0.007 | 0.026 |
Population Group (Year) | MOE Mean (MON 0.4 μg/g) | MOE Mean (MON 1.5 μg/g) |
---|---|---|
Infants (0–1) | 310 | 83 |
Toddlers (1–3) | 261 | 70 |
Other children (3–10) | 378 | 101 |
Adolescents (10–18) | 664 | 177 |
Adults (18–65) | 989 | 264 |
Elderly (65–75) | 1244 | 332 |
Very elderly (>75) | 938 | 250 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Astolfi, S.; Buiarelli, F.; Debegnach, F.; De Santis, B.; Di Filippo, P.; Pomata, D.; Riccardi, C.; Simonetti, G. Comparison of Capillary Electrophoresis and HPLC-Based Methods in the Monitoring of Moniliformin in Maize. Foods 2025, 14, 2623. https://doi.org/10.3390/foods14152623
Astolfi S, Buiarelli F, Debegnach F, De Santis B, Di Filippo P, Pomata D, Riccardi C, Simonetti G. Comparison of Capillary Electrophoresis and HPLC-Based Methods in the Monitoring of Moniliformin in Maize. Foods. 2025; 14(15):2623. https://doi.org/10.3390/foods14152623
Chicago/Turabian StyleAstolfi, Sara, Francesca Buiarelli, Francesca Debegnach, Barbara De Santis, Patrizia Di Filippo, Donatella Pomata, Carmela Riccardi, and Giulia Simonetti. 2025. "Comparison of Capillary Electrophoresis and HPLC-Based Methods in the Monitoring of Moniliformin in Maize" Foods 14, no. 15: 2623. https://doi.org/10.3390/foods14152623
APA StyleAstolfi, S., Buiarelli, F., Debegnach, F., De Santis, B., Di Filippo, P., Pomata, D., Riccardi, C., & Simonetti, G. (2025). Comparison of Capillary Electrophoresis and HPLC-Based Methods in the Monitoring of Moniliformin in Maize. Foods, 14(15), 2623. https://doi.org/10.3390/foods14152623